

ICTP-SAIFR/FAIR Workshop on massGeneration in QCD

Recent Developments on the X, Y and Z States

Fine the first the first the second s

arXiv:1812.08207

Albuquerque, Dias, Khemchandani, Martínez Torres, Navarra, MN, Zanetti

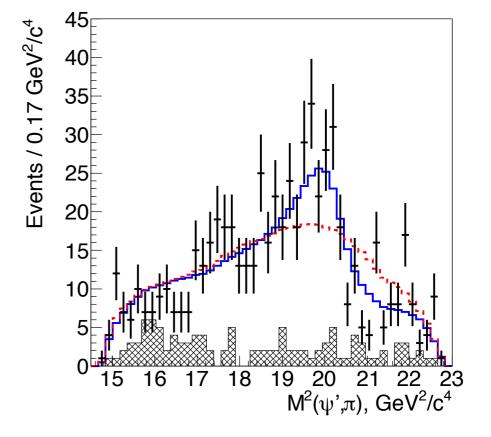
State	m (MeV)	Γ (MeV)	J ^{PC}	Process (mode)	experiment	Year
X(3872)	3871.69±0.17	< 1.2	1++	$B \to K(\pi^+\pi^- J/\psi)$ $p\bar{p} \to (\pi^+\pi^- J/\psi) ()$	Belle [22–24], BaBar [25] CDF [26–28], DØ [29]	2003
				$B \to K(\omega J/\psi)$	Belle [30], BaBar [31]	
				$B \rightarrow K(D^{*0}\bar{D^0})$	Belle [32, 33], BaBar [34]	
				$B \to K(\gamma J/\psi)$	Belle [30], BaBar [35, 36]	
				$B \rightarrow K(\gamma \psi(2S))$	BaBar [36], LHCb [37]	
				$e^+e^- ightarrow \pi^+\pi^- J/\psi$	BESIII [38]	
				$pp \rightarrow (\pi^+\pi^- J/\psi) ()$	LHCb [39, 40], CMS [41]	
$Z_{c}^{+}(3900)$	3886.6 ± 2.4	28.2±2.6	1+-	$Y(4260) \rightarrow (J/\psi \pi^+)\pi^-$ $Y(4260) \rightarrow (D\bar{D}^*)^+\pi^-$	BESIII [42], Belle [43], CLEO-c [44]] BESIII [45]	2013
Y(3940)	3918.4 ± 1.9	20±5	0/2**	$B \rightarrow K (J/\psi \omega)$	Belle [46], BaBar [31, 47]	2004
				$e^+e^- \rightarrow e^+e^-(\omega J/\psi)$	Belle [48], BaBar [49]	
X(3940)	3942 ⁺⁹ -8	37+27	??+	$e^+e^- \rightarrow J/\psi \; ()$	Belle [50]	2005
				$e^+e^- \rightarrow J/\psi \; (DD^*)$	Belle [51]	
Y(4008)	3891 ± 42	255±42	1	$e^+e^- ightarrow \pi^+\pi^- J/\psi$	Belle [43, 52], BESIII [53]	2007
$Z_c^+(4020)$	4024.1 ± 1.9	13 ± 5	??-	$e^+e^- \rightarrow \pi^-(\pi^+h_c)$	BESIII [54]	2013
				$Y(4260) \to \pi^{-} (D^{*} \bar{D}^{*})^{+}$	BESIII [55]	
$Z_1^+(4050)$	4051^{+24}_{-43}	82 ⁺⁵¹ -55	??-	$B \to K(\pi^+ \chi_{c1}(1P))$	Belle [56], BaBar [57]	2008
$Z_{c}^{+}(4055)$	4054 ± 3	45	(??-)	$e^+e^- \to \pi^-(\pi^+\psi(2S))$	Belle [58]	2014
$Z_c^-(4100)$	$(4096\pm^{+28}_{-32})$	152_{-45}^{+70})	0++/1-+	$B^0 \to K^+(\pi^-\eta_c(1S))$	LHCb [59]	2018
Y(4140)	4146.8 ± 2.4	22^{+8}_{-7}	1++	$B \to K(\phi J/\psi)$	CDF [60, 61], D0 [62], LHCb [63], BESIII [64, 65]	2009
X(4160)	4156 ⁺²⁹ ₋₂₅	139^{+113}_{-65}	??+	$e^+e^- \rightarrow J/\psi(D^*\bar{D}^*)$	Belle [51]	2007
$Z_{c}^{+}(4200)$	4196+35	370+99	1+-	$B \to K(\pi^+ J/\psi)$	Belle [66]	2014
Y(4220)	4218+5	59 ⁺¹² ₋₁₀	1	$e^+e^- \rightarrow \chi_{c0} \omega$	BESIII [67]	2014
				$e^+e^- ightarrow h_c \pi^+\pi^-$	BESIII [68]	
				$e^+e^- \rightarrow \psi(2S) \pi^+\pi^-$	BESIII [69]	
				$e^+e^- \rightarrow D^0 D^{*-} \pi^+$	BESIII [70]	

State	m (MeV)	Γ (MeV)	J^{PC}	Process (mode)	experiment	Year
X(3872)	3871.69±0.17	< 1.2	1++	$B \to K(\pi^+\pi^- J/\psi)$	Belle [22-24], BaBar [25]	2003
K				$p\bar{p} \rightarrow (\pi^+\pi^- J/\psi) ()$	CDF [26–28], DØ [29]	
				$B \to K(\omega J/\psi)$	Belle [30], BaBar [31]	
				$B \to K(D^{*0}\bar{D^0})$	Belle [32, 33], BaBar [34]	
fir	rst one			$B \to K(\gamma J/\psi)$	Belle [30], BaBar [35, 36]	
				$B \to K(\gamma \psi(2S))$	BaBar [36], LHCb [37]	
				$e^+e^- \rightarrow \pi^+\pi^- J/\psi$	BESIII [38]	
				$pp \rightarrow (\pi^+\pi^- J/\psi) ()$	LHCb [39, 40], CMS [41]	
$Z_c^+(3900)$	3886.6 ± 2.4	28.2±2.6	1+-	$Y(4260) \to (J/\psi \pi^+)\pi^-$	BESIII [42], Belle [43], CLEO-c [44]]	2013
				$Y(4260) \rightarrow (D\bar{D}^*)^+ \pi^-$	BESIII [45]	
Y(3940)	3918.4 ± 1.9	20±5	0/2++	$B \to K (J/\psi \omega)$	Belle [46], BaBar [31, 47]	2004
				$e^+e^- \rightarrow e^+e^-(\omega J/\psi)$	Belle [48], BaBar [49]	
X(3940)	3942 ⁺⁹ -8	37+27	??+	$e^+e^- \to J/\psi \; ()$	Belle [50]	2005
				$e^+e^- \rightarrow J/\psi (DD^*)$	Belle [51]	
Y(4008)	3891 ± 42	255±42	1	$e^+e^- \rightarrow \pi^+\pi^- J/\psi$	Belle [43, 52], BESIII [53]	2007
$Z_{c}^{+}(4020)$	4024.1 ± 1.9	13 ± 5	??-	$e^+e^- \rightarrow \pi^-(\pi^+h_c)$	BESIII [54]	2013
				$Y(4260) \to \pi^{-}(D^{*}\bar{D}^{*})^{+}$	BESIII [55]	
$Z_1^+(4050)$	4051^{+24}_{-43}	82 ⁺⁵¹ -55	??-	$B \rightarrow K(\pi^+ \chi_{c1}(1P))$	Belle [56], BaBar [57]	2008
$Z_{c}^{+}(4055)$	4054 ± 3	45	(??-)	$e^+e^- \to \pi^-(\pi^+\psi(2S))$	Belle [58]	2014
$Z_c^-(4100)$	$(4096\pm^{+28}_{-32})$	152_{-45}^{+70})	0++/1-+	$B^0 \rightarrow K^+(\pi^-\eta_c(1S))$	LHCb [59]	2018
Y(4140)	4146.8 ± 2.4	22+8	1++	$B \to K(\phi J/\psi)$	CDF [60, 61], D0 [62], LHCb [63], BESIII [64, 65]	2009
X(4160)	4156 ⁺²⁹ -25	139^{+113}_{-65}	??+	$e^+e^- \rightarrow J/\psi(D^*\bar{D}^*)$	Belle [51]	2007
$Z_c^+(4200)$	4196 ⁺³⁵ -30	370+99	1+-	$B \to K(\pi^+ J/\psi)$	Belle [66]	2014
Y(4220)	4218+5	59 ⁺¹² ₋₁₀	1	$e^+e^- \rightarrow \chi_{c0} \omega$	BESIII [67]	2014
				$e^+e^- \rightarrow h_c \pi^+\pi^-$	BESIII [68]	
	last on	e		$e^+e^- \rightarrow \psi(2S) \pi^+\pi^-$	BESIII [69]	
				$e^+e^- \rightarrow D^0 D^{*-} \pi^+$	BESIII [70]	

State	m (MeV)	Γ (MeV)	J^{PC}	Process (mode)	experiment	Year
$Z_2^+(4250)$	4248-185	177^{+321}_{-72}	??+	$B \to K(\pi^+ \chi_{c1}(1P))$	Belle [56], BaBar [57]	2008
Y(4260)	4230 ± 8	55±19	1	$\begin{array}{c} e^+e^- \to \pi^+\pi^- J/\psi \\ e^+e^- \to K^+K^- J/\psi \\ e^+e^- \to \pi^0\pi^0 J/\psi \\ e^+e^- \to Z_c(3900)^\pm \pi^\mp \end{array}$	BaBar [71, 72], CLEO-c [73], Belle [43, 52], BESIII [53] CLEO-c [74], BESIII [45] CLEO-c [74] Belle [43], BESIII [42]	2005
X(4350)	4350.6+4.6	$13.3^{+18.4}_{-10.0}$	$?^{?+}$	$e^+e^- ightarrow \phi J/\psi$	Belle [75]	2009
Y(4360)	4368 ± 13	96±7	1	$e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ $e^+e^- \rightarrow \pi^+\pi^-J/\psi$	BaBar [76, 77], Belle [58, 78], BESIII [69] BESIII [53]	2007
Y(4390)	4391.5+7.3	139.5+16.3	1	$e^+e^- \rightarrow h_c \pi^+\pi^-$	BESIII [68]	2016
Z ⁺ (4430)	4478 ⁺¹⁵ -18	181 ± 31	1+-	$B \rightarrow K^{-}(\pi^{+}\psi(2S))$ $B \rightarrow K^{-}(\pi^{+}J/\psi)$	Belle [79–81], BaBar [82], LHCb [83] Belle [66], BaBar [82]	2007
X(4630)	4634+9	92 ⁺⁴¹ -32	1	$e^+e^- ightarrow \Lambda_c^+ \Lambda_c^-$	Belle [84]	2008
Y(4660)	4643±9	72±11	1	$e^+e^- \to \pi^+\pi^-\psi(2S)$ $e^+e^- \to \Lambda_c^+\Lambda_c^-$	Belle [58, 78], BaBar [77] BESIII [84]	2007

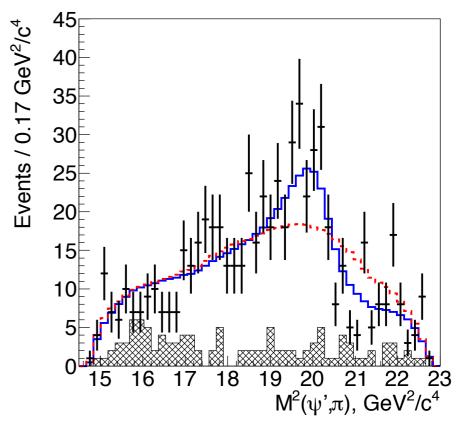
State	m (MeV)	Γ (MeV)	J^{PC}	Process (mode)	experiment	Year
$Z_2^+(4250)$	4248 ⁺¹⁸⁵ - 45	177^{+321}_{-72}	??+	$B \to K(\pi^+ \chi_{c1}(1P))$	Belle [56], BaBar [57]	2008
Y(4260)	4230 ± 8	55±19	1	$\begin{array}{c} e^+e^- \rightarrow \pi^+\pi^- J/\psi \\ e^+e^- \rightarrow K^+K^- J/\psi \\ e^+e^- \rightarrow \pi^0\pi^0 J/\psi \\ e^+e^- \rightarrow Z_c(3900)^{\pm} \pi^{\mp} \end{array}$	BaBar [71, 72], CLEO-c [73], Belle [43, 52], BESIII [53] CLEO-c [74], BESIII [45] CLEO-c [74] Belle [43], BESIII [42]	2005
X(4350)	4350.6+4.6	$13.3^{+18.4}_{-10.0}$??+	$e^+e^- ightarrow \phi J/\psi$	Belle [75]	2009
Y(4360)	4368 ± 13	96±7	1	$e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ $e^+e^- \rightarrow \pi^+\pi^- J/\psi$	BaBar [76, 77], Belle [58, 78], BESIII [69] BESIII [53]	2007
Y(4390)	4391.5 ^{+7.3}	$139.5^{+16.3}_{-20.7}$	1	$e^+e^- ightarrow h_c \pi^+\pi^-$	BESIII [68]	2016
Z ⁺ (4430)	4478 ⁺¹⁵ -18	181 ± 31	1+-	$B \rightarrow K^{-}(\pi^{+}\psi(2S))$ $B \rightarrow K^{-}(\pi^{+}J/\psi)$	Belle [79-81], BaBar [82], LHCb [83] Belle [66], BaBar [82]	2007
X(4630)	4634+9	92 ⁺⁴¹ -32	1	$e^+e^- \rightarrow \Lambda_c^+ \Lambda_c^-$	Belle [84]	2008
Y(4660)	4643±9	72±11	1	$\begin{array}{c} e^+e^- \to \pi^+\pi^-\psi(2S) \\ e^+e^- \to \Lambda_c^+\Lambda_c^- \end{array}$	Belle [58, 78], BaBar [77] BESIII [84]	2007

first charged one \rightarrow not a $c\overline{c}$ state


State	m (MeV)	Γ (MeV)	J^{PC}	Process (mode)	experiment	Year
$Z_2^+(4250)$	4248 ⁺¹⁸⁵ - 45	177+321	??+	$B \rightarrow K(\pi^+ \chi_{c1}(1P))$	Belle [56], BaBar [57]	2008
Y(4260)	4230 ± 8	55±19	1	$\begin{array}{c} e^+e^- \rightarrow \pi^+\pi^- J/\psi \\ e^+e^- \rightarrow K^+K^- J/\psi \\ e^+e^- \rightarrow \pi^0\pi^0 J/\psi \\ e^+e^- \rightarrow Z_c(3900)^{\pm} \pi^{\mp} \end{array}$	BaBar [71, 72], CLEO-c [73], Belle [43, 52], BESIII [53] CLEO-c [74], BESIII [45] CLEO-c [74] Belle [43], BESIII [42]	2005
X(4350)	4350.6+4.6	$13.3^{+18.4}_{-10.0}$??+	$e^+e^- ightarrow \phi J/\psi$	Belle [75]	2009
Y(4360)	4368 ± 13	96±7	1	$e^+e^- ightarrow \pi^+\pi^-\psi(2S)$ $e^+e^- ightarrow \pi^+\pi^- J/\psi$	BaBar [76, 77], Belle [58, 78], BESIII [69] BESIII [53]	2007
Y(4390)	4391.5 ^{+7.3} -7.8	139.5+16.3	1	$e^+e^- ightarrow h_c \pi^+\pi^-$	BESIII [68]	2016
Z ⁺ (4430)	4478 ⁺¹⁵ _18	181 ± 31	1+-	$B \rightarrow K^{-}(\pi^{+}\psi(2S))$ $B \rightarrow K^{-}(\pi^{+}J/\psi)$	Belle [79-81], BaBar [82], LHCb [83] Belle [66], BaBar [82]	2007
X(4630)	4634+9	92 ⁺⁴¹ -32	1	$e^+e^- \rightarrow \Lambda_c^+ \Lambda_c^-$	Belle [84]	2008
Y(4660)	4643±9	72±11	1	$\begin{array}{c} e^+e^- \to \pi^+\pi^-\psi(2S) \\ e^+e^- \to \Lambda_c^+\Lambda_c^- \end{array}$	Belle [58, 78], BaBar [77] BESIII [84]	2007

first charged one \rightarrow not a $c\overline{c}$ state

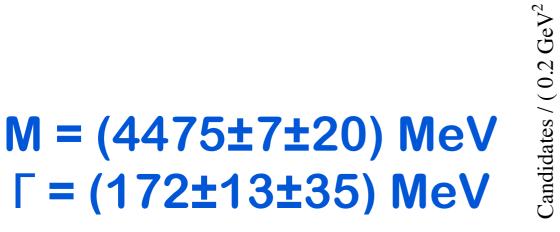
searched Z⁻(4430) in 4 decay modes:

