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Periodic travelling waves


 

Q: Predator-prey systems often show cyclic dynamics, 
what happens when you add random movement to such 
a system?



 

A: Periodic Travelling Waves (PTW) can form.


 

Q: What are periodic travelling waves?


 

A: Like the ‘Waves of cheering’ you 
see in crowds in a soccer stadium.



Examples of PTW in nature


 

Fennoscandian voles


 

Field voles in Kielder forest (UK)


 

Larch budmoth in the European Alps


 

Autumnal moth in Northern Norway



 

Spatial-temporal patterns in cyclic populations are 
characterised by the way synchrony in population dynamics 
change cross a landscape
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Predator-prey model
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Predator-prey model



 

Linearise about coexistence equilibrium and examine 
the behaviour close to the hopf bifurcation.



 

Change variables so that the cycle is a circle in the 
transformed phase space – convert to Normal Form.
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Predator-prey model



 

Linearise about coexistence equilibrium and examine 
the behaviour close to the hopf bifurcation.



 

Change variables so that the cycle is a circle in the 
transformed phase space – convert to Normal Form.

bp
kh

akp
dt
dp

kh
ckph

h
hrh

dt
dh


















1

1
1

0



Lambda-Omega system
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Lambda-Omega system



 

Change to polar coordinates )/(tan   , 122 uvvur  
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Lambda-Omega system



 

Change to polar coordinates



 

One solution of this equation is the limit cycle: 


 

Limit cycle has radius R=1, frequency (R)
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Adding space: random 
movement



 

We require diffusion constants Dh = Dp for the analysis close 
to the limit cycle to work. Scale space such that Dh = Dp =1.
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Adding space: random 
movement



 

We require diffusion constants Dh = Dp for the analysis close 
to the limit cycle to work. Scale space such that Dh = Dp =1.



 

Change to polar 
coordinates:
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Looking for PTW solutions


 

In polar form the PTW is:


 

Substituting into the PDE gives:
kxtRr     ,
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Looking for PTW solutions


 

In polar form the PTW is:


 

Substituting into the PDE gives:



 

So the 1-parameter (R) family of solutions is :



 

Wave speed 



 

Period in time



 

Period in space
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PTW stability and wave 
selection


 

Infinite domain: Koppel 
& Howard (1973)



Stable

unstable

PTW stability and wave 
selection


 

Infinite domain: Koppel 
& Howard (1973)



 

Mechanisms of wave 
generation and selection


 

Invasion


 

Boundary conditions

Stable

unstable

Jonathan Sherratt (Herriot-Watt)



Field voles


 

Experiments: Wave length in Keilder Forest 56-76km;  
Wave speed 14-19 km/year



 

Size of Keilder forest = 30km. So wavelength larger than 
forest



 

Bandwidth of unstable PTW is also a lot larger than 
Keilder forest, so we could observe PTWs

1000km!



PTW generation by 
boundaries


 

Each obstacle generates
waves, but those from the
largest dominate.

BCs:
•Hostile at lake edges
•Zero flux at the Domain
edges




Unequal diffusion coefficients


 

Diffusion coefficients can 
significantly change the 
properties the periodic 
travelling wave.



 

=Du /Dv



 

Grey lines: Stable waves


 

Black lines: Unstable 
waves



Pattern formation


 

Generally diffusion plays a role of increasing stability
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Pattern formation
Labyrinth pattern in
busy vegetation in
Niger

Coral reef islands 
in Australia

Patterned mussel 
bank in the Netherlands

Regular maze patterns
of shrubs and trees 
in Siberia

Spotted pattern
Of isolated trees 
in Niger

Striped pattern of
tree lines
and snow deposition
USA

Labyrinth pattern
of marine benthic
diatomes

Regular spaced 
Tussocks of the 
Sedge Carex stricta



Pattern formation


 

Generally diffusion plays a role of increasing stability



 

BUT, this is not always the case: ‘Diffusion driven instability’
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General idea in 1-D



 

Assume there exists a spatially uniform positive equilibrium (u*,v*). 
i.e. F(u*,v*)=G(u*,v*)=0, which stable in the absence of diffusion.



 

The Jacobian associated to the linearisation about this equilibrium is



 

So stability means Fu +Gv <0 and Fu Gv -Fv Gu >0
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General idea in 1-D



 

Assume there exists a spatially uniform positive equilibrium (u*,v*). 
i.e. F(u*,v*)=G(u*,v*)=0, which stable in the absence of diffusion.



 

The Jacobian associated to the linearisation about this equilibrium is



 

So stability means Fu +Gv <0 and Fu Gv -Fv Gu >0


 

A stable ecosystem that is perfectly homogeneous would continue 
indefinitely to be homogeneous. 



 

In practice irregular and stochastic fluctuations in population size and 
the environment continuously introduce small local perturbations.
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Stability of the local 
perturbations


 

Linearise the PDE about the equilibrium



 

Look for solutions of the form



 

Q: What is the frequency of growing perturbations?


 

We want non-zero solutions (u0 ,v0 ). So we have an eigenvalue 
problem. Perturbation growth means >0.  This occurs if
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Observed patterns


 

kc satisfies Q((kc )2)=0 are 
the first perturbations to 
grow in an infinite spatial 
domain, and this is what 
we observe.

Q(k2)

k2

Possible wave numbers



2-D bounded domain


 

In a finite domain, boundary conditions select the 
wavelength of the pattern that is observed.



 

In 2-D domain geometry also determines the wavelength 
of the observed patterns.



Interpreting the pattern 
formation conditions


 

The sign structure of the Jacobian of the non-spatial 
model much have the following sign structure



 

Without loss of generality let Fu >0 then for pattern 
formation we require D2 > D1 , v disperses further than v. 



 

We cannot get pattern formation in a competition 
model, as the off diagonal entries of J have the same 
sign.

Activator-Inhibitor Activator-InhibitorPositive feedbackPositive feedback



Examples in nature


 

Outbreaks of Douglas fir tussock moths remain 
spatially restricted despite the widespread and 
continuous availability of their abundant host plant



 

Cross correlation of Carex stricta biomass and soil 
moisture



A general predator-prey model



 

If g(v)=constant then Gu =0 so no patterns, so g(v) 
must depend on v and g’(v)>0 (density dependent 
mortality of the predator)



 

If r(u)=constant then we also require  f’(u)>0 (e.g. an 
Allee effect in the prey)



 

If f’(u)<0 (e.g. logistic) then we need r’(u)<0 
(saturation predation rate) 
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Key ingredients for pattern 
formation
1. Predator disperses faster than the prey
2. At low densities, an increase in prey leads to an 

increase in net rate of prey population growth 


 

Prey population growth is autocatalytic (e.g. Allee 
effect)



 

Increase in prey leads to a decrease in per capita 
predation risk (e.g. Type II functional response and 
density-dependent predator mortality)

3. Increase in predator density leads to a decrease in 
prey and predator growth  (e.g. Generally holds for 
predator-prey systems)



Other types of movement


 

Predator aggregation toward prey can either promote 
(aggregation increase predator response to prey) or 
prevent (predator rapidly aggregates to control prey) 
pattern formation



 

Pattern formation in competitive systems requires two 
competitors to avoid each other



 

In a single species system non-local aggregation is 
needed.
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