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Outline: Theoretical concepts in community ecology

* From populations to communities

Understanding community assembly

» Island Biogeography Theory
« Unified Neutral Theory of Biodiversity and Biogeography
* Niche theory

* Phylogenetic community assembly
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From population to community ecology: multi-species systems

Antagonistic & Mutualistic interactions
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Stability vs. Complexity

+ Multiple definitions forGtabilitpand
@mp ex@ Variability
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Multi-species systems

a O

Large complex ecosystems

assembled at random are
expected to be stable only

STABILITY AND )

COMPLEXITY IN up to a certain level of

connectance and then

suddenly become unstable”/
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Diversity of Intercation Types and Ecological Community Stability

A. Mougi and M. Kondoh
science 331, 349 (2012)
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Proportion of mutualistic links (p,,)

Fig. 1. (A to D) Relationships between the proportion of mutualistic links (p,,) and stability with varying
proportions of connected pairs (P) in four models with different network structures and functional re-
sponses. Colors indiate different values of P. We assume N = 50.

Conclusions:
“Additional empirical study

of the structure and
dynamics of hybrid
communities composed
of various types of
interactions must be
pursued”.
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The Robustness and Restoration of a Network of Ecological
Networks

Michael J. O. Pocock et al.
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« A community is an assemblage of species
that occur together in space and time.

« Sum of properties of individuals and species
plus their interactions.

« Can be defined at any spatial or temporal
scale.
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Community data

e Species richness

e Species abundances

e Species identity
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Community assembly: Predicting the number of species
present in a community

« Species richness

e Species abundances

e Species identity
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species richness and the species-area curve (Arrhenius 1920s )

Species-area Relationship on Arithmetic Axes
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Theory of Island Biogeography - MacArthur & Wilson 1967
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Isiand hiogeography as a neutral theory

« Species differences are not considered to be important
« All species obey same rules and affected in the same way
« Communities are dispersal assembled (immigration)

« Communities are not stable but in constant turnover through

repeated immigrations and local extinctions
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Community assembly: Predicting relative species-abundance in
“acommunity

e Species richness

 Species abundances

e Species identity
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The Unified Neutral Theory of Biodiversity and Biogeography

The Unified Neutral Theory of
BIODIVERSITY AND BIOGEOGRAPHY

STEPHEN P, HURBBELL

MONCOGRAFHS IN POFULATION

Relative Species Abundance
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What does #ewtral mean?

Per capita ecological equivalence
* Birth
* Death
« Migration
e Speciation

All individuals of all species obey exactly the same rules
but
Individuals and species are NOT the same
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Finite community size (J)

All resources are used

No new individuals can be
added (reproduction or
Immigration) until some
have been removed
(mortality)

Sum of all abundance
changes is zero
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Neutral theory

Ecological communities are structured by:
1.Ecological drift
2.Random migration

3.Random speciation
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J = 25 individuals
S = 7/ species
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Species
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J = 25 individuals
S = 7/ species

Random death
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J = 25 individuals
S = 7/ species

Random death
Replacement

Random migration
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J = 25 individuals
S = / species

Replacement
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Ecological drift leads to local
extinction(s)

Community collapses to a
single species
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Number of species
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Time to fixation

Two possible stable states for any given species
 Local extinction
* Local monodominance Community
size

Initial
Time to fixation abundance
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Metacommunity

1. Local community
* Relatively small spatial scale
« Relatively rapid dynamics

2. Metacommunity
« Relatively large spatial scale
* Relatively slow dynamics

Assumption: constant metacommunity









Imperial College Il Southern-Summer School on Mathematical Biology

Random speciation and the fundamental biodiversity numher

Size of the
metacommunity
Fundamental
biodiversity Speciation
number

rate
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Fundamental biodiversity number

Fundamental biodiversity
number (6)
» Controls the SAD

* Equivalent to Fisher’s a (and
Simpson’s diversity index)

Equilibrium Species Abundance
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Sample size = 64 individuals
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Fundamental biodiversity number
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Community assembly: Predicting which species will be presentin a
community

e Species richness

e Species abundances

e Species identity
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Conopophaga lineata

Conopophaga melanops
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Darwin & the paradox of phenotypic similarity in closely related
snecies

Conopophoga lineata Conopophoga melanops

Similar traits

|

Adaptation to specific environment
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Darwin & the paradox of phenotypic similarity in closely related
snecies

Similar traits
\/

Competition
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Environment Environment
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Divergent traits
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Joseph Grinnell 1924 — defined the concept of niche
distribuional limits of species set by physical or climatic barriers
no species interactions
species potential distribution in nature (before species interaction)