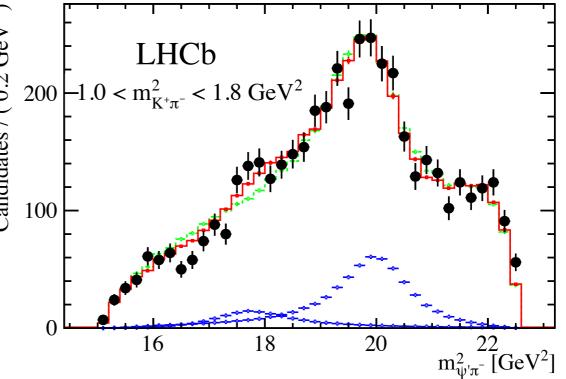

no conclusive evidence for the existence of Z⁺(4430) seen by Belle

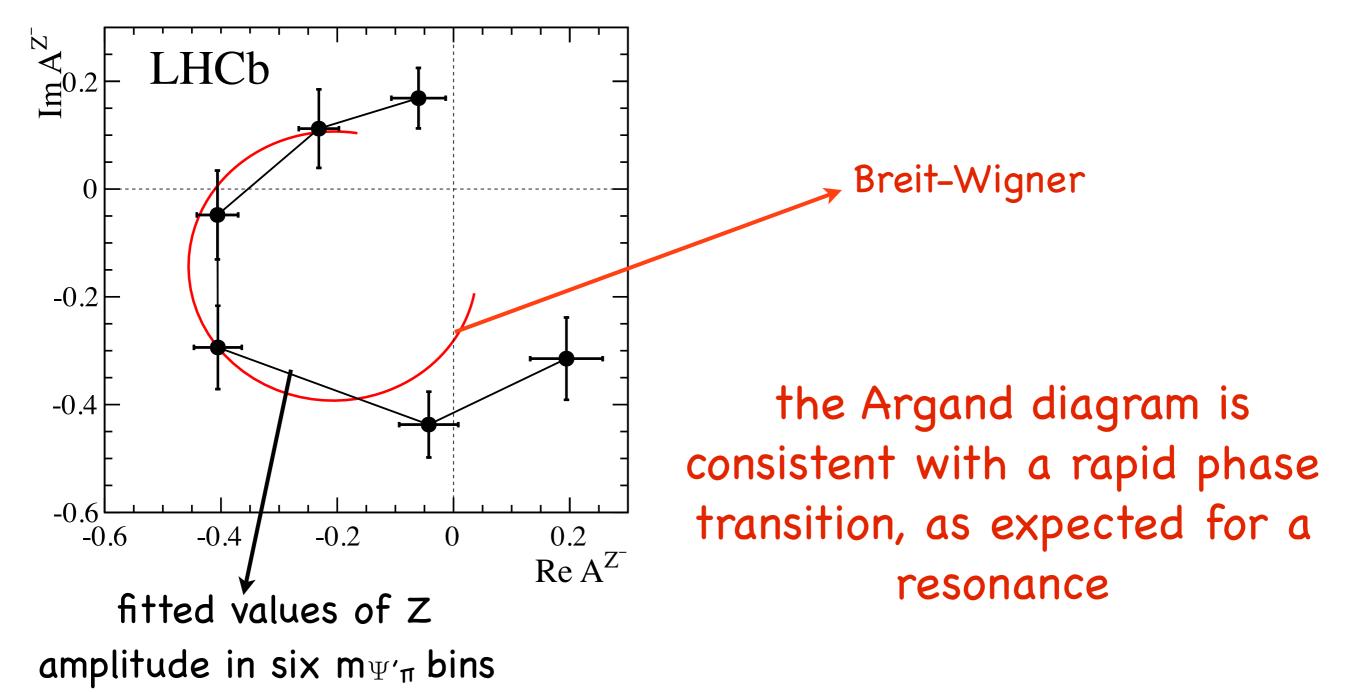
confirm the observation of Z⁺(4430) with 6.1σand J^P=1⁺

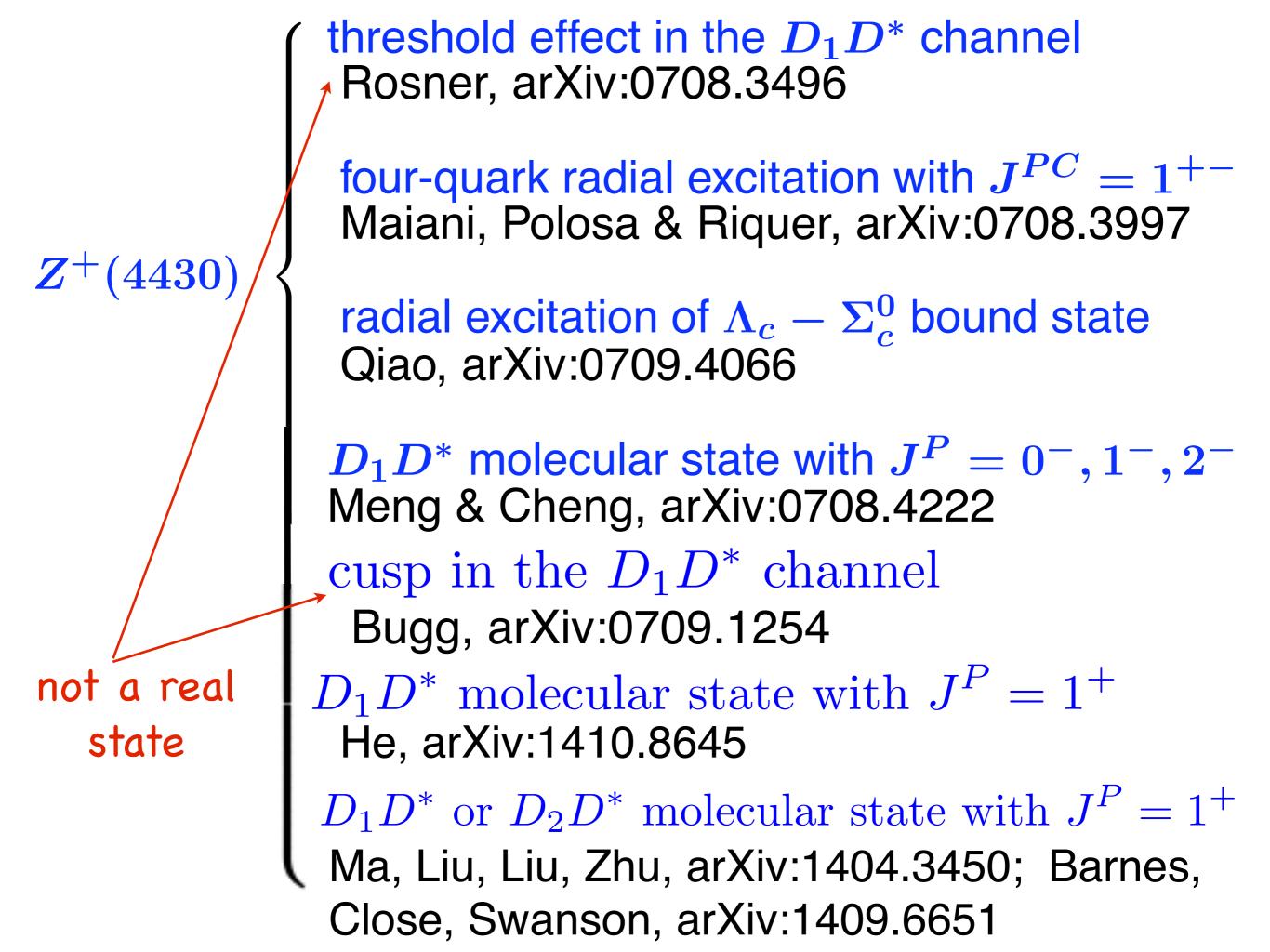
arXiv:1306.4894

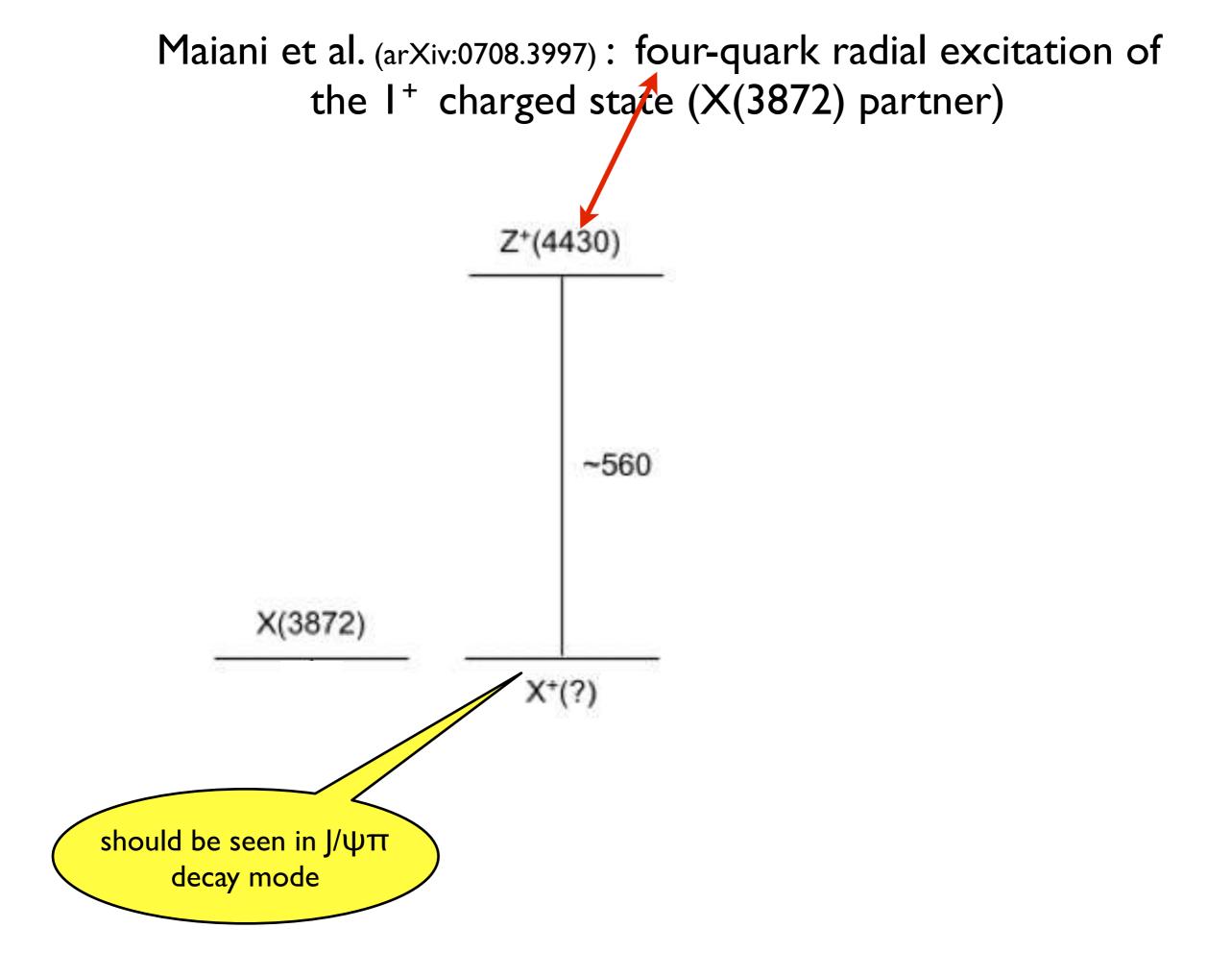
confirm the observation of Z⁺(4430) with 6.1σand J^P=1⁺

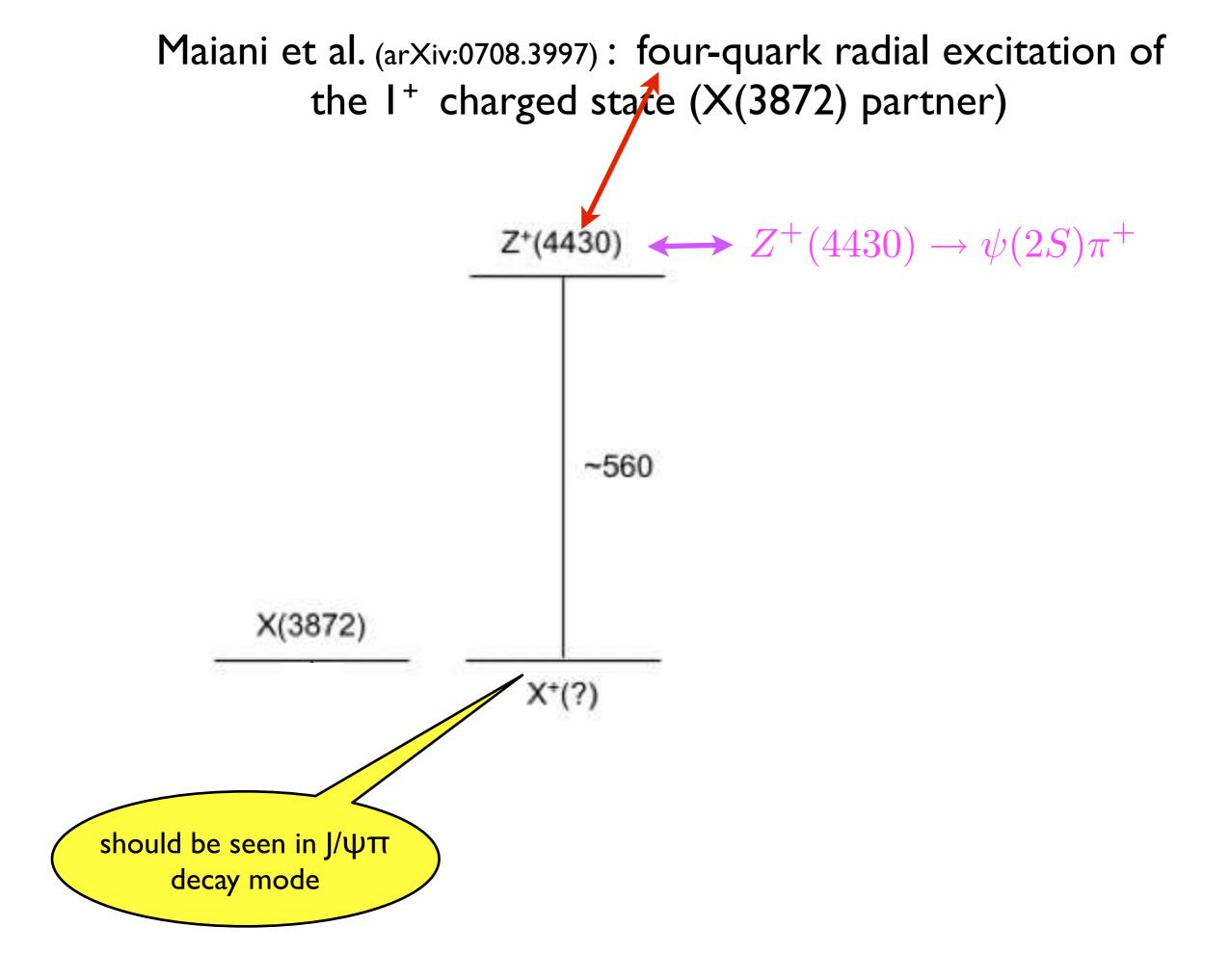


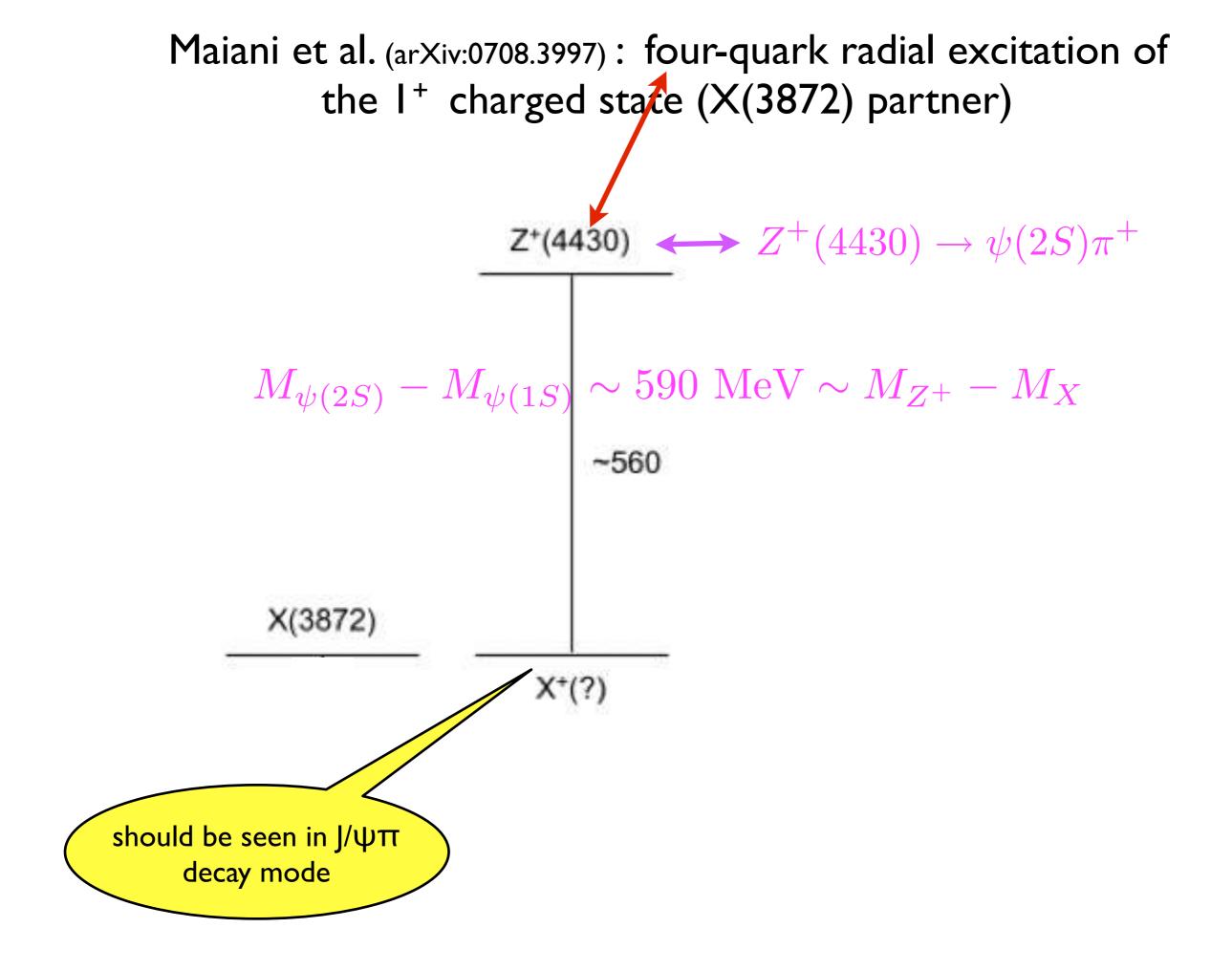

arXiv:1306.4894

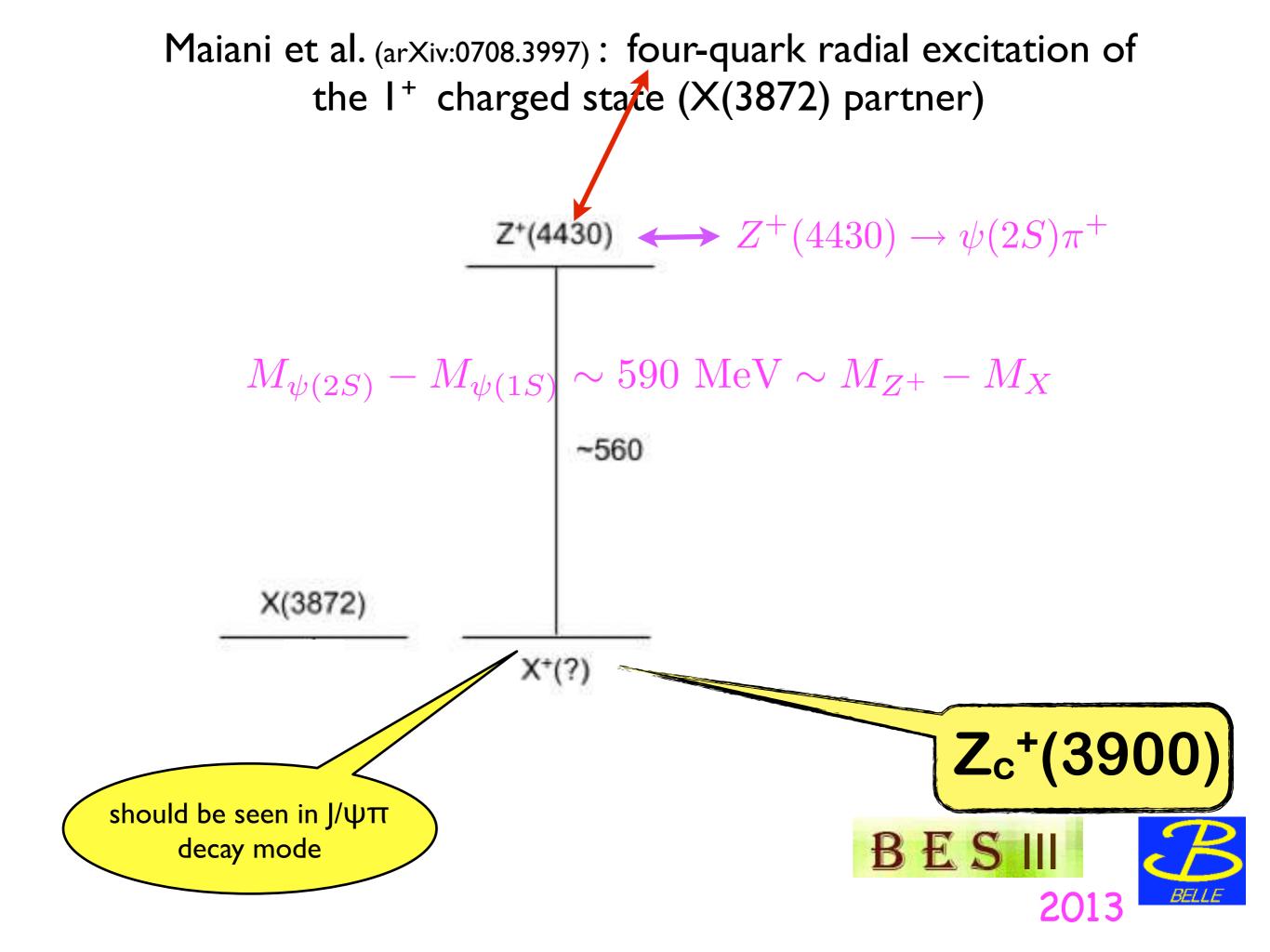

has confirmed the observation of Z⁺(4430) with 13.9σand J⁺ =1⁺


arXiv:1404.1903

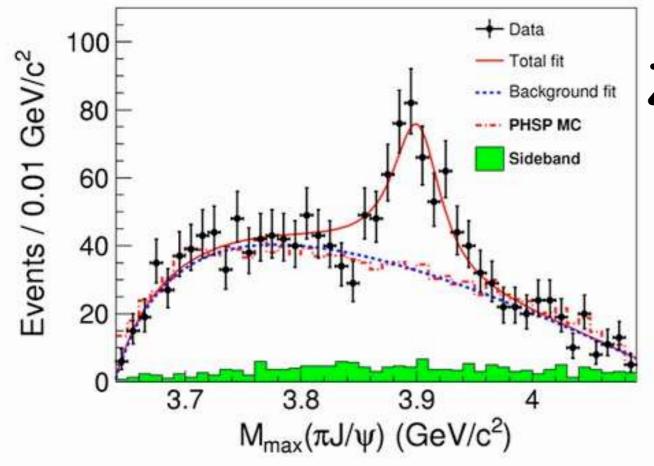



(arXiv:1404.1903) also did the first attempt to demonstrate the resonant behavior of Z⁺(4430): the Breit-Wigner amplitude was replaced by a combination of independent complex amplitudes at six equally spaced points in $m_{\Psi'\pi}$ range covering the Z⁺(4430) peak region

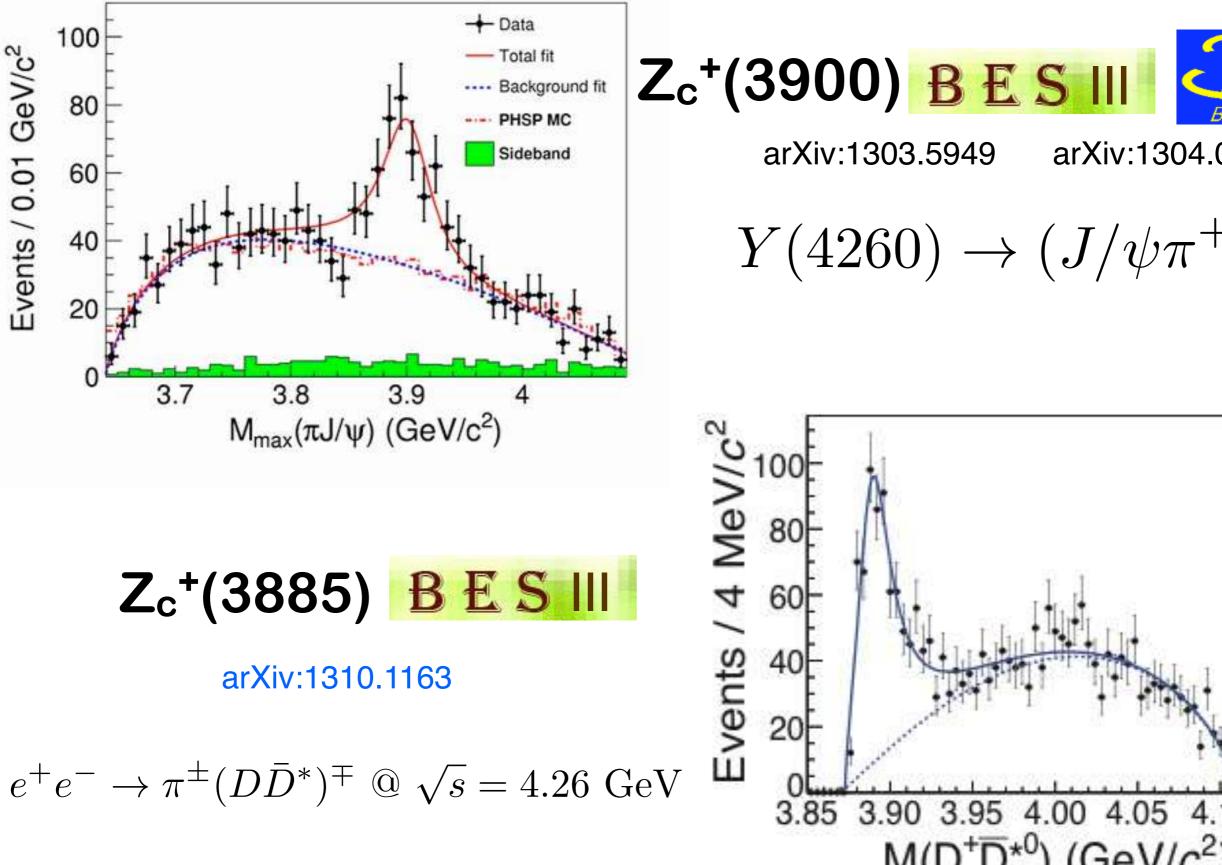




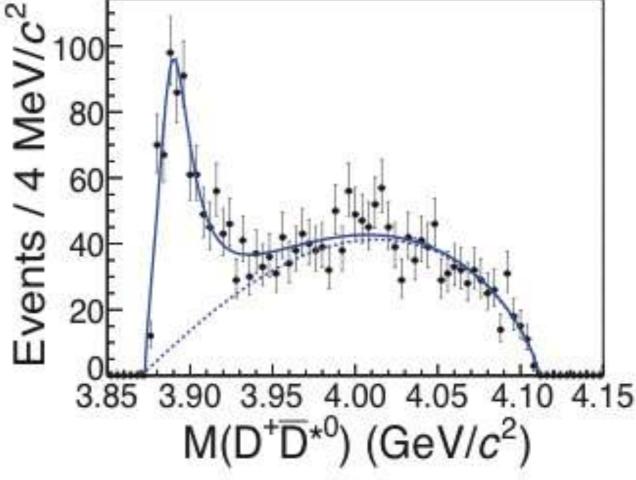
	(threshold effect in the D_1D^* channel Rosner, arXiv:0708.3496
7 + (4 4 0 0)	four-quark radial excitation with $J^{PC} = 1^{+-}$ Maiani, Polosa & Riquer, arXiv:0708.3997
$Z^+(4430)$ <	radial excitation of $\Lambda_c - \Sigma_c^0$ bound state Qiao, arXiv:0709.4066
before LHCb	D_1D^* molecular state with $J^P = 0^-, 1^-, 2^-$ Meng & Cheng, arXiv:0708.4222
	cusp in the $D_1 D^*$ channel Bugg, arXiv:0709.1254
	$D_1 D^*$ molecular state with $J^P = 1^+$ He, arXiv:1410.8645
after LHCb	$D_1 D^*$ or $D_2 D^*$ molecular state with $J^P = 1^+$
	Ma, Liu, Liu, Zhu, arXiv:1404.3450; Barnes,
	Close, Swanson, arXiv:1409.6651



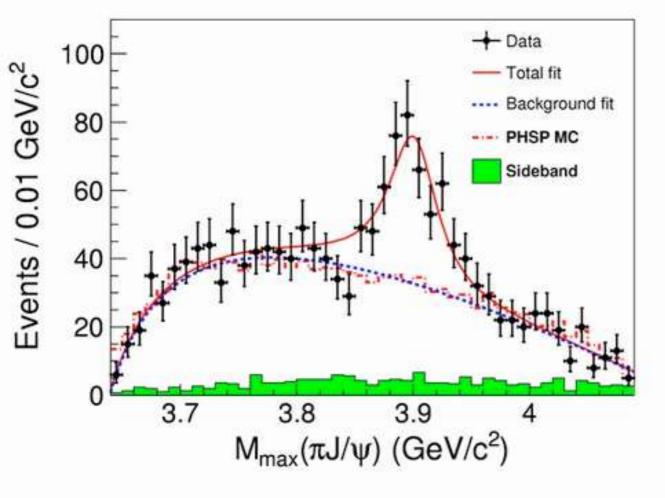
Charged Charmonium states discovered in 2013



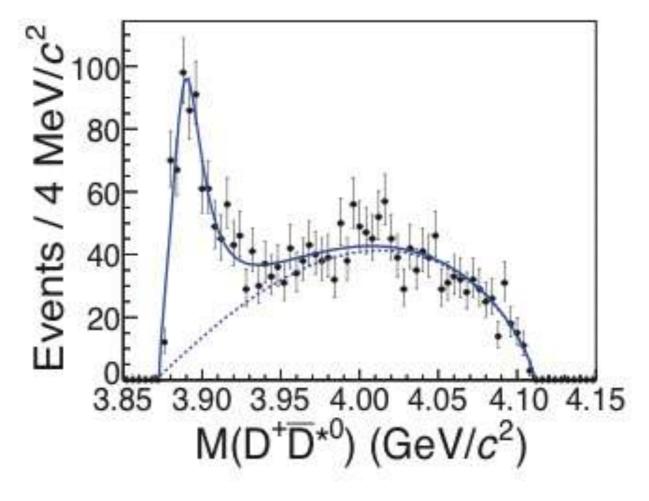
arXiv:1303.5949 arXiv:1304.0121


 $Y(4260) \rightarrow (J/\psi\pi^+)\pi^-$

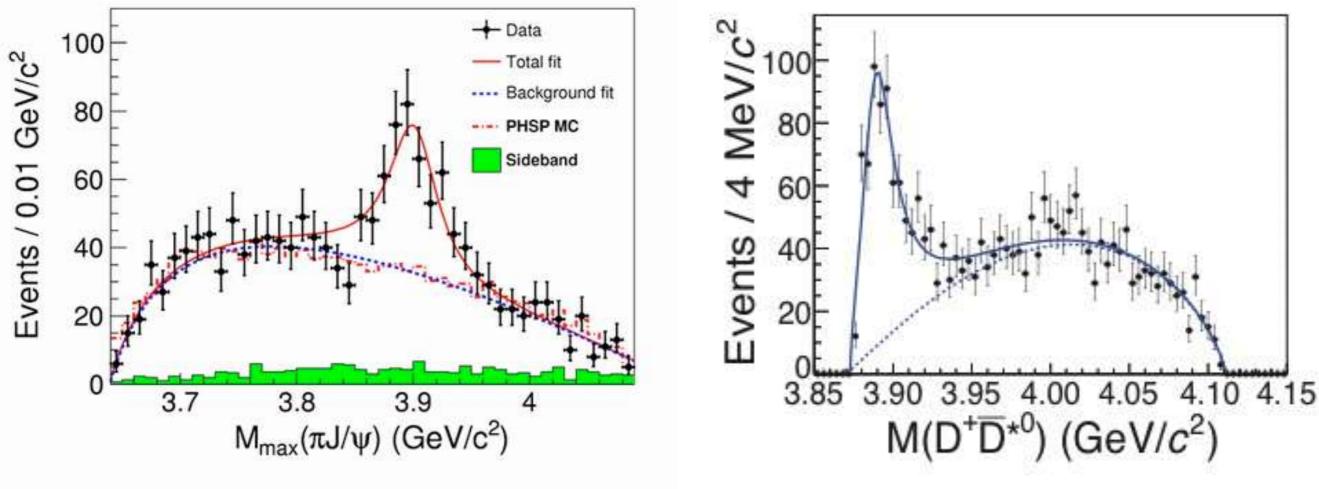
Charged Charmonium states discovered in 2013



$$V(4260) \to (J/\psi\pi^+)\pi^-$$


arXiv:1304.0121

$Z_c^+(3900)$ and $Z_c^+(3885)$ could be the same state?



 $M = (3890 \pm 3.6 \pm 4.9) \text{ MeV}$ $\Gamma = (46 \pm 10 \pm 20) \text{ MeV}$

M = (3883.9±1.5±4.2) MeV Γ = (24.8±3.3±11.0) MeV

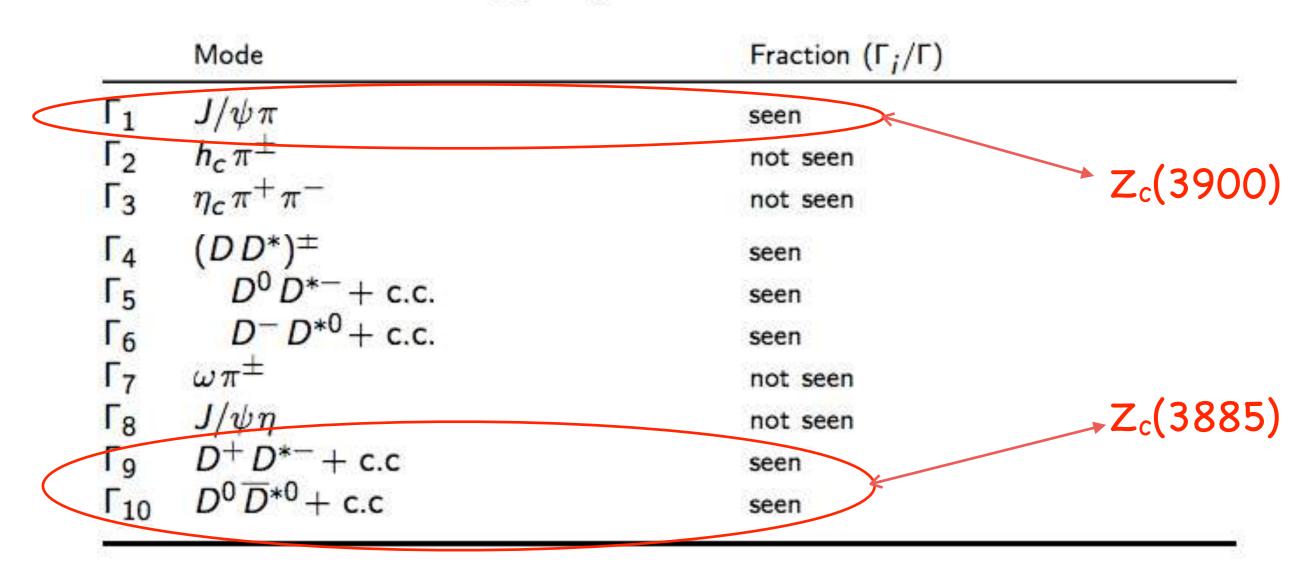
$Z_c^+(3900)$ and $Z_c^+(3885)$ could be the same state?

 $M = (3890 \pm 3.6 \pm 4.9) MeV$

Γ = (46±10±20) MeV

M = (3883.9±1.5±4.2) MeV Γ = (24.8±3.3±11.0) MeV

BESIII Assuming $Z_c(3885)$ and $Z_c(3900)$ arXiv:1310.1163 to be the same state \Rightarrow $\frac{\Gamma(Z_c(3885) \rightarrow D\bar{D}^*)}{\Gamma(Z_c(3900) \rightarrow \pi J/\psi)} = 6.2 \pm 1.1 \pm 2.7$



Zc(3900) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	
Г1	$J/\psi\pi$	seen	
Γ2	$h_c \pi^{\pm}$	not seen	
Гз	$\eta_c \pi^+ \pi^-$	not seen	
Γ ₄	$(DD^*)^{\pm}$	seen	
Γ ₅	$D^0 D^{*-} + c.c.$	seen	
Γ ₄ Γ ₅ Γ ₆ Γ ₇	$D^{-}D^{*0}$ + c.c.	seen	
Γ ₇	$\omega \pi^{\pm}$	not seen	
Г8	$J/\psi\eta$	not seen	
Γ ₉	$D^+ D^{*-} + c.c$	seen	
Γ ₈ Γ ₉ Γ ₁₀	$D^0 \overline{D}^{*0} + c.c$	seen	

Zc(3900) DECAY MODES

QCDSR Results for decay widths of the $Z_c^+(3900)$

Dias, Navarra, MN, Zanetti arXiv:1304.6433

Vertex	coupling constant (GeV)	decay width (MeV)
$Z_c^+(3900)J/\psi\pi^+$	3.89 ± 0.56	29.1 ± 8.2
$Z_{c}^{+}(3900)\eta_{c}\rho^{+}$	4.85 ± 0.81	27.5 ± 8.5
$Z_c^+(3900)D^+\bar{D}^{*0}$		3.2 ± 0.7
$Z_c^+(3900)\bar{D}^0D^{*+}$	2.5 ± 0.3	3.2 ± 0.7

QCDSR Results for decay widths of the Z_c+(3900)

Dias, Navarra, MN, Zanetti arXiv:1304.6433

Vertex	coupling constant (GeV)	decay width (MeV)
$Z_c^+(3900)J/\psi\pi^+$	3.89 ± 0.56	29.1 ± 8.2
$Z_{c}^{+}(3900)\eta_{c}\rho^{+}$	4.85 ± 0.81	27.5 ± 8.5
$Z_c^+(3900)D^+\bar{D}^{*0}$		3.2 ± 0.7
$Z_c^+(3900)\bar{D}^0D^{*+}$	2.5 ± 0.3	3.2 ± 0.7

 $\frac{\Gamma(Z_c(3900) \to D\bar{D}^*)}{\Gamma(Z_c(3900) \to \pi J/\psi)} = 0.22 \pm 0.12$

same result as in Maiani et al. using a tetraquark model arXiv:1303.6857

QCDSR Results for decay widths of the Z_c+(3900)

 $\frac{\Gamma(Z_c(3900) \to D\bar{D}^*)}{\Gamma(Z_c(3900) \to \pi J/\psi)} = 0.22 \pm 0.12$

Dias, Navarra, MN, Zanetti arXiv:1304.6433

Vertex	coupling constant (GeV)	decay width (MeV)
$Z_c^+(3900)J/\psi\pi^+$	3.89 ± 0.56	29.1 ± 8.2
$Z_{c}^{+}(3900)\eta_{c}\rho^{+}$	4.85 ± 0.81	27.5 ± 8.5
$Z_c^+(3900)D^+\bar{D}^{*0}$		3.2 ± 0.7
$Z_c^+(3900)\bar{D}^0D^{*+}$	2.5 ± 0.3	3.2 ± 0.7

same result as in Maiani et al. using a tetraquark model arXiv:1303.6857

BESII

 $\frac{\Gamma(Z_c(3885) \to D\bar{D}^*)}{\Gamma(Z_c(3900) \to \pi J/\psi)} = 6.2 \pm 1.1 \pm 2.7$

QCDSR and tetraquark model \Rightarrow not the same state!

up to now: 8 charmonium charged states

Z ⁺ (4430) 2007	Z1 ⁺ (4050) 2008	Z ₂ ⁺ (4250) 2008
BELLE ELLE		
BESⅢ Z _c ⁺ (3900) 2013	Z _c ⁺ (4020) 2013	Z _c ⁺ (4055) 2014
BELLE	BESII	BELLE
Z _c ⁺ (4200)	Z _c ⁺ (4100)	
2014	2018	
BELLE	CHCP 3σ! needs confirmation	

up to now: 8 charmonium charged states

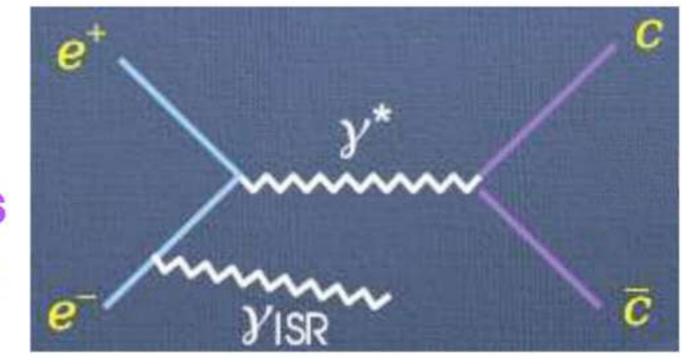
Z+(4430) 2007	$Z_{I}^{+}(4050)$ 2008 $M=(4051\pm35)MeV$ $\Gamma=(82\pm52)MeV$ $\pi^{+}\chi_{c1}$	Z ₂ +(4250) 2008
BESIII $Z_{c}^{+}(3900)$ 2013	Z _c ⁺ (4020) 2013 ₿₤SⅢ	$Z_{c}^{+}(4055)$ 2014 $M=(4054\pm3)MeV$ $\Gamma=(45\pm15)MeV$ $\pi^{+}\Psi(2S)$
Z _c +(4200) 2014	Z _c ⁺ (4100) 2018	

up to now: 8 charmonium charged states

Z+(4430) 2007	$Z_{I}^{+}(4050)$ 2008 $M=(4051\pm35)MeV$ $\Gamma=(82\pm52)MeV$ $\pi^{+}\chi_{c1}$	$Z_{2}^{+}(4250)$ 2008 $Q_{2}^{+}(4250)$		
B E S Ⅲ Z _c ⁺ (3900) 2013	Z _c ⁺ (4020) 2013 BESⅢ I ⁺ or 2 ⁺ DD* molecule	$Z_{c}^{+}(4055)$ 2014 $M=(4054\pm3)MeV$ $\Gamma=(45\pm15)MeV$ $\pi^{+}\Psi(2S)$		
Z _c +(4200) 2014	Confirmation			

Y (J^{PC}=1⁻) Family

State	Name in PDG	Decay channel	Experiment	Year
Y(4220)	<i>\psi(</i> 4230)	$Y(4220) \rightarrow \chi_{c0} \omega$	BESIII [67]	2015
		$Y(4220) \rightarrow h_c \ \pi^+ \pi^-$	BESIII [68]	2017
		$Y(4220) \rightarrow \psi(2S) \pi^+\pi^-$	BESIII [69]	2017
		$Y(4220) \to D^0 D^{*-} \pi^+$	BESIII [70]	2018
Y(4260) ψ(4	ψ(4260)	$Y(4260) \rightarrow J/\psi \pi^+\pi^-$	BaBar [71, 72]; CLEO-c [73]; Belle [43, 52]	2005
		$Y(4260) \rightarrow J/\psi \pi^0 \pi^0$	CLEO-c [74]	2006
		$Y(4260) \rightarrow J/\psi K^+K^-$	CLEO-c [74]; Belle [201, 202]	2006
		$Y(4260) \rightarrow J/\psi \ f_0(980)$	BaBar [72]	2012
		$Y(4260) \rightarrow Z_c(3900)^{\pm} \pi^{\mp}$	Belle [43]; BESIII [42]	2013
		$Y(4260) \rightarrow J/\psi \pi^+\pi^-$	BESIII [53]	2017
Y(4360)	ψ(4360)	$Y(4360) \rightarrow \psi(2S) \pi^+\pi^-$	Belle [58, 78]; BaBar [76, 77]; BESIII [69]	2007
		$Y(4360) \rightarrow J/\psi \pi^+\pi^-$	BESIII [53]	2017
Y(4390)	ψ(4390)	$Y(4390) \rightarrow h_c \pi^+\pi^-$	BESIII [68]	2017
		$Y(4390) \rightarrow \psi(2S) \pi^+\pi^-$	BESIII [69]	2017
Y(4660)	ψ(4660)	$Y(4660) \rightarrow \psi(2S) \pi^+ \pi^-$	Belle [58, 78]; BaBar [77]	2007
		$Y(4660) \rightarrow \Lambda_c^+ \Lambda_c^-$	BESIII [84]	2008

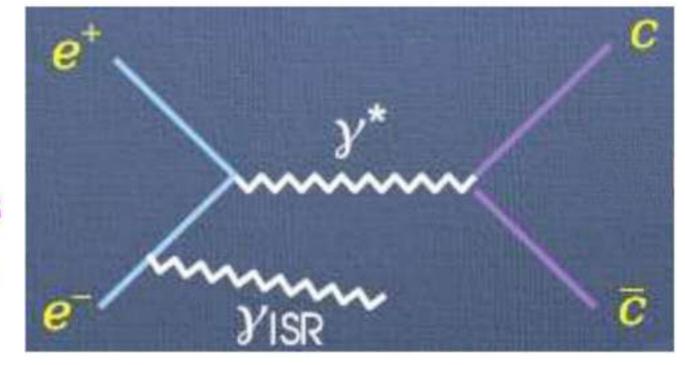

Y (J^{PC}=1⁻⁻) Family

State	Name in PDG	Decay channel	Experiment	Year
Y(4220)	<i>\psi(</i> 4230)	$Y(4220) \rightarrow \chi_{c0} \omega$	BESIII [67]	2015
		$Y(4220) \rightarrow h_c \ \pi^+ \pi^-$	BESIII [68]	2017
		$Y(4220) \rightarrow \psi(2S) \pi^+ \pi^-$	BESIII [69]	2017
		$Y(4220) \to D^0 D^{*-} \pi^+$	BESIII [70]	2018
$Y(4260)$ $\psi(4260)$		$Y(4260) \rightarrow J/\psi \pi^+\pi^-$	BaBar [71, 72]; CLEO-c [73]; Belle [43, 52]	2005
K		$Y(4260) \rightarrow J/\psi \pi^0 \pi^0$	CLEO-c [74]	2006
first one		$Y(4260) \rightarrow J/\psi K^+K^-$	CLEO-c [74]; Belle [201, 202]	2006
	first one	$Y(4260) \rightarrow J/\psi \; f_0(980)$	BaBar [72]	2012
		$Y(4260) \rightarrow Z_c(3900)^{\pm} \pi^{\mp}$	Belle [43]; BESIII [42]	2013
		$Y(4260) \rightarrow J/\psi \pi^+\pi^-$	BESIII [53]	2017
Y(4360)	ψ(4360)	$Y(4360) \rightarrow \psi(2S) \pi^+ \pi^-$	Belle [58, 78]; BaBar [76, 77]; BESIII [69]	2007
		$Y(4360) \rightarrow J/\psi \pi^+\pi^-$	BESIII [53]	2017
Y(4390)	ψ(4390)	$Y(4390) \rightarrow h_c \pi^+ \pi^-$	BESIII [68]	2017
		$Y(4390) \rightarrow \psi(2S) \pi^+ \pi^-$	BESIII [69]	2017
Y(4660)	ψ(4660)	$Y(4660) \rightarrow \psi(2S) \pi^+ \pi^-$	Belle [58, 78]; BaBar [77]	2007
		$Y(4660) \rightarrow \Lambda_c^+ \Lambda_c^-$	BESIII [84]	2008

First three states

 $e^+e^- \rightarrow 1^{--}$ Final States via Initial State Radiation (ISR)

 $e^+e^- \rightarrow \gamma_{IRS}(c\bar{c})$ data collected at 10.6 GeV



(05) $Y(4260) \rightarrow J/\psi \pi^+ \pi^-$

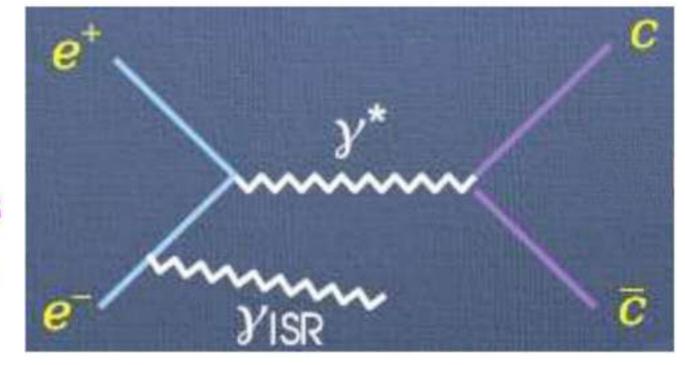
 $\sum_{\text{FELLE}} (07) \quad \begin{array}{c} Y(4360) \to \psi(2S)\pi^{+}\pi^{-} \\ Y(4660) \to \psi(2S)\pi^{+}\pi^{-} \end{array}$

