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Epidemiological Thresholds and Control Strategies I: field 
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Sir Ronald Ross demonstrated that the parasite of malaria is transmitted by 
mosquitoes and, in 1902, he received the Nobel Prize of Medicine. He 
developed mathematical models for malaria transmission, and was a 
pioneer in mathematical epidemiology. 
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SIS model 
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dS
dt = − β I S + γ I

dI
dt = β I S − γ I

 S   I  
β Ι 

γ 

β – transmission coefficient 

γ – recovery rate 

Appropriate for infections that induce no effective immunity  
(e.g. malaria). 

SIS model 
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dI
dt = β I(1−I) − γ I

As S + I = 1, the model is one dimensional and represented by the equation 

This is a type of growth law known as logistic growth, and it appears 
commonly in population dynamics models in the form 
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The solution can be obtained analytically 
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SIS model 



Steady states: 

1.  Disease free equilibrium 

2.  Endemic equilibrium 

Given an initial condition, I(0) = 10-6, the proportion of infected individuals 
grows as 

Parameters: β = 3 , γ = 1 

€ 

I = 0, S = 1

€ 

I = 1− γ
β
, S = γ

β

SIS model 



The basic reproduction number is defined as the 

average number of secondary infections produced by  
an average infectious individual, during its entire infectious period,  

in a totally susceptible population 

The basic reproduction number is calculated as 

R0 = (rate of transmission from an infectious individual) x (infectious period) 

      = β x (1 / γ) = β / γ	



Disease R0 
Smallpox 4 

Measles 17 

Rubella (England and Wales) 6 

Rubella (Gambia) 15 

R0 is a nondimensional 
number, and depends on 
both the environment 
(physical and social) and 
the disease. 

Basic reproduction number, R0 
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dt = R0 (1−I) I − I
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If time is measured in units of infectious period, D = 1 / γ, then the SIS model 
becomes 

The endemic equilibrium is rewritten as 
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I = 1− 1R0
, S = 1

R0

Epidemic threshold: Infection can 
invade a totally susceptible population 
if and only if 

€ 

R0 > 1

Nondimensional SIS model 



Field data: clinical malaria by age 
Bakau, 
Gambia 

Foni Kansala, 
Gambia 

Sukuta, 
Gambia 

Mponda, 
Malawi 

Kilifi, 
Kenya 

Chonyi, 
Kenya 

Ifakara, 
Tanzania 

Siaya, 
Kenya 
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susceptible 

clinical malaria 

partially immune 

uncomplicated malaria 

€ 

λ = β I1 + I2( )
Force of infection: 



Boundary conditions: 

S(t,0) = µ   R(t,0) = I1(t,0) = I2(t,0) = 0   

System of partial differential equations (SIRI-like for malaria) 
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Global parameters: 

average duration of clinical malaria 
~ 1 month 
[γ = 14.12 yr-1]	



average duration of uncomplicated 
malaria ~ 6 month 
[σ = 6.33]	



average duration of partial immunity 
~ 12 month 
[α = 1.07 yr-1]	



Model fitting and parameter estimation for malaria 

Local parameters: 

€ 

R0 = β γ



Multi-population malaria trends 

Decreasing disease with 
increasing transmission 

Sustainable transmission 
for R0 < 1 (hysteresis) 

epidemic 
threshold 

reinfection 
threshold 



Bistable regime with implications for malaria elimination and resurgence 



Epidemic threshold: Infection can invade a population where every 
individual is “totally susceptible” if and only if 

€ 

R0 > 1

Epidemiological thresholds of the SIRI model 

Reinfection threshold: Infection can invade a population where every 
individual is “partially immune” if and only if 

€ 

R0 > 1
σ
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dS
dt = − β I S

dI
dt = β I S − γ I

dR
dt = γ I

 S   I   R  
β Ι γ 

β – transmission coefficient 

γ –  recovery rate 

Appropriate for infections that induce highly effective immunity  
(e.g. measles, mumps, rubella). 

SIR model 



In 1927, Kermack e McKendrick fitted the model to various epidemic curves. 
They established the notion of the epidemic threshold, under a slightly 
different formulation: the growth of an epidemic requires that, on average, an 
infected individual infects at least one susceptible. An epidemic falls when the 
density of susceptibles is below a threshold: S < 1 / R0. 
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S> γ
β
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S< γ
β β = 3 	



γ = 1 

SIR model fitted to a plague epidemic in Bombay 1906 



If time is measured in units of infectious period, D = 1 / γ, then the SIR model 
becomes 

As individuals become immune, this system always approaches the disease 
free steady state, I = 0. As the epidemic progresses, the level of 
susceptibles decreases, and the level of recovered individuals increases. 
The important question is the final balance between these two classes – 
does the disease die out before all the susceptibles are exhausted? 
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dt = − R0 I S and dR

dt = I
dI
dt = R0 I S − I
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Using the fact that R = 1 – I – S, and at equilibrium I = 0, we get 
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Nondimensional SIR model 



Final epidemic size 



In the long term, the susceptible pool is replenished by births generating the 
conditions for new epidemics to occur. 

e 
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 S   I   R  
R0 I 

SIR with host demography 



Steady states: 

1.  Disease free equilibrium: 

2.  Endemic equilibrium: 

The new steady states are obtained from the model 
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dS
dt = e − R0 I S − eS
dI
dt = R0 I S − I

The new parameter, e, represents the birth and death rate in units of 
infectious period. This is equivalent to D / L, where D is the average duration 
of infection and L is the life expectancy at birth. Assuming that 
D = 1 month, and L = 70 years, we get e = 0.0012. 

SIR with host demography 



Partial immunity SIRI model 
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σ R0 

A common scenario is that immunity is not fully protective, but reduces the 
risk of further infections by some factor (e.g. tuberculosis).  
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Partial immunity SIRI model 

reinfection threshold 
(R0 = 1/σ) 



The collective effect of a vaccination programme is to reduce the pool of 
susceptible individuals. 

 S   I   R  R0 I 

Vaccination in SIR model 



The collective effect of a vaccination programme is to reduce the pool of 
susceptible individuals. 

 S   I   R  

(1-v) e ve 

v: vaccination coverage 

R0 I 

Vaccination in SIR model 



Partial immunity induces a reinfection threshold, R0 = 1 / σ, above which the 
prevalence of infection is high and insensitive to vaccination. 
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σ : susceptibility reduction factor 

R0 I 

σ R0 I v e (1-v) e 

Vaccination in SIRI model 



uncontrollable controllable 

Reinfection threshold and effectiveness of vaccination programs 



Typically vaccines do not confer a level protection superior to that induced by 
natural infection. However, this is a prime goal in vaccine research. In order 
to predict the epidemiological impact of such vaccine we need an extension 
to the partial immunity model. 

The vaccine is more potent than natural infection if and only of σV < σ. 

Defining effications vaccines 



Defining effications vaccines 
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Field data: tuberculosis reinfection 
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System of ordinary differential equations (SIRI-like for tuberculosis) 



Model fitting and parameter estimation for tuberculosis 

p 

Global parameters 



Multi-population tuberculosis trends 

epidemic 
threshold 

reinfection 
threshold 

Estimates of R0 may 
be very sensitive to 
heterogeneity in host 
susceptibility 
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