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Explicit consideration of space is
particularly important when we
consider

Invasion processes

Heterogeneous environments
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Reaction diffusion equations have been successfully employed to
assess important questions in spatial ecology

One single species in homogeneous space

∂

∂t
u(x , t) = f (u(x , t)) + D

∂2

∂x2
u(x , t)

Spatial heterogeneity can be incorporated by replacing the reaction
and diffusion terms with the spatially dependent terms f (u(x , t), x)
and ∂2/∂x2(D(x)u(x , t))

Adopting a landscape ecology perspective, f and D are constant
within habitats

One then needs to impose interface conditions that relate the population
densities and fluxes between two adjacent habitats.
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Shigesada et al (1986) studied the invasion process of a single
species in an 1-D periodic varying environment

Figure: Shigesada et al (1986).

1 Different habitats, of sizes L1 and L2,
are periodically arranged through the
environment

2 Habitat 1 is considered more
favourable than 2, represented by the
relation between intrinsic growth rates

ε1 > ε2

3 Diffusivities in habitats 1 and 2 are d1

and d2
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Population dynamics is described by the reaction diffusion equations
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Persistence of the population is guaranteed if the zero solution of
this equation is unstable
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Invasion in a periodically varying environment

Given U(X ,T ) = V (X ) exp(λT ), characteristic equations
are

Continuous boundary conditions

√
1− λ tan

(√
1− λL1

2

)
=
√

(−Eb + λ)Db tanh

(√
−Eb + λ

Db

L2

2

)

Discontinuous boundaries I

√
1− λ tan

(√
1− λL1

2

)
=

1− α
α

√
(−Eb + λ) tanh

(√
−Eb + λ

Db

L2

2

)

Discontinuous boundaries II

√
1− λ tan

(√
1− λL1

2

)
=

1− α
α

√
(−Eb + λ)

Db
tanh

(√
−Eb + λ

Db

L2

2
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Persistence conditions

Unfavorable habitat size (L2) x intrinsic growth rate in the
unfavorable habitat (Eb)

No great qualitative changes are found
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Favorable habitat size (L1) x unfavorable habitat size (L2)

Again curves have similar shape
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Unfavorable habitat size (L2) x diffusion coefficient in the
unfavorable habitat (Db)

Results are strongly affected by the different interface
conditions!
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This system also presents traveling periodic waves

The speed of invasion can be calculated from the linearized
problem
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∂X 2
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∂U2

∂T
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∂2U2

∂X 2
+ EbU2 in unfavorable habitats

We look then for traveling wave solutions

U(X ,T ) = f (Z )g(X ), Z = X − CT

where

g(X ) = g(X + L), L = L1 + L2
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Wave speeds x intrinsic growth rate in the unfavorable
habitats (Eb) for different values of L2

Figure: Continuous interfaces.
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Summary

Interface conditions must reflect individual movement
behaviour across an interface

Edge behaviour and differential movement between habitats
can lead to discontinuous interface conditions

Results regarding species persistence and spread in
heterogeneous environments are strongly affected by interface
conditions
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