2008 2018

- $\begin{array}{l} \mathsf{M} = (4263 \pm 9) \to (4230 \pm 8) \; \mathsf{MeV} \\ \mathsf{\Gamma} = (95 \pm 14) \to (55 \pm 19) \; \mathsf{MeV} \end{array}$
- M =(4664±17) → (4643±9) MeV Γ = (48±16) → (72±11) MeV

First three states

$e^+e^- \rightarrow 1^{--}$ Final States via Initial State Radiation (ISR)


 $e^+e^- \rightarrow \gamma_{IRS}(c\bar{c})$ data collected at 10.6 GeV

(05) $Y(4260) \to J/\psi \pi^+ \pi^-$

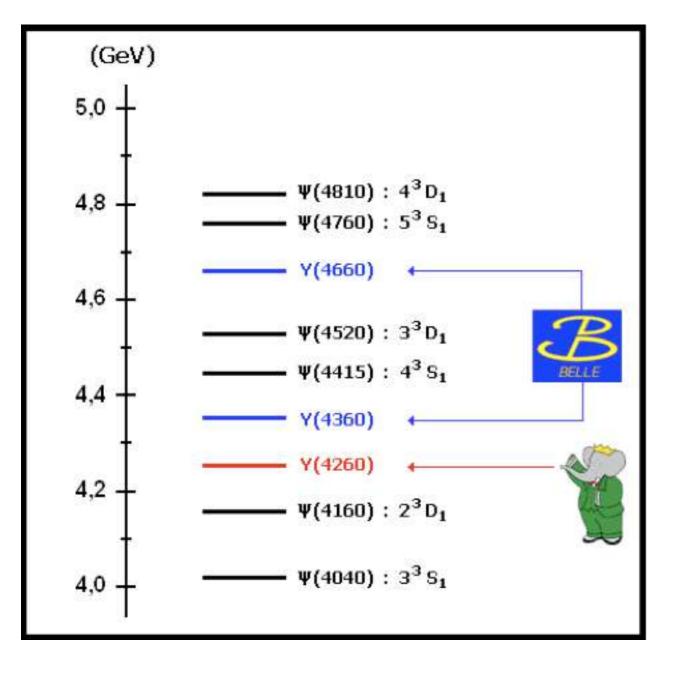
 $Y(4360) \to \psi(2S)\pi^+\pi^ Y(4660) \to \psi(2S)\pi^+\pi^-$

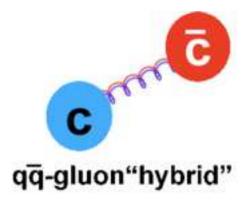
 $\begin{array}{l} \mathsf{M}=(4263\pm9)\rightarrow(4230\pm8)\;\mathsf{MeV}\\ \mathsf{\Gamma}=(95\pm14)\rightarrow(55\pm19)\;\mathsf{MeV} \end{array}$

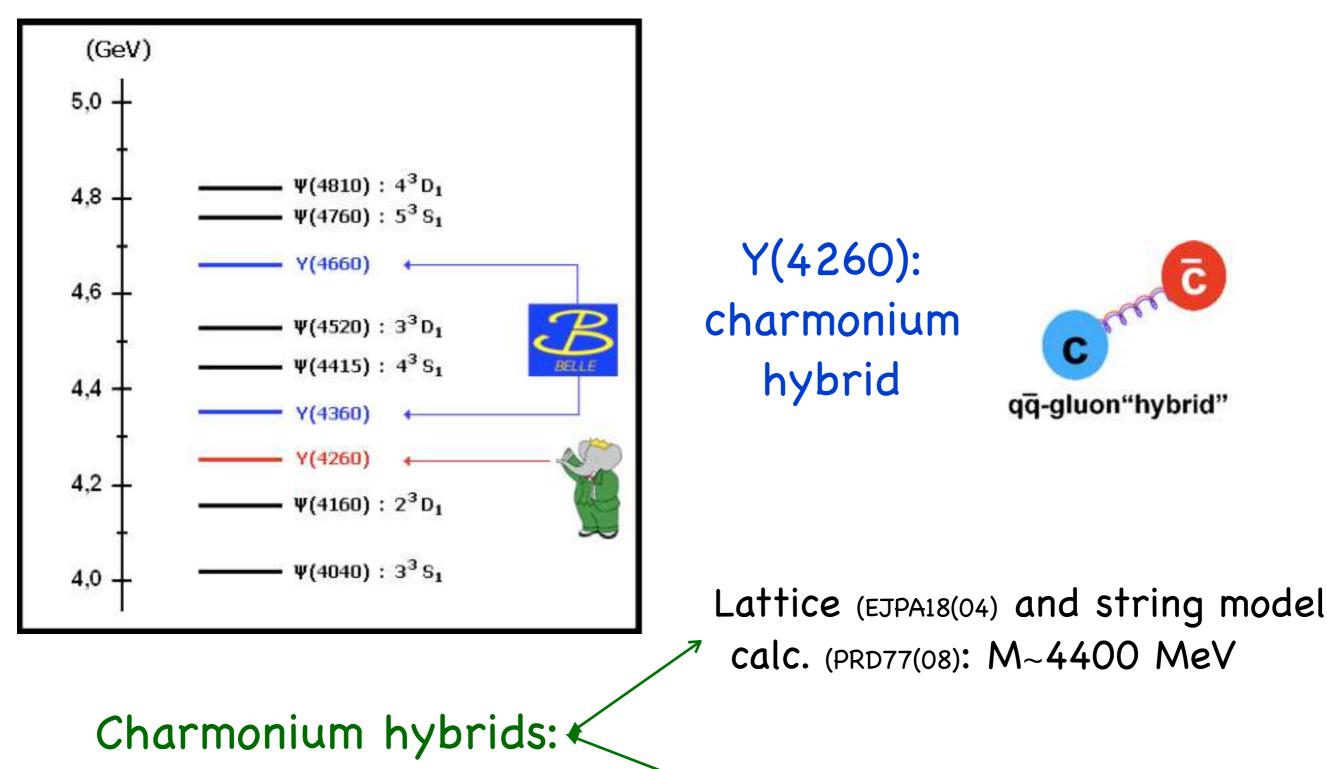
 $M = (4664 \pm 17) \rightarrow (4643 \pm 9) \text{ MeV}$ $\Gamma = (48 \pm 16) \rightarrow (72 \pm 11) \text{ MeV}$

 $e^+e^- \rightarrow 1^{--}$ Final States via Initial State Radiation (ISR)

> $e^+e^- \rightarrow \gamma_{IRS}(c\bar{c})$ data collected at 10.6 GeV


(05) $Y(4260) \to J/\psi \pi^+ \pi^-$


 $Y(4360) \to \psi(2S)\pi^+\pi^ Y(4660) \to \psi(2S)\pi^+\pi^-$


masses and widths of these states are not consistent with any of the 1⁻⁻ charmonium states

Y(4260): charmonium hybrid

masses and widths of these states are not consistent with any of the 1⁻⁻ charmonium states

flux tube (PRD52(95): M~4200 MeV

charmonium hybrid \Rightarrow dominant decay mode $D\overline{D}_1$ (Close & Page, PRLB628(05)215)

Maiani et al. (PRD72 (05)) tetraquark $J^{PC} = 1^{--}$ states:

 $Y(4260) = ([cs]_{S=0}[\bar{c}\bar{s}]_{S=0})$ P-wave

Ebert et al. (EPJC58(08)) = such state would have M ~ 4450 MeV

charmonium hybrid \Rightarrow dominant decay mode $D\overline{D}_1$ (Close & Page, PRLB628(05)215)

Maiani et al. (PRD72 (05)) tetraquark $J^{PC} = 1^{--}$ states:

 $Y(4260) = ([cs]_{S=0}[\bar{c}\bar{s}]_{S=0})$ P-wave

Ebert et al. (EPJC58(08)) = such state would have M ~ 4450 MeV

baryonium $\Lambda_c - \bar{\Lambda}_c$ state (Qiao, PLB639(06))

Y(4260) S-wave threshold effect (Rosner, PRD74(06)) molecular state (Ding, Liu et al., Yuan et al., MN et al.,...) manifestations of Regee zeros (Beveren et al., arXiv:0811.1755) charmonium hybrid \Rightarrow dominant decay mode $D\overline{D}_1$ (Close & Page, PRLB628(05)215)

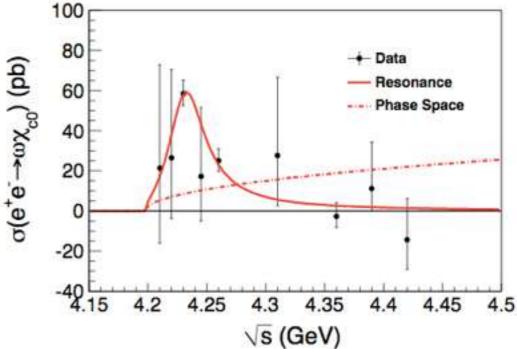
Maiani et al. (PRD72 (05)) tetraquark $J^{PC} = 1^{--}$ states:

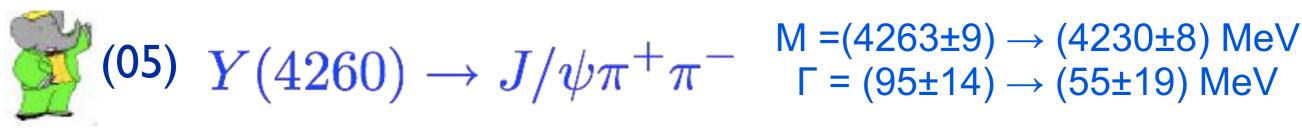
 $Y(4260) = ([cs]_{S=0}[\bar{c}\bar{s}]_{S=0})$ P-wave

Ebert et al. (EPJC58(08)) = such state would have M ~ 4450 MeV

baryonium $\Lambda_c - \bar{\Lambda}_c$ state (Qiao, PLB639(06))

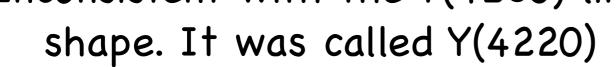
Y(4260) S-wave threshold effect (Rosner, PRD74(06)) molecular state (Ding, Liu et al., Yuan et al., MN et al.,...) manifestations of Regee zeros (Beveren et al., arXiv:0811.1755)

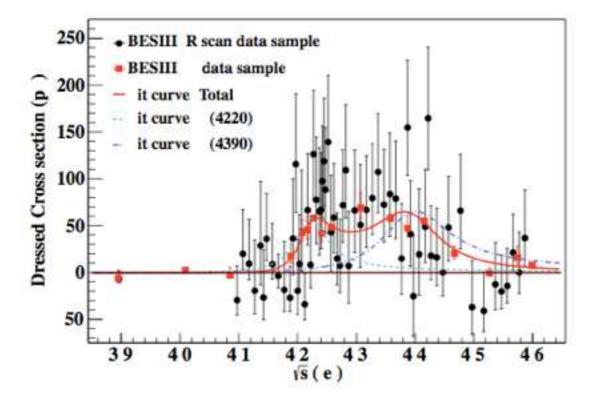

Observed at B factories with limited statistics High precision measurements at BESIII supply new insights

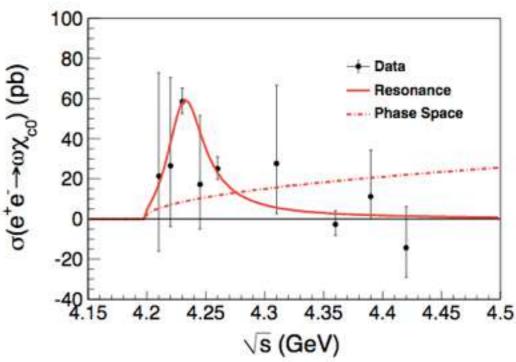


Inconsistent with the Y(4260) line shape. It was called Y(4220)

 $M = (4230 \pm 8 \pm 6) MeV$

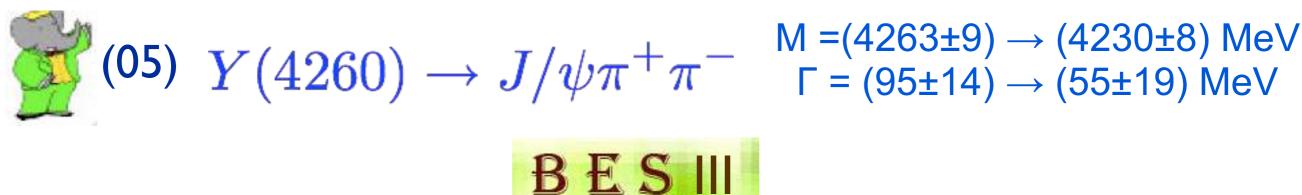

 $\Gamma = (38 \pm 12 \pm 6) \text{ MeV}, 9\sigma$

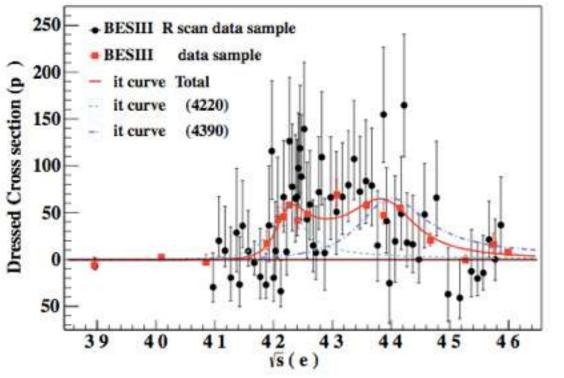


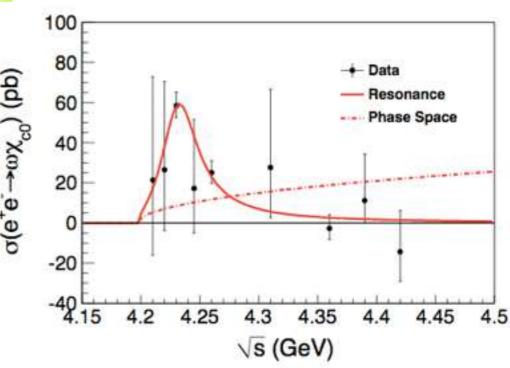


BESII

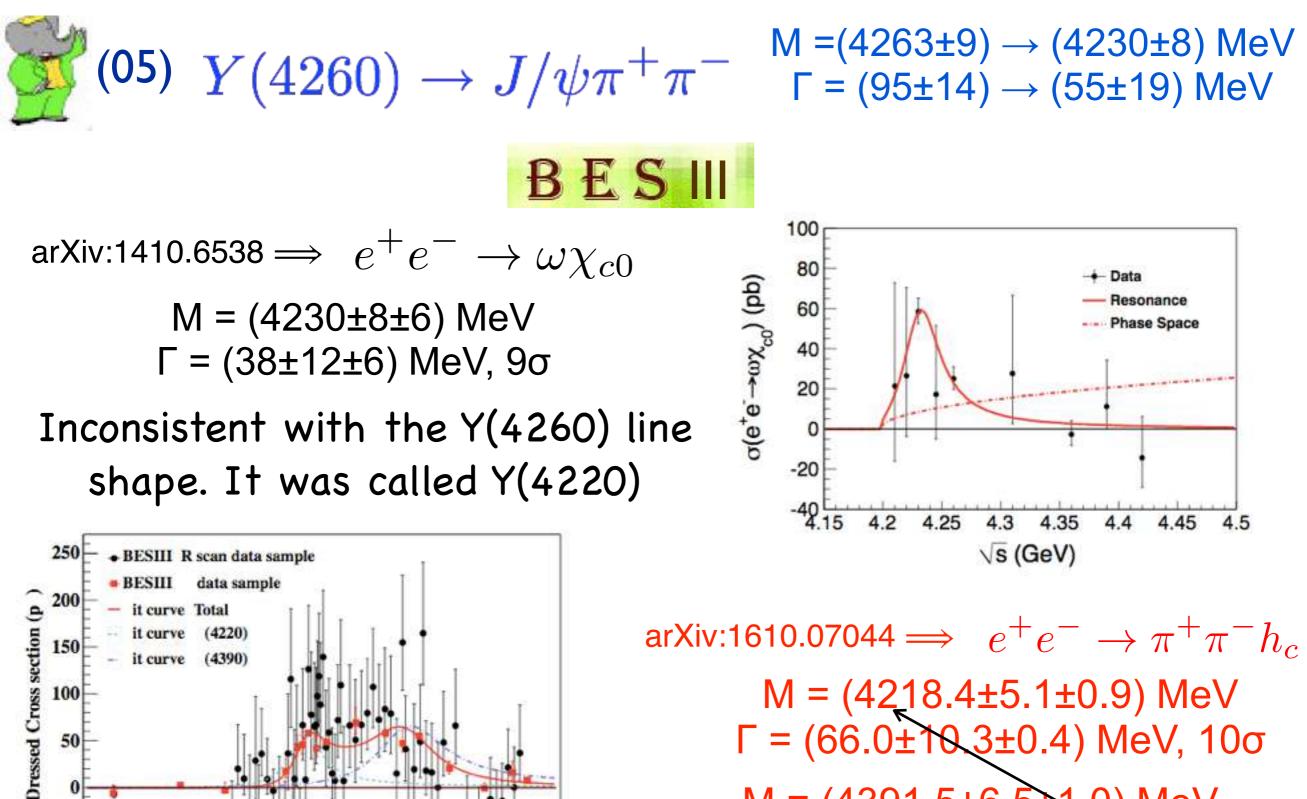
arXiv:1410.6538 $\implies e^+e^- \rightarrow \omega \chi_{c0}$ M = (4230±8±6) MeV Γ = (38±12±6) MeV, 9 σ Inconsistent with the Y(4260) line






arXiv:1610.07044 $\implies e^+e^- \rightarrow \pi^+\pi^-h_c$ M = (4218.4±5.1±0.9) MeV Γ = (66.0±10.3±0.4) MeV, 10 σ M = (4391.5±6.5±1.0) MeV

