A mathematical perspective of community ecology

Priyanga Amarasekare Department of Ecology and Evolutionary Biology University of California Los Angeles

Mechanisms that maintain diversity

Diversity: Species coexistence

Coexistence: Non-linear * Environmental dynamics heterogeneity

(density-dependence) (temporal, spatial)

Coexistence mechanisms

- Non-linearity: negative feedback (negative density-dependence)
- Heterogeneity
 (Jensen's inequality)

Jensen's Inequality

Sources of non-linearity and heterogeneity

Non-linearity: resources, natural enemies

(Species interactions)

Heterogeneity: spatial/temporal variation in biotic/abiotic environment

Sources of non-linearity

Species interactions:

Exploitative competition (-/-) Apparent competition (-/-) Mutualism (+/+) Consumer-resource (+/-)

Indirect interactions between individuals (of the same or different species) as the result of acquiring a resource that is in limiting supply.

Each individual affects others solely by reducing abundance of shared resource.

Coexistence:

Mutual invasibility: each species must be able to increase when rare

Stability: coexistence equilibrium stable to perturbations

$$R^{\star}_{C_i} = \frac{d_i}{e_i a_i} \quad (i, j = 1, 2; i \neq j)$$

R^{*} **rule**: consumer species that drives resource abundance to the lowest level will exclude others

In a constant environment, R* rule operates and the superior competitor excludes inferior competitors

Coexistence not possible in the absence of other factors.

Sources of non-linearity

Species interactions:

Exploitative competition (-/-) ✓ **Apparent competition (-/-)** Mutualism (+/+) Resource-consumer (-/+)

Indirect interactions between individuals that share a common natural enemy.

Each individual affects others solely by changing the abundance of shared enemy.

$$\frac{dC_1}{dt} = C_1 \left(r_1 - a_1 P \right)$$
$$\frac{dC_2}{dt} = C_2 \left(r_2 - a_2 P \right)$$
$$\frac{dP}{dt} = P \left(e_1 a_1 C_1 - e_2 a_2 C_2 - d \right)$$

$$P^{\star}C_i = rac{r_i}{a_i}$$
 $(i, j = 1, 2; i \neq j)$
Invasion criteria: $rac{r_1}{a_1} > rac{r_2}{a_2}$ Consumer 1 $rac{r_2}{a_2} > rac{r_1}{a_1}$ Consumer 2

P^{*} **rule**: consumer species that can withstand the highest natural enemy pressure will exclude others

In a constant environment, P* rule operates and the prey species that is least susceptible to predator excludes all others.

Coexistence not possible in the absence of other factors.

Exploitative and apparent competition

Per capita growth rate independent of species' density (no negative feedback)

$$\frac{dC_i}{dt}\frac{1}{C_i} = e_i a_i R - d_i$$

No negative feedback ==> Loss of diversity Coexistence:

Non-linearity (Negative feedback)

Heterogeneity (Jensen's inequality)

Mechanisms of coexistence

Coexistence via non-linearity alone (local niche partitioning)

Coexistence via interplay between non-linearity and heterogeneity (spatial and temporal niche partitioning)

Coexistence via non-linearity alone

1. Inter-specific trade-offs (R^{*}, P^{*})

2. Relative non-linearity (e.g., non-linear functional responses)

Negative feedback: local niche partitioning ==>

Intra-specific > inter-specific

Coexistence via non-linearity: trade-offs

Intraguild predation

IGPredator

Intraguild predation

Non-dimensionalize model:

Intraguild predation: nondimensionalized model

$$\frac{dR}{d\tau} = R(1-R) - a_1 R C_1 - a_2 R C_2$$

- $\frac{dC_1}{d\tau} = a_1 R C_1 - d_1 C_1 - \alpha C_1 C_2$
 $\frac{dC_2}{d\tau} = a_2 R C_2 - d_2 C_2 - f \alpha C_1 C_2$

Coexistence:

Mutual invasibility: each species must be able to increase when rare

Stability: coexistence equilibrium stable to perturbations

Mutual invasibility: invasion criteria

Invasion criteria: dominant eigenvalue of Jacobian matrix evaluated at boundary equilibrium

Computing invasion criteria

Jacobian matrix for the three species community:

$$\begin{bmatrix} 1 - 2R^{\star} - a_1C_1^{\star} - a_2C_2^{\star} & -a_1R^{\star} & -a_2R^{\star} \\ a_1C_1^{\star} & a_1R^{\star} - d_1 - \alpha C_2^{\star} & -C_1^{\star}\alpha \\ a_2C_2^{\star} & C_2^{\star}f\alpha & a_2R^{\star} - d2 + f\alpha C_1^{\star} \end{bmatrix}$$

Evaluate Jacobian at boundary equilibrium

Boundary equilibria

Resource and Consumer 1 (IGPrey):

$$R^{\star} = \frac{d_1}{e_1}, C_1^{\star} = \frac{a_1 - d_1}{a_1^2}, C_2^{\star} = 0$$

Resource and Consumer 2 (IGPredator):

$$R^{\star} = \frac{d_2}{e_2}, C_1^{\star} = 0, C_2^{\star} = \frac{a_2 - d_2}{a_2^2}$$

Computing invasion criteria

Jacobian evaluated at boundary equilibrium with Resource and Consumer 1:

Dominant eigenvalue of Jacobian: invasion criterion for Consumer 2

Mutual invasibility criteria

Invasion criterion for IGPrey:

$$a_2(a_1d_2 - a_2d_1) - (a_2 - d_2)\alpha > 0$$

Invasion criterion for IGPredator:

$$a_1(a_2d_1 - a_1d_2) + (a_1 - d_1)f\alpha > 0$$

Mutual invasibility

Recall:
$$R_{C_1}^{\star} = \frac{d_1}{a_1}, R_{C_2}^{\star} = \frac{d_2}{a_2}$$

Consider IGPrey to be the superior resource competitor.