Charles Elton 1927 - niche is defined by body size and food habits
species actual distribution in nature (post-interactive)
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Niche theory

G. Evelyn Hutchinson 1950s — niche as a n-dimensional hypervolume

Realised niche = fundamental niche — species interactions

Environmental gradient y

Environmental gradient x
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Niche theory

Gause’s theorem or axiom (1930-1950) — “no two species can occupy the same
ecological niche”

differentiation

competitive
exclusion
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Relatedness, trait similarity & Darwin's paradox

Closely related species have shared evolutionary
history

Closely related species should be ecologically similar

Closely related species should compete more heavily
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Island Biogeography & Evolutionary theory
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Isolation

lose to source Distant from source

-

Species pool

Emerson & Gillespie 2008 TREE
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London
Species pool assembly
Isolation
Close to source Distant from source " Time O
*Time 1

Areas close to
source populations
fill more quickly

by colonization.

Emerson & Gillespie 2008 TREE
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London
Species pool assemhbly
Isolation
Close to source Distant from source " Time O
Time 1
Time 2
Over time, colonists
reach more isolated
dareas.

Emerson & Gillespie 2008 TREE
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London
sSpecies pool assembly
Isolation
Close to source Distant from source

>

Time 2

Time 3

With more time,

open niches on more
isolated islands can
be filled by
evolutionary shifts
within successful
colonists.

Emerson & Gillespie 2008 TREE
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London
sSpecies pool assembly
Isolation
Close to source Distant from source

>

Time 3

Time 4

Niches that remain
open continue to

be filled by
evolutionary shifts
while extinction
eliminates other
species.

Emerson & Gillespie 2008 TREE
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London
sSpecies pool assembly
Isolation
Close to source Distant from source

>

Time 4

Time 5

Colonization and
speciation fill niches
made vacant by
extinction

Emerson & Gillespie 2008 TREE
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London
sSpecies pool assembly
Isolation
Close to source Distant from source
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Areas close to source Areas more distant from Areas most distant from
populations: niches are filled  source populations: niches source populations: niches
quickly by colonization. are filled more slowly by are filled so slowly that
Species subsequently lost colonization. In some cases evolution/adaptation is the
by extinction may be evolution/adaptation can dominant mechanism for

replaced by speciation. occur more rapidly than filling available niche
colonization. space.
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species pool to local community

Environmental filter: the set of abiotic and biotic factors (excluding
competitors) that an organism must tolerate in order to complete its life cycle.

Competitive interaction: occurs when organisms of the same, or in this case
different, species either utilize a common resource that is of limited supply

(exploitation), or harm each other in the process of gaining a resource that is
not limited (interference).

Emerson & Gillespie 2008 TREE
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Phylogeny of
species in
regional pool

Emerson & Gillespie 2008 TREE
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Trait
variation
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Habitat
filter
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3 Communities structured
by species interactions
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Adding trait lability

Trait lability: the probability of evolutionary change in a trait. Traits associated
with niche that have high lability confer a high probability of adaptive change
into a new niche. Traits associated with niche that have low lability confer a
low probability of adaptive change into a new niche.

Emerson & Gillespie 2008 TREE
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Family Euphorbiacea; Genus Macaranga Family Urticaceae; Genus Cecropia
South-east Asia South America
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Adding trait lability
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Conserved evolution

Habitat filtering > species interactions

Local community exhibits:
» Phylogenetic clustering
» Phenotypic clustering

Emerson & Gillespie 2008 TREE
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Adding trait lability

(b)
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Conserved evolution

Species interactions > habitat filtering

Local community exhibits:
» Phylogenetic overdispersion
» Phenotypic overdispersion

Emerson & Gillespie 2008 TREE
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Adding trait lability

(c)
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Labile traits

Species interactions > habitat filtering

Local community exhibits:
» Phylogenetic clustering
» Phenotypic overdispersion

Emerson & Gillespie 2008 TREE
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Adding trait lability

Labile traits

Habitat filtering > species interactions

Local community exhibits:
» Phylogenetic overdispersion
» Phenotypic clustering

Tool.ot,0

Emerson & Gillespie 2008 TREE
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summary

Island biogeography: species richness

Neutral theory: species richness and species-
abundance distributions

Evolutionary theory: which species are present and why
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Why physicists and mathematicians should collaborate with and
, community ecologists

A community is an assemblage of species that occur together in
space and time. Sum of properties of individuals and species plus
their interactions.

« Complex systems: “complex systems is a new approach to science
that studies how relationships between parts give rise to the collective
behaviors of a system and how the system interacts and forms
relationships with its environment” (wikipedia)

« Communities present tendencies to change in deterministic ways but
are extremely sensitive to initial conditions

 Chaos theory