Γ = (139.5±18.4±1.0) MeV, 10σ


arXiv:1410.6538 $\implies e^+e^- \rightarrow \omega \chi_{c0}$ M = (4230±8±6) MeV Γ = (38±12±6) MeV, 9 σ Inconsistent with the Y(4260) line shape. It was called Y(4220)

arXiv:1610.07044 $\implies e^+e^- \rightarrow \pi^+\pi^-h_c$ M = (4218.4±5.1±0.9) MeV Γ = (66.0±10.3±0.4) MeV, 10 σ M = (4391.5±6.5±1.0) MeV Γ = (139.5±18.4±1.0) MeV, 10 σ

Inconsistent with the Y(4260) and Y(4360), but consistent with Y(4220)

 $M = (4391.5 \pm 6.5 \pm 1.0) \text{ MeV}$ $\Gamma = (139.5 \pm 18.4 \pm 1.0) \text{ MeV}, 10\sigma$

Inconsistent with the Y(4260) and Y(4360), but consistent with Y(4220) The higher mass state was called Y(4390)

is(e)

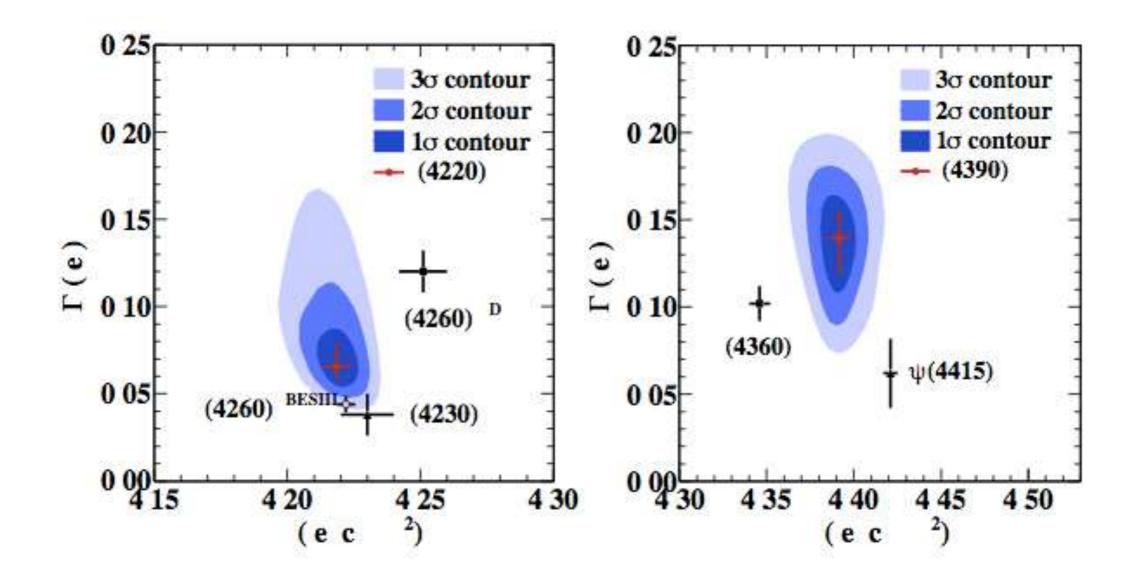
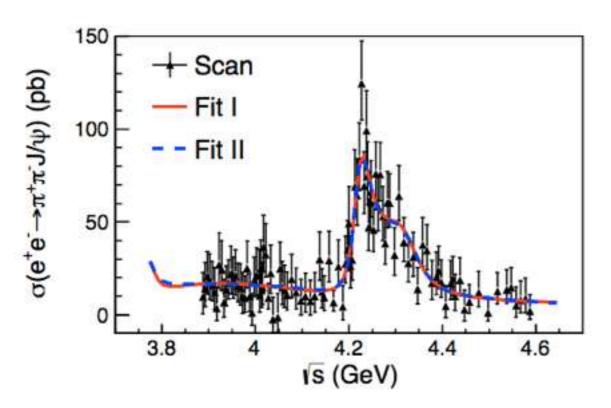
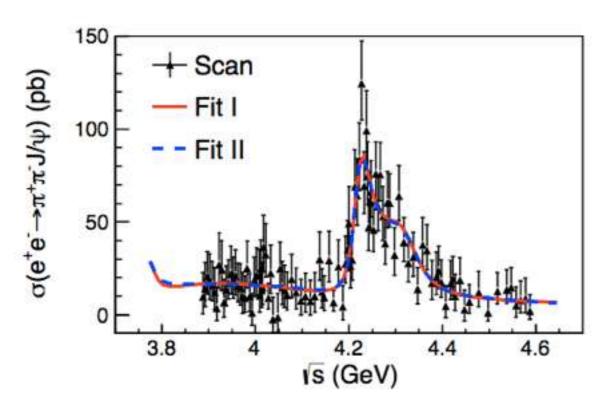
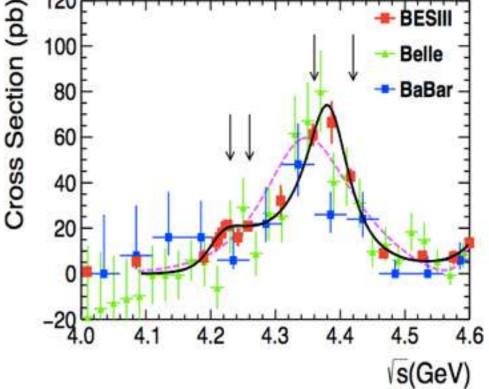




FIG. 3. The likelihood contours in the mass and width planes for Y(4220) (*left panel*) and Y(4390) (*right panel*). The filled areas are up to 3σ likelihood contours and the dots with error bars are the locations of Y or ψ states. The parameters of $Y(4260)^{\text{PDG}}$ are taken from the PDG average [3] and $Y(4260)^{\text{BESIII}}$ from the measurement of $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ at BESIII [35].

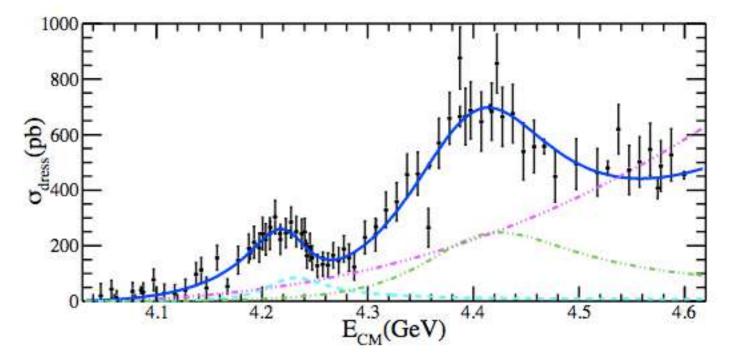
arXiv:1611.01317 $\implies e^+e^- \rightarrow \pi^+\pi^- J/\psi$ M = (4222.0±3.1±1.4) MeV Γ = (44.1±4.3±2.0) MeV, 10 σ M = (4320.0±10.4±7) MeV Γ = (101.4±23.2±10.2) MeV, 7.6 σ


Consistent with the Y(4260) and Y(4360) (first time in this channel)

arXiv:1611.01317 $\implies e^+e^- \rightarrow \pi^+\pi^- J/\psi$ M = (4222.0±3.1±1.4) MeV Γ = (44.1±4.3±2.0) MeV, 10 σ M = (4320.0±10.4±7) MeV Γ = (101.4±23.2±10.2) MeV, 7.6 σ

Consistent with the Y(4260) and Y(4360) (first time in this channel)

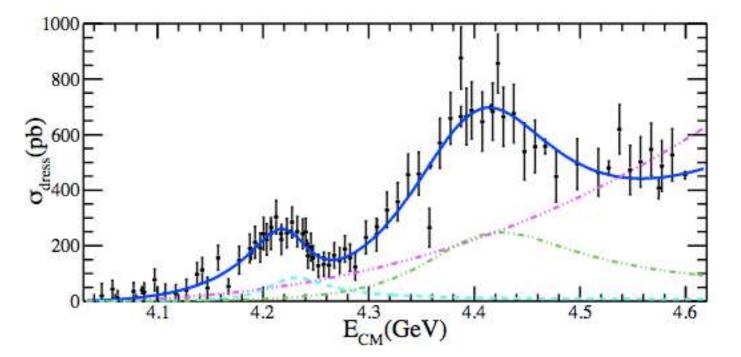
arXiv:1703.08787 $\Rightarrow e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ M = (4209.5±7.4±1.4) MeV Γ = (80.1±24.6±2.9) MeV, 5.8 σ M = (4383.8±4.2±0.8) MeV Γ = (84.2±12.5±2.1) MeV, 10 σ

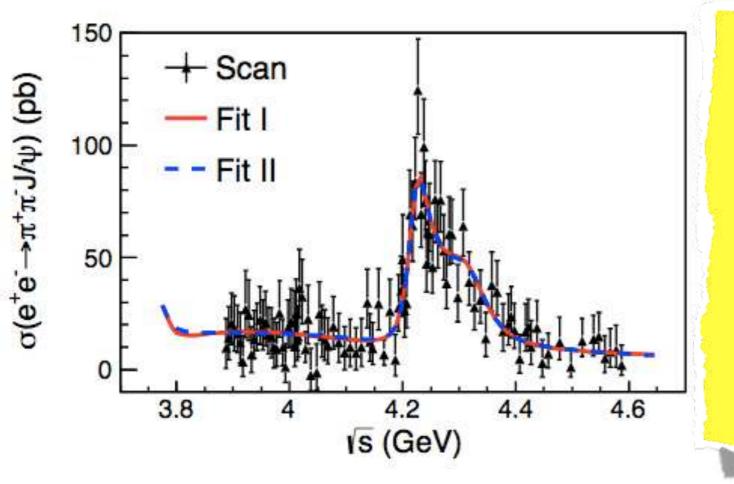


Consistent with the Y(4220) and Y(4390) observed in $e^+e^-
ightarrow \pi^+\pi^-h_c$

arXiv:1808.02847 $\implies e^+e^- \rightarrow \pi^+ D^0 D^{*-}$

 $M = (4224.8\pm5.6) \text{ MeV}$ $\Gamma = (72.3\pm9.1) \text{ MeV}$ $M = (4400.1\pm9.3) \text{ MeV}$ $\Gamma = (181.7\pm16.9) \text{ MeV}$


lower mass resonance in good agreement with the Y(4220)



arXiv:1808.02847 $\implies e^+e^- \rightarrow \pi^+ D^0 D^{*-}$

 $M = (4224.8\pm5.6) \text{ MeV}$ $\Gamma = (72.3\pm9.1) \text{ MeV}$ $M = (4400.1\pm9.3) \text{ MeV}$ $\Gamma = (181.7\pm16.9) \text{ MeV}$

lower mass resonance in good agreement with the Y(4220)

BESIII data indicate that the structure Y(4260) actually consists of two resonances with masses 4220 and 4320 MeV, observed in the $e^+ e^- \rightarrow \pi^+ \pi^- J/\Psi$, with the Y(4220) being its main component

QCD sum rules calculation for $Y(J^{PC} = 1^{--})$

tetraquark current (Albuquerque, MN, arXiv:0804.4817)

$$j^{Y} = [cs]_{S=1}[\bar{c}\bar{s}]_{S=0} + [cs]_{S=0}[\bar{c}\bar{s}]_{S=1}$$

 $m_Y = (4.65 \pm 0.10)$ GeV in good agreement with Y(4660)

molecular current (Albuquerque, MN, Silva, arXiv:1110.2113)

$$j^Y = D_0 \bar{D}^* + \bar{D}_0 D^*$$

 $m_Y = (4.96 \pm 0.11)$ GeV not compatible with Y(4260)

$$D_s^*ar{D}_{s0} \Rightarrow m = (5.12\pm0.10)\, ext{GeV}$$

other currents $\begin{cases} D\bar{D}_1 \Rightarrow m = (4.12 \pm 0.09) \text{ GeV} \\ [cq]_{S=0}[\bar{c}\bar{q}]_{S=1} \Rightarrow m = (4.49 \pm 0.11) \text{ GeV} \end{cases}$

QCD sum rules calculation for $Y(J^{PC} = 1^{--})$

tetraquark current (Albuquerque, MN, arXiv:0804.4817)

$$j^{Y} = [cs]_{S=1}[\bar{c}\bar{s}]_{S=0} + [cs]_{S=0}[\bar{c}\bar{s}]_{S=1}$$

 $m_Y = (4.65 \pm 0.10)$ GeV in good agreement with Y(4660)

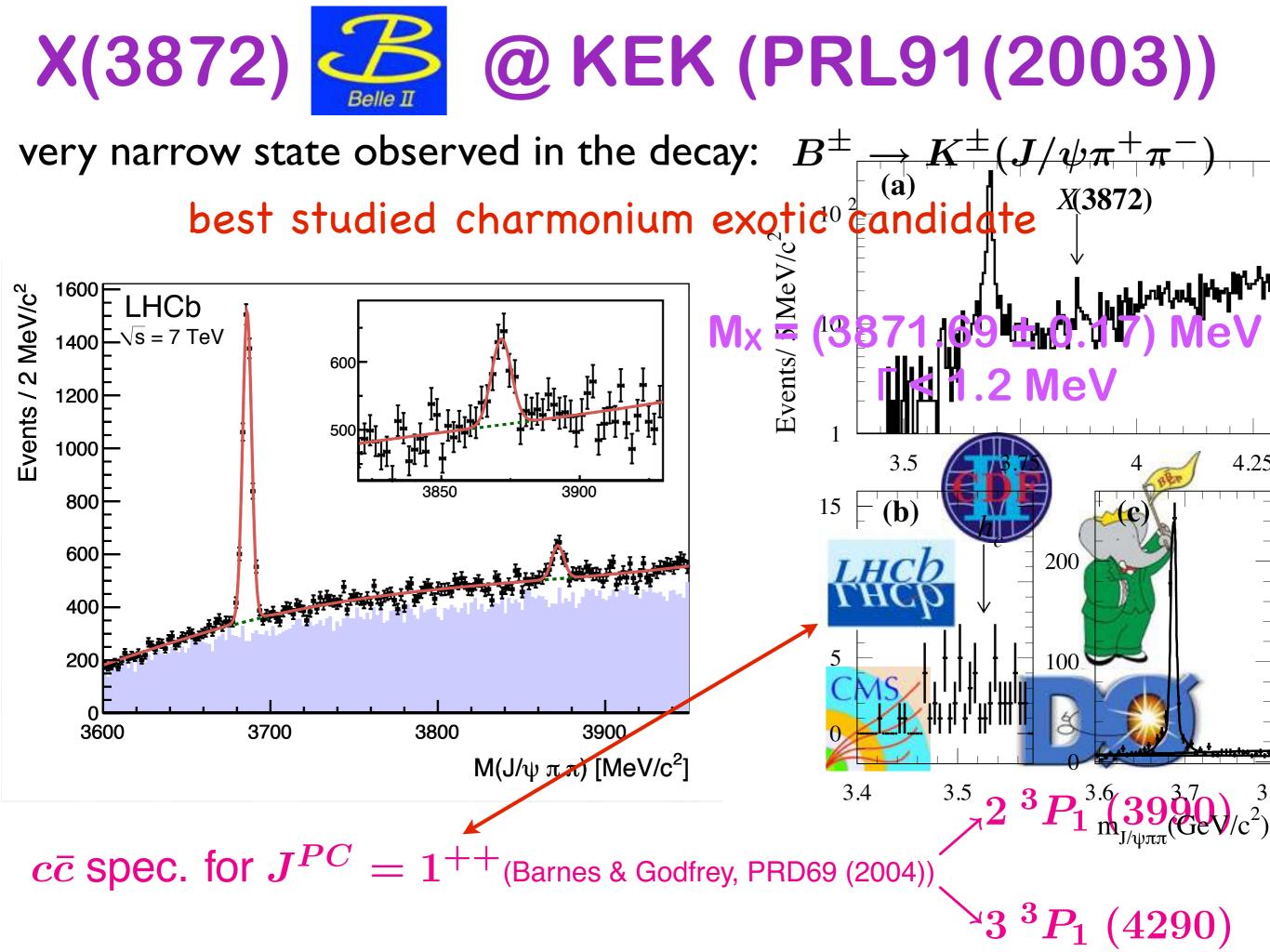
molecular current (Albuquerque, MN, Silva, arXiv:1110.2113)

$$j^Y=D_0ar{D}^*+ar{D}_0D^*$$

 $m_Y = (4.96 \pm 0.11)$ GeV not compatible with Y(4260)

$$D_s^* \bar{D}_{s0} \Rightarrow m = (5.12 \pm 0.10) \,\mathrm{GeV}$$

other currents $\begin{cases} D_s^* \bar{D}_{s0} \Rightarrow m = (5.12 \pm 0.10) \text{ Gev} \\\\ D\bar{D}_1 \Rightarrow m = (4.12 \pm 0.09) \text{ GeV} \\\\ [cq]_{S=0}[\bar{c}\bar{q}]_{S=1} \Rightarrow m = (4.49 \pm 0.11) \text{ GeV} \end{cases}$


none of them compatible with Y(4260)

