Heavy ion physics with CMS

SILAFAE 2012
IX Latin American Symposium on High Energy Physics
São Paulo, Brazil

Dr. Magdalena Malek
for the CMS Collaboration

Universidade do Estado do Rio de Janeiro

10/12/2012
Introduction: detector, data taking and centrality

Pb+Pb (selected) results
- global observables: charged particle multiplicity, energy and transverse energy
- control probes: isolated photons, electroweak bosons
- modified probes: jet quenching, γ+jet, hadrons and jets R_{AA}, quarkonia

Summary
- **inner tracking** system (|\(\eta|\) < 2.5)
- **calorimeters** (electromagnetic: |\(\eta|\) < 3, hadronic: |\(\eta|\) < 5)
- **muon** system (|\(\eta|\) < 2.4)
- **forwards** detectors (CASTOR: -6.6 < \(\eta|\) < -5.2 and ZDC: |\(\eta|\) > 8.3)
- magnetic field of 3.8 T
PbPb: ~ 8.7 [150] μb^{-1} in 2010 [2011]

pp (at 2.76 TeV): ~ 230 nb^{-1} in 2011

comparing PbPb results to pp reference

$$R_{AA} = \frac{1}{N_{\text{coll}}} \cdot \frac{N_{AA}}{N_{PP}}$$

N_{coll}: number of elementary NN collisions or

$$T_{AA} = \frac{N_{\text{coll}}}{\sigma_{PP}}$$

centrality concept: Pb ions are extended objects, particle production depends on the impact parameter

reflects the geometrical overlap of the two colliding nuclei

energy deposit in forward calorimeters
Global observables
↔ basic information on the created system
• **hadron** rapidity **density** \propto number of **initially** released **partons** at a given η: reduced multiplicity in saturation models

charged hadron density for 0-5% collisions: 1612 ± 55

$\frac{dN_{ch}}{d\eta}$ is \sim flat over $|\eta|<2.5$ ($<10\%$ variation)

similar N_{part} dependence for all $\sqrt{s_{NN}}$

good description of the data by a parton saturation approach

$\sqrt{s_{NN}}$ dependence follows power law behavior with exponent $s^{0.13}$
- CASTOR coverage up to $\eta=-6.6$ ($y_{beam} \sim 8$); peak of the $dE/d\eta$
- HYDJET 1.8 and EPOS-LHC: good agreement for central data
- QGSJetII.3: describe better peripheral data; AMPT: quantitative agreement to the data

\[R_{PC} = \frac{\langle E \rangle(\eta,N_{part})}{\langle E \rangle(\eta,N_{\text{part}}^{\text{max}})} \cdot \frac{N_{\text{part}}^{\text{max}}}{N_{\text{part}}} \]

- shape change in the forward η; flattening region for central events at high η
- data is challenging for models

Magdalena.Malek@cern.ch (UERJ)
Initial distribution of partons (via N_{part}) and hydrodynamic flow that builds up after thermalization (via η); energy density via Bjorken’s formula:

$$\epsilon_{\text{BJ}} = \frac{dE_T}{dy} \cdot \frac{1}{\tau_0 \pi R^2}$$

- $\sim 2.1 \text{ TeV}$ at $\eta = 0$; at least 3 times larger than at RHIC
- Shape consistent with a Gaussian with $\sigma_{\eta} = 3.4 \pm 0.1$: larger than predicted by Landau hydro but narrower than given by HYDJET; AMPT overestimates
- $(dE_T/d\eta)/(0.5 \langle N_{\text{part}} \rangle)$ increases with N_{part} for all η
- For $\tau_0 = 1 \text{ fm/c}$ and $R = 7.1 \text{ fm}$: energy density of $\approx 14 \text{ GeV/fm}^3$
- For $\sqrt{s_{NN}} \geq 8.7 \text{ GeV}$, E_T at $\eta = 0$ reproduced by a power-law dependence s_{NN}^n with $n \approx 0.2$
Control probes

\leftrightarrow not affected by the medium
sources of high-p_T photons:
- isolated (direct): blind to the created medium
- not-isolated (fragmentation, meson decay,...): affected by the medium

first adaptation of p+p photon identification methods to heavy ion experiment
photons are measured for $|\eta| < 1.44$, E_T of 20–80 GeV in 3 centrality bins
significant background: mainly from neutral mesons

consistent with the NLO calculation at all transverse energies (within uncertainties)
R_{AA} vs E_T is flat
no dependence of R_{AA} on N_{part}
Control probes $| Z \rightarrow \mu^+ \mu^- |$ [CMS-PAS-HIN-12-008]

- for the mass range 60-120 GeV/c2: 616 events with opposite-sign muons; no events with same-sign muons
- very low pp statistics for 2.76 TeV: comparison to POWHEG generator (well tested at Tevatron and LHC at 7TeV)

$R_{AA} = 0.95 \pm 0.03 \pm 0.13$
also $W \rightarrow \mu\nu$ studies [PLB 715 (2012) 66]