Then,

$$R_{C_1}^* < R_{C_2}^* < 1$$
$$\Rightarrow \frac{d_1}{a_1} < \frac{d_2}{a_2} < 1$$
$$\Rightarrow a_1 d_2 > a_2 d_2, a_2 > d_2$$

Mutual invasibility criteria

Invasion criterion for IGPrey:

$$a_2(a_1d_2 - a_2d_1) - (a_2 - d_2)\alpha > 0$$

Invasion criterion for IGPredator:

$$a_1(a_2d_1 - a_1d_2) + (a_1 - d_1)f\alpha > 0$$

Mutual invasibility

Then IGPrey can invade when rare if:

$$a_2(a_1d_2 - a_2d_1) > (a_2 - d_2)\alpha$$

Resource competition

Intraguild predation

IGPredator can invade when rare if:

$$(a_1 - d_1)f\alpha > a_1(a_2d_1 - a_1d_2)$$

Intraguild predation Resource competition

Coexistence:

Mutual invasibility: each species must be able to increase when rare 🗸

Stability: coexistence equilibrium stable to perturbations ?

Coexistence equilibrium

$$R^{\star} = \frac{fa_2d1 - f\alpha - a_1d_2}{a_1a_2(f-1) + f\alpha}$$
$$C_1^{\star} = \frac{a_2(a_1d_2 - a_2d_1) - \alpha(a_2 - d_2)}{\alpha(a_1a_2(f-1) + f\alpha)}$$
$$C_2^{\star} = \frac{a_1(a_2d_1 - a_1d_2) + f\alpha(a_1 - d_1)}{\alpha(a_1a_2(f-1) + f\alpha)}$$

Jacobian matrix for the three species community:

Eigenvalues of the Jacobian are the roots of the characteristic equation:

$$\lambda^3 + A_1\lambda^2 + A_2\lambda + A_3 = 0$$

where

$$A_1 = R^\star,$$

$$A_{2} = R^{*}(a_{1}^{2}C_{1}^{*} + a_{2}^{2}C_{2}^{*}) + C_{1}^{*}C_{2}^{*}f\alpha^{2},$$
$$A_{3} = -R^{*}C_{1}^{*}C_{2}^{*}\left(a_{1}a_{2}\alpha(1-f) - f\alpha^{2}\right).$$

Routh-Hurwitz criteria for the stability of the coexistence equilibrium:

$$\begin{aligned} A_1 &> 0, A_3 > 0 \text{ and } A_1 A_2 - A_3 > 0. \\ A_1 &= R^* > 0, \\ A_3 &> 0 \text{ if} \\ a_1 a_2 \alpha (1 - f) - f \alpha^2 < 0 \\ A_1 A_2 - A_3 > 0 \text{ if} \\ R^* + \frac{a_1 a_2 C_1^* C_2^*}{a_1^2 C_1^* + a_2^2 C_2^*} \alpha (1 - f) > 0 \end{aligned}$$

Consumer 1 (IGPrey) is superior at resource competition (high a_1 , low d_1)

Consumer 2 (IGPredator) gains sufficient benefit from preying on Consumer 1 (high α and f)

Stability <==> inter-specific trade-off

Coexistence via non-linearity: trade-offs

Coexistence via non-linearity: trade-offs

Interactions with competition and predation: intraguild predation

Coexistence: negative feedback via inter-specific trade-off

IGPrey is superior competitor for basal resource, IGPredator can consume IGPrey (local niche partitioning)

Coexistence via local nonlinearity alone

1. Inter-specific trade-offs (R^{*}, P^{*}) ✓

2. Relative non-linearity (e.g., non-linear functional responses)

Coexistence via relative non-linearity

Exploitative competition

$$\frac{dR}{dt} = R\left(r\left(1 - \frac{R}{K}\right) - a_1C_1 - a_2C_2\right)$$
$$\frac{dC_1}{dt} = C_1\left(e_1a_1R - d_1\right)$$
$$\frac{dC_2}{dt} = C_2\left(e_2a_2R - d_2\right)$$

Linear functional responses

R^{*} **rule**: consumer species that drives resource abundance to the lowest level will exclude others

Exploitative competition with non-linear functional responses

$$\begin{aligned} \frac{dR}{dt} &= rR\left(1 - \frac{R}{K}\right) - \frac{a_1RC1}{1 + a_1T_{h_1}R} - \frac{a_2RC2}{1 + a_2T_{h_2}R} \\ \frac{dC_1}{dt} &= e_1\frac{a_1RC1}{1 + a_1T_{h_1}R} - d_1C_1 \\ \frac{dC_2}{dt} &= e_2\frac{a_2RC2}{1 + a_2T_{h_2}R} - d_2C_2 \end{aligned}$$

Non-linear functional responses

Higher attack rate and longer handling time ==> more non-linear functional response

Coexistence via non-linear functional responses

Consumer with more non-linear functional response generates fluctuations in resource abundance

Armstrong and McGehee 1980

Coexistence via relative non-linearity

Consumer with the more non-linear functional response generates fluctuations in resource abundance

If average resource abundance is greater than R^{*} of the consumer with the less non-linear functional response, it can invade when rare

Coexistence: resource partitioning

Coexistence via non-linearity alone

- Inter-specific trade-offs

 (competition and predation)
- Relative non-linearity in functional responses ✓

Mechanisms of coexistence

Coexistence via non-linearity alone (local niche partitioning)

Coexistence via interplay between non-linearity and heterogeneity (spatial and temporal niche partitioning)