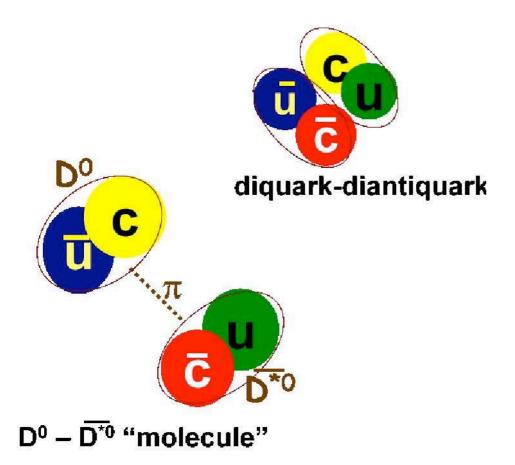
Y(4260) as a mixed charmonium 4-quark state Dias, Albuquerque, MN, Zanetti: PRD86 (12) $j_{\mu}(x) = \sin(\theta) (j_{\mu}^{(4)}(x) + \cos(\theta) (j_{\mu}^{(2)}(x)) - j_{\mu}^{(2)} = \frac{1}{\sqrt{2}} \langle \bar{q}q \rangle \bar{c}_{a}(x) \gamma_{\mu} c_{a}(x)$ $j_{\mu}^{(4)} = \frac{\epsilon_{abc} \epsilon_{dec}}{\sqrt{2}} [(q_{a}^{T}(x) C \gamma_{5} c_{b}(x)) (\bar{q}_{d}(x) \gamma_{\mu} \gamma_{5} C \bar{c}_{e}^{T}(x)) + (q_{a}^{T}(x) C \gamma_{5} \gamma_{\mu} c_{b}(x)) (\bar{q}_{d}(x) \gamma_{5} C \bar{c}_{e}^{T}(x))].$ $52.5^{\circ} \leq \theta \leq 53.5^{\circ} \qquad m_{Y} = (4.26 \pm 0.13) \text{ GeV}$

Y(4260) as a mixed charmonium 4-quark state Dias, Albuquerque, MN, Zanetti: PRD86 (12) $J_{\mu}^{(2)} = \frac{1}{\sqrt{2}} \langle \bar{q}q \rangle \bar{c}_a(x) \gamma_{\mu} c_a(x)$ $j^{(4)}_{\mu}(x) + \cos(\theta)(j^{(2)}_{\mu}(x))$ $j_{\mu}(x) = \sin(\theta)$ $j^{(4)}_{\mu} = \frac{\epsilon_{abc}\epsilon_{dec}}{\sqrt{2}} \Big[\Big(q^T_a(x)C\gamma_5 c_b(x) \Big) \Big(\bar{q}_d(x)\gamma_{\mu}\gamma_5 C\bar{c}^T_e(x) \Big) + \Big(q^T_a(x)C\gamma_5\gamma_{\mu}c_b(x) \Big) \Big(\bar{q}_d(x)\gamma_5 C\bar{c}^T_e(x) \Big) \Big],$ $52.5^{\circ} \le \theta \le 53.5^{\circ} \longleftrightarrow m_{Y} = (4.26 \pm 0.13) \text{ GeV}$ much smaller than the total experimental $\Gamma(Y \rightarrow J/\psi \pi \pi) = (4.1 \pm 0.6) \text{ MeV}$ width: $\Gamma^{exp} = (55 \pm 19) \text{ MeV}$ possible indication that the main decay channel is in D mesons \Rightarrow the Y(4220) is indeed the main component of the Y(4260)!

Y(4260) as a mixed charmonium 4-quark state Dias, Albuquerque, MN, Zanetti: PRD86 (12) $\mathbf{J}^{(2)}_{\mu} = \frac{1}{\sqrt{2}} \langle \bar{q}q \rangle \bar{c}_a(x) \gamma_{\mu} c_a(x)$ $j_{\mu}(x) = \sin(\theta) (j_{\mu}^{(4)}(x) + \cos(\theta) (j_{\mu}^{(2)}(x))$ $j^{(4)}_{\mu} = \frac{\epsilon_{abc}\epsilon_{dec}}{\sqrt{2}} \Big[\Big(q^T_a(x)C\gamma_5 c_b(x) \Big) \Big(\bar{q}_d(x)\gamma_{\mu}\gamma_5 C\bar{c}^T_e(x) \Big) + \Big(q^T_a(x)C\gamma_5\gamma_{\mu}c_b(x) \Big) \Big(\bar{q}_d(x)\gamma_5 C\bar{c}^T_e(x) \Big) \Big],$ $52.5^{\circ} \le \theta \le 53.5^{\circ} \iff m_Y = (4.26 \pm 0.13) \text{ GeV}$ much smaller than the total experimental $\Gamma(Y \rightarrow J/\psi \pi \pi) = (4.1 \pm 0.6) \text{ MeV}$ width: $\Gamma^{exp} = (55 \pm 19) \text{ MeV}$ possible indication that the main decay channel is in D mesons \Rightarrow the Y(4220) is indeed the main component of the Y(4260)!

production in B meson decay: $\mathcal{B}(B \to Y(4260)K) = (1.34 \pm 0.47) \times 10^{-6}$ compatible with the experimental limit: $\mathcal{B}^{exp} < 2.9 \times 10^{-5}$

$\frac{X \to J/\psi \ \pi^+\pi^-\pi^0}{X \to J/\psi \ \pi^+\pi^-} = 0.8 \pm 0.3 \implies \text{strong isospin and G}$ parity violation

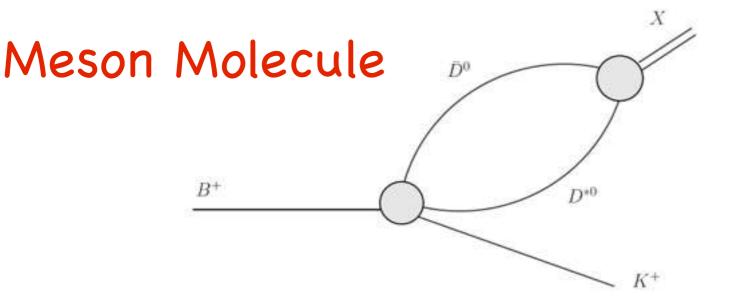

$$M(D^{*0}\bar{D}^0) = (3871 \pm 1)$$

X(3872): molecular $(D^{*0}\overline{D}^0 + \overline{D}^{*0}D^0)$ state (Swanson, Close, Voloshin, Wong ...) Maiani et al. (PRD71 (05)) tetraquark $J^{PC} = 1^{++}$ state

$\frac{X \to J/\psi \ \pi^+\pi^-\pi^0}{X \to J/\psi \ \pi^+\pi^-} = 0.8 \pm 0.3 \implies \text{strong isospin and G}$ parity violation

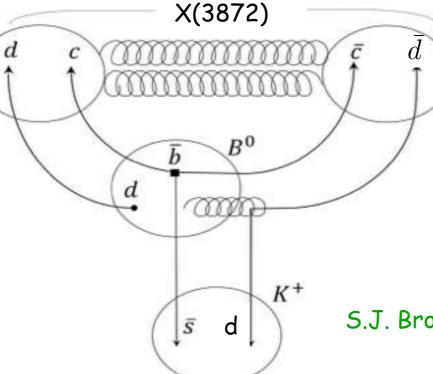
$$M(D^{*0}\bar{D}^0) = (3871 \pm 1)$$

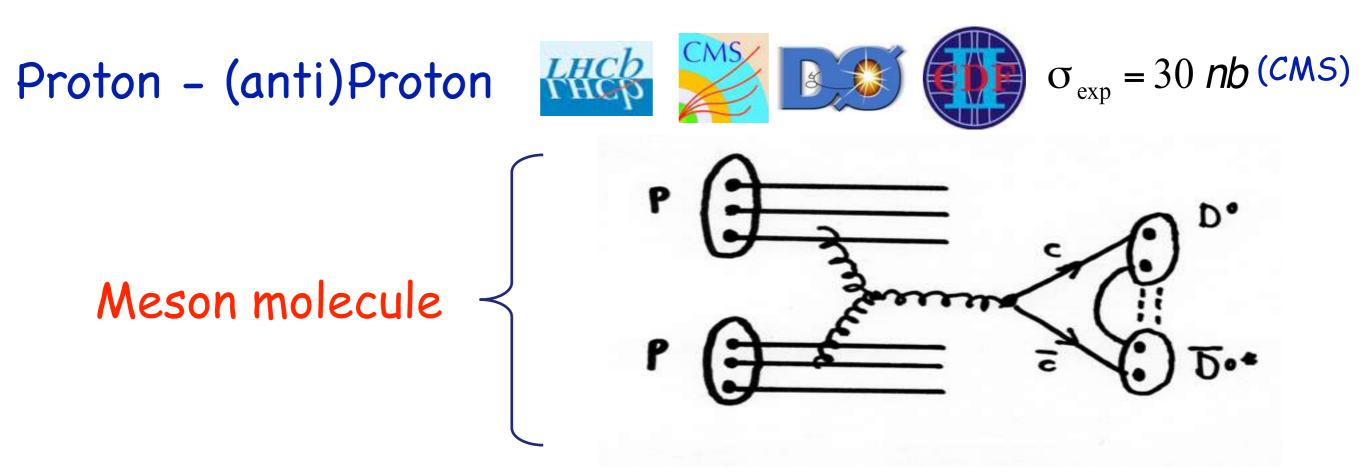
X(3872): molecular $(D^{*0}\overline{D}^0 + \overline{D}^{*0}D^0)$ state (Swanson, Close, Voloshin, Wong ...) Maiani et al. (PRD71 (05)) tetraquark $J^{PC} = 1^{++}$ state


molecular and tetraquark interpretations differ by the way quarks are organized in the state

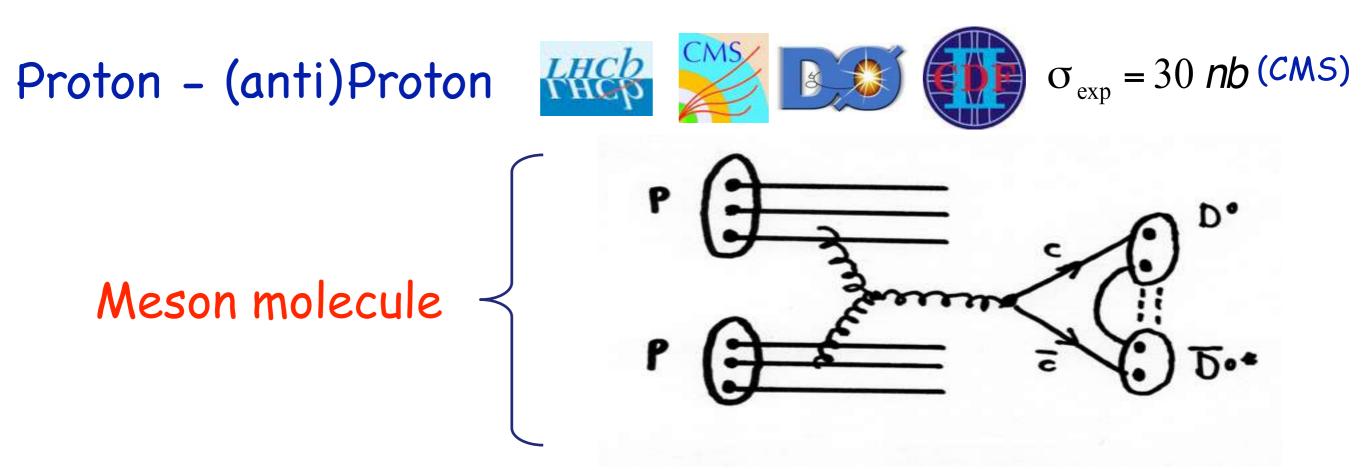
X(3872) production

 $B^{\pm} \to X(3872)K^{\pm}$

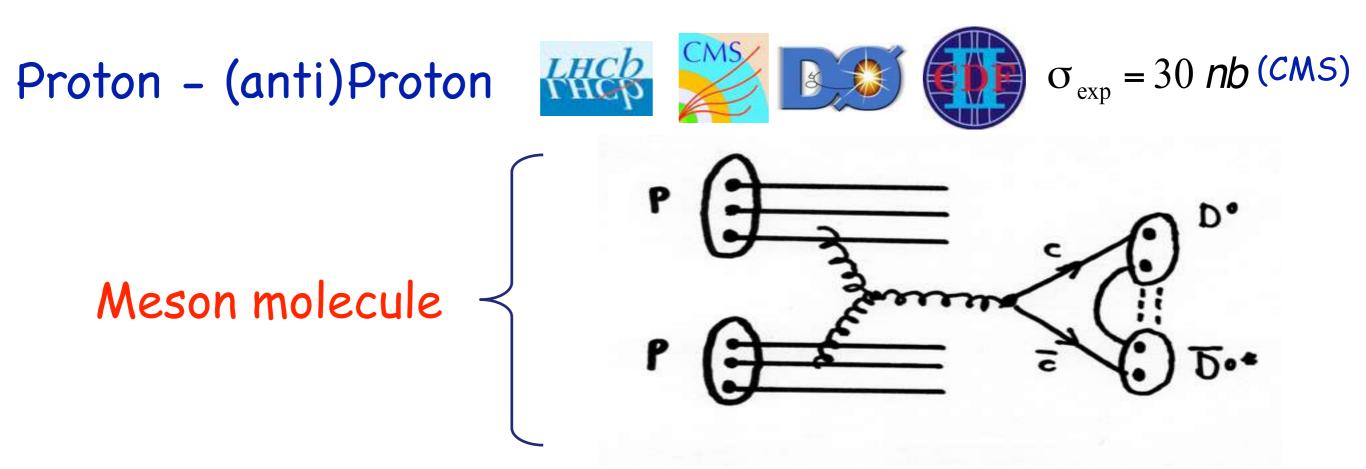

Meson coalescence Small binding energy Agreement with data !


E. Braaten, M. Kusunoki, hep-ph/0404161

Diquark-antidiquark picture Non-relativistic potential Agreement with data !