- electroweak bosons are not affected by the medium (within uncertainties)
- confirmation of the validity of the binary (N_{coll}) scaling
- more precision: access to the nuclear PDFs
Modified probes affected by the medium
jets are produced at the initial impact
- radiative energy loss when they travel through the QGP
 - sensitive to the energy density of the medium
 - depends on the path length
 - azimuthal correlations between produced jets: for p+p or p+A peak at $\Delta \phi = 180^\circ$
 - for A+A important modification of the azimuthal correlations: the away side jets are suppressed
- investigating modification of jets: very useful tool for probing the QGP properties
- dijet asymmetry: \(A_J = \frac{p_T,1-p_T,2}{p_T,1+p_T,2} \) \((p_T,1 \text{ for leading, } p_T,2 \text{ for sub-leading}) \)
- here only calorimeter dijets: leading \(p_T >120 \text{ GeV, sub-leading } p_T >50 \text{ GeV} \)
- \(p_T \) imbalance (i.e. \(A_J \)) increases with the centrality

- azimuthal decorrelation \(\Delta \phi_{1,2} \): back-to-back \((\Delta \phi_{1,2} \sim \pi) \) for all centralities
- at LO photons produced back-to-back with an associated parton (jet): $p_T^\gamma \sim p_T^{Jet}$
- transverse momentum balance $x_{J\gamma} = \frac{p_T^{Jet}}{p_T^\gamma}$
- when increasing the centrality of the collision
 - shift of the $x_{J\gamma}$ distribution towards lower values
 - reduction of the fraction of photons with an associated jet
modifed probes | $\gamma + \text{jet}$ [arXiv:1205.0206, accepted by PLB]

- average γ-jet p_T balance decreases by $\sim 14\%$ compared to pp
- fraction of γ with an associated jet partner drops by $\sim 20\%$
- using jet trigger to enhance p_T reach (up to 100 GeV/c) and decrease fake rate

- large suppression of charged particles above a few GeV/c
- online PbPb jet trigger threshold of 80 GeV/c; offline: $p_T > 100$ GeV/c and $|\eta| < 2$

- suppression factor of ~ 0.5 in central PbPb when comparing to pp
- no suppression (within uncertainties) in the most peripheral PbPb
- R_{AA} is approximately independent of p_T in the measured range
no change in level of suppression due to jet cone size
b from non-promt J/ψ: produced at large distance from the primary vertex; $p_T < 30 \text{ GeV/c}$
the identification of J/ψ coming from B hadron decays relies on the measurement of a secondary $\mu^+\mu^-$ vertex displaced from the primary collision vertex. The distance between the $\mu^+\mu^-$ vertex and the primary vertex is measured in the plane transverse to the beam direction.

D’s from ALICE

- in theory: energy loss depends on the quark mass
- $R_{AA}^b > R_{AA}^c$: b-quarks are less suppressed than c-quarks
jets tagged by cutting on discriminating variables:
 - Simple Secondary Vertex High Efficiency (SSVHE): based on the flight distance significance of reconstructed SV
 - Jet Probability (JP)

- $p_T > 100$ GeV/c; first b-jet identification in heavy ion collisions

- pp and PbPb b-jet fraction are the same: consistent with MC
- $R_{AA} < 1$
Modified probes | R_{AA}: summary

CMS (*preliminary) $PbPb\sqrt{s_{NN}} = 2.76$ TeV

$\int L\ dt = 7-150 \mu b^{-1}$

- * Z (0-100%) $p_t^{\ell} > 20$ GeV/c
- * W (0-100%) $p_t^{\nu} > 25$ GeV/c
- Isolated photon (0-10%)
- b-quarks (0-100%)
- (via secondary J/ψ)

- Charged particles (0-5%)

R_{AA} vs $p_T(m_T)$ (GeV)

- * q/g-jet (0-5%) $|\eta|<2$
- * b-jet (0-100%) $|\eta|<2$

$jet\ p_T$ (GeV)
- **color screening** of static potential between heavy quarks
- quarkonia **melting** depending on the binding energy: thermometer of the medium
- $6.5 < p_T < 30 \text{ GeV/c}$: no rapidity dependence
- central collisions: suppression by factor ~ 5
- high y: low p_T suppressed less than high p_T
- first look at $\psi(2S)$; raw ratios: $R_{\psi(2S)} = N_{\psi(2S)}/N_{J/\psi}$
- red curves: PbPb fit
- $|y| < 1.6$ and $6.5 < p_T < 30$ GeV/c

relative less $\psi(2S)$ than J/ψ
- $R_{\psi(2S)}^{PbPb} \sim 0.5 R_{\psi(2S)}^{pp}$
- excellent mass resolution ($\sim 1\%$): clear separation; acceptance down to $p_T = 0 \text{ GeV/c}$
- centrality-integrated $R_{AA}(\Upsilon(nS))$

$R_{AA}(\Upsilon(1S)) = 0.56 \pm 0.08 \pm 0.07$
$R_{AA}(\Upsilon(2S)) = 0.12 \pm 0.04 \pm 0.02$
$R_{AA}(\Upsilon(3S)) < 0.1 \ (95\% \ CL)$
- ordered suppression
centrality-integrated R_{AA} vs binding energy seems ordered: looser bound states are more suppressed

but has to be done with more data: centrality dependence, feed-down contributions, cold nuclear matter effects (pA)
Pb+Pb data taking periods were very successful!

CMS collected a significant amount of data

thanks to CERN for fantastic LHC performance!

detailed measurements of global properties of medium in Pb+Pb collisions

measurement of control probes (γ, Z and W): unmodified as expected

jet quenching ... including b !!!

quarkonium suppression

looking forward for pA data ...

much more results not discussed here:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN