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Equation of state of cold degenerate matter

Δx
I Non-relativistic electron degeneracy:

low-mass white dwarf stars
I Relativistic electron degeneracy:

high-mass white dwarf stars
I Relativistic neutron degeneracy:

neutron stars



Equation of state of cold degenerate matter

Δx

I Each fermion lives in its own box of size
∆x ∼ n−1/3

F where nF is fermion
number-density

I ∆p∆x ∼  h and p ∼ ∆p so p ∼  hn1/3
F

I P =
impulse

area ∼
p/τ
(∆x)2 and τ ∼ (∆x)/v so

P ∼ nFpv



Non-relativistic degeneracy

Non-relativistic motion:

v =
p

mF
∼

 hn1/3
F

mF

where mF is mass of fermion.
Let µ be number of baryons per degenerate fermion

I For electron-degeneracy, µ = A/Z ∼ 2
I For neutron-degeneracy, µ ∼ 1

Density is ρ = µmBnF where mB is the baryon mass
Equation of state is

P ∼ nFpv ∼
 h2

m2
F

n5/3
F ∼

 h2

m2
F

(
ρ

µmB

)5/3



Non-relativistic degeneracy

Exact calculation gives:

P =
(3π2)2/3

5
 h2

mF

(
ρ

µmB

)5/3

A Polytropic equation of state with γ = 5
3 or n = 3

2
Recall: M ∼ R(3−n)/(1−n) ∼ R−3

I As matter is added, star shrinks
I Fermions move faster and eventually become relativistic
I White dwarfs: electron degeneracy

v =
p

me
∼

 hn1/3
e

me
∼

 h

me

(
ρ

µmB

)1/3

at ρ ∼ 109 kg m−3, v ∼ c



Relativistic degeneracy

Recall:
P ∼ nFpv

and
p ∼  hn1/3

F

Fermions are relativistic: v ∼ c so

P ∼  hcn4/3
F ∼  hc

(
ρ

µmB

)4/3

Exact calculation gives

P =
(3π2)1/3

4
 hc

(
ρ

µmB

)4/3



Relativistic degeneracy

Relativistic degenerate matter has a polytropic equation of state with
γ = 4

3 or n = 3
I Recall: M ∼ R(3−n)/(1−n) so mass is independent of radius
I Maximum mass that can be supported is

M =
(3π2)1/2

2

(
 hc
G

)3/2 1
(µmB)2

(
−ξ2

1
dθ
dξ

∣∣∣∣
ξ1

)

I −ξ2
1[dθ/dξ]ξ1 = 2.018 for an n = 3 polytrope, so

M = 1.4 M⊙ ×
(

2
µ

)2

Chadrasekhar mass



Chandrasekhar limit

Heuristic argument:
I Degenerate fermions have p ∼  hn1/3

F where nF ∼ NF/R3

NF is number of degenerate fermions in star
I Total energy of relativistic degenerate gas (Fermi energy)

EF = NFpc ∼
 hcN4/3

F
R

I Gravitational self binding energy

EG ∼ −
GM2

R ∼ −
GN2

Fm2
B

R

I Total energy is E = EF + EG ∼
 hcN4/3

F
R −

GN2
Fm2

B
R



Chandrasekhar limit

I Total energy is E = EF + EG ∼
 hcN4/3

F
R −

GN2
Fm2

B
R

I Star will shrink/expand until E is a minimum
But both terms ∼ 1/R !

I When E > 0, R ↑ until fermions become non-degenerate; then
EF ∼ 1/R2 and equilibrium is reached

I When E < 0, R ↓ until R → 0: star is unstable
I Stability requires E > 0:

 hcN4/3
F > GN2

Fm2
B

NF,max ∼

(
 hc

Gm2
B

)3/2
∼ 2 × 1057

Mmax = NF,maxmB ∼ 1.8 M⊙ (close)



Chandrasekhar limit

As M → Mmax, star shrinks and fermions become relativistic when

pc > mFc2

 hN1/3
F

R > mFc

For NF = NF,max = ( hc/GmB)3/2, instability occurs when

R < Rmin ∼
 h

mFc N1/3
F,max

∼
 h

mFc

(
 hc

GmB

)1/2

∼


5000 km white dwarfs: mF = me

3 km neutron stars: mF = mB



Maximum mass of a neutron star
What if the equation of state is not an n = 3 polytrope?
Requirements:

1. Density greater than nuclear density, ρ > ρn ∼ 4 × 1017 kg m−3

2. Radius greater than the Schwarzschild radius, R > 2GM/c2

M >
4
3πR3ρn

>
4
3π

(
2GM

c2

)3
ρn

so

M <
c3

G

√
3

32π
1

Gρn

∼ 7 M⊙



Tolman-Oppenheimer-Volkoff (TOV) equation

In spherical symmetry, the static spacetime metric is

ds2 = −e2Φ(r)/c2c2 dt2 +
dr2

1 −
2Gm(r)

c2r

+ r2dθ2 + r2 sin2 θdϕ2

where Φ(r) and m(r) are some functions that depend on r alone

Matter is a perfect fluid,
Tt̂̂t = ρc2

Tr̂̂r = P



Tolman-Oppenheimer-Volkoff (TOV) equation

Einstein’s field equations:

Gt̂̂t =
8πG
c4 Tt̂̂t

Gr̂̂r =
8πG
c4 Tr̂̂r

(er̂)ν∇µTµν = 0

=⇒ m(r) =
∫ r

0
4πr ′2 dr ′ ρ(r ′)