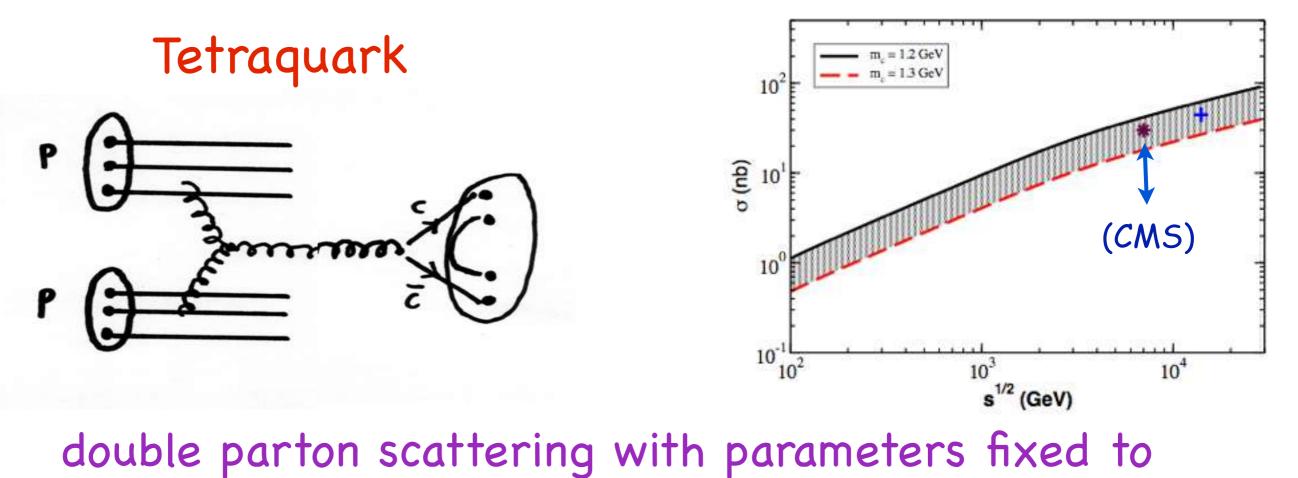

S.J. Brodsky, D.S. Hwang, R.F. Lebed, arXiv:1406.7281

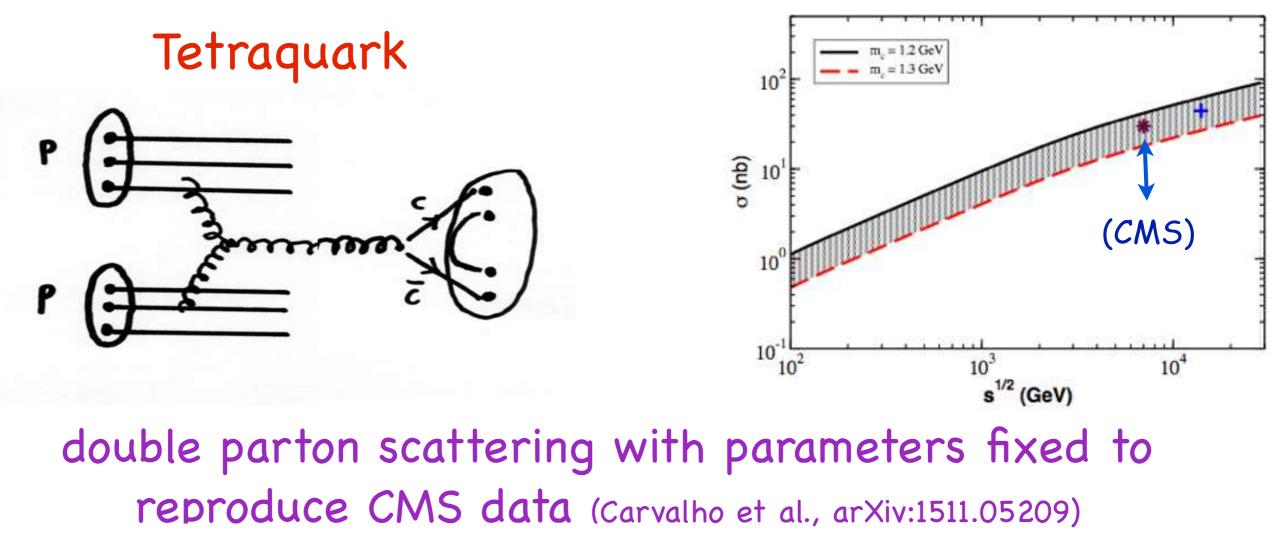
Tetraquark

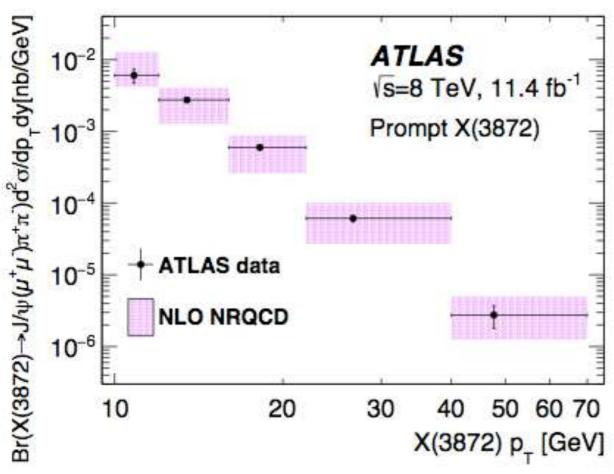


How can a molecule, with small binding energy, be produced in high energy collision with large cross section?

How can a molecule, with small binding energy, be produced in high energy collision with large cross section?


theoretical estimates + MC → production cross section smaller by factor 300! (Bignamini et. al., PRL103(09)162001) Problem for molecular approach


How can a molecule, with small binding energy, be produced in high energy collision with large cross section?


theoretical estimates + MC → production cross section smaller by factor 300! (Bignamini et. al., PRL103(09)162001) Problem for molecular approach

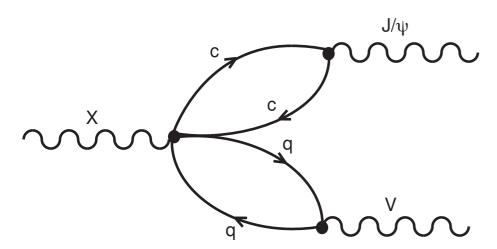
NRQCD plus production from rescattering of DD^{*} created at a point: molecular approach can describe the CDF data ! E Braaten, L-P He, K Ingles, arXiv:1811.08876

reproduce CMS data (Carvalho et al., arXiv:1511.05209)

The X(3872) is modeled as a mixture of a $\chi_{c1}(2P)$ and a $\overline{D}^0 D^{*0}$ molecular state. arXiv:1610.09303

> Theoretical calculation from Meng et al., arXiv:1304.6710

QCD sum rules calculation for X(3872)


Matheus, Narison, MN, Richard: PRD75 (07)

$$j_{\mu} = \frac{i\epsilon_{abc}\epsilon_{dec}}{\sqrt{2}} [(q_a^T C\gamma_5 c_b)(\bar{q}_d\gamma_{\mu}C\bar{c}_e^T) + (q_a^T C\gamma_{\mu}c_b)(\bar{q}_d\gamma_5 C\bar{c}_e^T)]$$
$$m_X = (3.92 \pm 0.13) \text{ GeV}$$

QCD sum rules calculation for X(3872)

Matheus, Narison, MN, Richard: PRD75 (07)

$$j_{\mu} = \frac{i\epsilon_{abc}\epsilon_{dec}}{\sqrt{2}} [(q_a^T C\gamma_5 c_b)(\bar{q}_d\gamma_{\mu}C\bar{c}_e^T) + (q_a^T C\gamma_{\mu}c_b)(\bar{q}_d\gamma_5 C\bar{c}_e^T)]$$
$$m_X = (3.92 \pm 0.13) \text{ GeV}$$

Problem: decay width $X \rightarrow J/\psi\pi\pi$ ~ 50 MeV (Navarra, MN, PLB639 (06)272)

How to solve this problem?

X(3872) as a mixed charmonium 4-quark state Matheus, Navarra, MN, Zanetti: PRD80 (09)

 $J^{q}_{\mu}(x) = \sin(\theta) j^{(4q)}_{\mu}(x) + \cos(\theta) j^{(2q)}_{\mu}(x)$

X(3872) as a mixed charmonium 4-quark state Matheus, Navarra, MN, Zanetti: PRD80 (09)

$$J^{q}_{\mu}(x) = \sin(\theta) \left(j^{(4q)}_{\mu}(x) + \cos(\theta) j^{(2q)}_{\mu}(x) \right)^{(2q)} = \frac{1}{6\sqrt{2}} \langle \bar{q}q \rangle \, \bar{c}_{a}(x) \gamma_{\mu} \gamma_{5} c_{a}(x)$$
$$j^{(4q)}_{\mu}(x) = \frac{1}{\sqrt{2}} \left[\left(\bar{q}_{a}(x) \gamma_{5} c_{a}(x) \bar{c}_{b}(x) \gamma_{\mu} q_{b}(x) \right) - \left(\bar{q}_{a}(x) \gamma_{\mu} c_{a}(x) \bar{c}_{b}(x) \gamma_{5} q_{b}(x) \right) \right]$$

X(3872) as a mixed charmonium 4-quark state Matheus, Navarra, MN, Zanetti: PRD80 (09) $i_{\mu}^{(2q)} = \frac{1}{-\sqrt{a}q} \bar{c}_{a}(x)\gamma_{\mu}\gamma_{5}c_{a}(x)$

$$J_{\mu}^{q}(x) = \sin(\theta) \left[j_{\mu}^{(4q)}(x) + \cos(\theta) j_{\mu}^{(2q)}(x) \right] = \frac{1}{6\sqrt{2}} \langle \bar{q}q \rangle \, \bar{c}_{a}(x) \gamma_{\mu} \gamma_{5} c_{a}(x) \\ j_{\mu}^{(4q)}(x) = \frac{1}{\sqrt{2}} \left[\left(\bar{q}_{a}(x) \gamma_{5} c_{a}(x) \bar{c}_{b}(x) \gamma_{\mu} q_{b}(x) \right) - \left(\bar{q}_{a}(x) \gamma_{\mu} c_{a}(x) \bar{c}_{b}(x) \gamma_{5} q_{b}(x) \right) \right] \\ \mathbf{m}_{\mathsf{X}} = (3.77 \pm 0.18) \, \mathsf{GeV} \\ 5^{0} \le \theta \le 13^{0}$$

Compatible with the experimental X(3872) mass

X(3872) as a mixed charmonium 4-quark state Matheus, Navarra, MN, Zanetti: PRD80 (09) $J^{q}_{\mu}(x) = \sin(\theta) (j^{(4q)}_{\mu}(x) + \cos(\theta) (j^{(2q)}_{\mu}(x)) + j^{(2q)}_{\mu} = \frac{1}{6\sqrt{2}} \langle \bar{q}q \rangle \ \bar{c}_{a}(x) \gamma_{\mu} \gamma_{5} c_{a}(x)$ $j_{\mu}^{(4q)}(x) = \frac{1}{\sqrt{2}} \left[\left(\bar{q}_{a}(x) \gamma_{5} c_{a}(x) \bar{c}_{b}(x) \gamma_{\mu} q_{b}(x) \right) - \left(\bar{q}_{a}(x) \gamma_{\mu} c_{a}(x) \bar{c}_{b}(x) \gamma_{5} q_{b}(x) \right) \right]$ $m_X = (3.77 \pm 0.18) \text{ GeV}$ $5^{0} < \theta < 13^{0}$ Compatible with the experimental X(3872) mass $\frac{\mathcal{B}(X \to J/\psi \,\pi^+ \pi^- \pi^0)}{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)} = 1.0 \pm 0.4 \pm 0.3 \implies j^X_\mu(x) = \cos \alpha J^u_\mu(x) + \sin \alpha J^d_\mu(x)$

 $\alpha \sim 20^{\circ}$

Decay width $X \rightarrow J/\psi \pi^{+}\pi^{-}\pi^{0}$

 $Γ = (9.3 \pm 6.9) \text{ MeV}, 5^0 \le θ \le 13^0$

X(3872) as a mixed charmonium 4-quark state Matheus, Navarra, MN, Zanetti: PRD80 (09) $J_{\mu}^{q}(x) = \sin(\theta(j_{\mu}^{(4q)}(x) + \cos(\theta)j_{\mu}^{(2q)}(x)) - j_{\mu}^{(2q)} = \frac{1}{6\sqrt{2}} \langle \bar{q}q \rangle \ \bar{c}_{a}(x)\gamma_{\mu}\gamma_{5}c_{a}(x)$ $j_{\mu}^{(4q)}(x) = \frac{1}{\sqrt{2}} \Big[\left(\bar{q}_{a}(x)\gamma_{5}c_{a}(x)\bar{c}_{b}(x)\gamma_{\mu}q_{b}(x) \right) - \left(\bar{q}_{a}(x)\gamma_{\mu}c_{a}(x)\bar{c}_{b}(x)\gamma_{5}q_{b}(x) \right) \Big]$ $m_{X} = (3.77 \pm 0.18) \text{ GeV}$ $5^{0} \le 0 \le 13^{0}$ Compatible with the experimental X(3872) mass $\frac{\mathcal{B}(X \to J/\psi \,\pi^+ \pi^- \pi^0)}{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)} = 1.0 \pm 0.4 \pm 0.3 \implies j^X_\mu(x) = \cos \alpha J^u_\mu(x) + \sin \alpha J^d_\mu(x)$ $\alpha \sim 20^{\circ}$ Decay width $X \rightarrow J/\psi \pi^+ \pi^- \pi^0$ Γ = (9.3 ±6.9) MeV, 5⁰ ≤ θ ≤ 13⁰

Decay width $X \rightarrow J/\psi \gamma$

MN, Zanetti: PRD82 (10)

$$\begin{array}{c} \overbrace{\Gamma(X \to J/\psi\gamma)}{\Gamma(X \to J/\psi \pi^+\pi^-)} = 0.14 \pm 0.05 & 5^0 \leq \theta \leq 13^0 \\ & & & & \\ \hline \Gamma(X \to J/\psi \pi^+\pi^-) = 0.19 \pm 0.13 \end{array}$$

Decay width $X \rightarrow J/\psi \gamma$

MN, Zanetti: PRD82 (10)

$$\overbrace{\Gamma(X \to J/\psi\gamma)}{\Gamma(X \to J/\psi\pi^{+}\pi^{-})} = 0.14 \pm 0.05 \qquad 5^{0} \le \theta \le 13^{0}$$

$$\overbrace{\Gamma(X \to J/\psi\gamma)}{\Psi\pi^{+}\pi^{-}} = 0.19 \pm 0.13$$

$$\boxed{\frac{\Gamma(X \to J/\psi\gamma)}{\Gamma(X \to J/\psi\pi^{+}\pi^{-})}} = 0.19 \pm 0.13$$

$$\boxed{\frac{\Gamma(X \to J/\psi\gamma)}{\Gamma(X \to J/\psi\pi^{+}\pi^{-})}}{\Psi\pi^{+}\pi^{-}} = 0.19 \pm 0.13$$

$$\boxed{\frac{\Gamma(X \to J/\psi\gamma)}{\Psi\pi^{+}\pi^{-}}}{\Psi\pi^{+}\pi^{-}} = 0.19 \pm 0.13$$

$$\boxed{\frac{\Gamma(X \to J/\psi\gamma)}{\Psi\pi^{+}\pi^{-}}}{\Psi\pi^{+}\pi^{-}}}{\Psi\pi^{+}\pi^{-}} = 0.19 \pm 0.13$$

$$\boxed{\frac{\Gamma(X \to J/\psi\gamma)}{\Psi\pi^{+}\pi^{-}}}{\Psi\pi^{+}\pi^{-}}}{\Psi\pi^{+}\pi^{-}}$$

Decay width $X \rightarrow J/\psi \gamma$

MN, Zanetti: PRD82 (10)

$$\begin{array}{l} \overbrace{\Gamma(X \to J/\psi\gamma)}{\Gamma(X \to J/\psi\pi^{+}\pi^{-})} = 0.14 \pm 0.05 & 5^{0} \leq \theta \leq 13^{0} \\ & \downarrow \\ & \overbrace{\Gamma(X \to J/\psi \ \gamma)}{\Gamma(X \to J/\psi \ \pi^{+}\pi^{-})} = 0.19 \pm 0.13 \\ \end{array}$$

$$\begin{array}{l} \begin{array}{l} Production \ rate \ B^{+} \to \ X \ (3872)K^{+} \\ \\ Matheus, \ MN, \ Zanetti: \ PLB702 \ (11) \\ 5^{0} \leq \theta \leq 13^{0} \Rightarrow & \mathcal{B}(B \to X(3872)K) = (1.00 \pm 0.68) \times 10^{-5} \\ \\ \end{array}$$

$$\begin{array}{l} \mathcal{B}(B^{\pm} \to K^{\pm}X(3872)) < 3.2 \times 10^{-4} \end{array}$$

• X(3872) is probably a mixed multiquark state with a χ_{c1} state

Conclusions

X(3872) \rightarrow mixture χ_{c1} and a 4-quark state $Z_c^+(3900) \rightarrow J^P=1^+$ tetraquark state $Z_c^+(4430) \rightarrow$ first radial excitation of $Z_c^+(3900)$

 Z⁺ states need confirmation. A bump in the spectra does not indicate, necessarily, the existence of a state

Y(4260) → mixture of charmonium and a 4quark state

Y(4660) → tetraquark quark state [cs][c̄s̄]