=⇒ dΦ
dr =

Gm(r) + 4πGr3P/c2

r[r − 2Gm(r)/c2]

=⇒ dP
dr = −(ρ+ P/c2)

Gm(r) + 4πGr3P/c2

r[r − 2Gm(r)/c2]

Tolman-Oppenheimer-Volkov equation



Newtonian limit of TOV equation

The Newtonian limit has P ≪ ρc2 and Gm(r)/c2 ≪ r:

m(r) =

∫ r

0
4πr ′2 dr ′ ρ(r ′)

dΦ
dr =

Gm(r)
r2

dP
dr = −

Gm(r)
r2 ρ

These are the same equations as were used in Lecture 1.
(Φ is the Newtonian potential.)



Incompressible star in General Relativity

Constant density: ρ = ρc = const and m(r) = 4
3πr3ρc

TOV equation can be integrated exactly:

P = ρcc2 (1 − 2GM/c2R)1/2 − (1 − 2GMr2/c2R3)1/2

(1 − 2GMr2/c2R3)1/2 − 3(1 − 2GM/c2R)1/2

Central pressure is

Pc = ρcc2 (1 − 2GM/c2R)1/2 − 1
1 − 3(1 − 2GM/c2R)1/2

Note: Pc → ∞ when 3(1 − 2GM/c2R)1/2 = 1 or

R =
9
4

GM
c2



Maximum mass of a neutron star redux

Recompute maximum mass of neutron star
I Incompressible star with ρc = ρn = 4 × 1017 kg m−3

I Central pressure must be finite so R > 9
4 GM/c2

M >
4
3πR3ρn

>
4
3π

(
9
4

GM
c2

)3
ρn

so

M <
4
9

c3

G

√
1

3π
1

Gρn

∼ 6 M⊙



Mass-Radius curve
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Mass-Radius curve
Simple numerical model: two-component polytrope

P =


K0ρΓ0 for ρ < ρ1

K1ρΓ1 otherwise

where low density region is ρ < ρ1 = 5 × 1017 kg m3

Γ0 =
5
3 and K0 =

(3π2)2/3

5
 h

m8/3
B

and continuity requires
K1 = K0ρ

Γ0−Γ1
1

Consider soft and stiff core equations of state:

Γ1 = 2.5 (soft) and Γ1 = 3 (stiff)



Mass-Radius curve: program tov.py..
1 import pylab, odeint
2 from scipy.constants import pi, G, c, hbar, m_n
3 Msun = 1.98892e30
4

5 # piecewise polytrope equation of state
6 Gamma0 = 5.0/3.0 # low densities: soft non−relativistic degeneracy

pressure
7 K0 = (3.0*pi**2)**(2.0/3.0)*hbar**2/(5.0*m_n**(8.0/3.0))
8 Gamma1 = 3.0 # high densities: stiffer equation of state
9 rho1 = 5e17

10 P1 = K0*rho1**Gamma0
11 K1 = P1/rho1**Gamma1
12

13 def eos(rho):
14 if rho < rho1: return K0*rho**Gamma0
15 else: return K1*rho**Gamma1
16

17 def inveos(P):
18 if P < P1: return (P/K0)**(1.0/Gamma0)
19 else: return (P/K1)**(1.0/Gamma1)

to be continued…



Mass-Radius curve: program tov.py..

continued from previous page
21 def tov(y, r):
22 """ Tolman−Oppenheimer−Volkov equations. """
23 P, m = y[0], y[1]
24 rho = inveos(P)
25 dPdr = −G*(rho + P/c**2)*(m + 4.0*pi*r**3*P/c**2)
26 dPdr = dPdr/(r*(r − 2.0*G*m/c**2))
27 dmdr = 4.0*pi*r**2*rho
28 return pylab.array([dPdr, dmdr])

to be continued…



Mass-Radius curve: program tov.py..

continued from previous page
30 def tovsolve(rhoc):
31 """ Solves TOV equations given a central density. """
32 r = pylab.arange(10.0, 20000.0, dr)
33 m = pylab.zeros_like(r)
34 P = pylab.zeros_like(r)
35 m[0] = 4.0*pi*r[0]**3*rhoc
36 P[0] = eos(rhoc)
37 y = pylab.array([P[0], m[0]])
38 i = 0 # integrate until density drops below zero
39 while P[i] > 0.0 and i < len(r) − 1:
40 dr = r[i+1] − r[i]
41 y = odeint.rk4(tov, y, r[i], dr)
42 P[i+1] = y[0]
43 m[i+1] = y[1]
44 i = i + 1
45 # return mass and radius of star
46 return m[i−1]/Msun, r[i−1]/1000.0

to be continued…



Mass-Radius curve: program tov.py..

continued from previous page
48 # plot mass−radius curve
49 rhoc = pylab.logspace(17.5,20) # logspace range of central densities
50 M = pylab.zeros_like(rhoc)
51 R = pylab.zeros_like(rhoc)
52 for i in range(len(rhoc)):
53 M[i], R[i] = tovsolve(rhoc[i])
54

55 pylab.plot(R, M)
56 pylab.xlabel('Radius (km)')
57 pylab.ylabel('Mass (solar)')
58 pylab.grid()
59 pylab.show()



Mass-Radius curve
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Mass-Radius curve

Demorest et al., Nature 467, 1081 (2010)
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