Particle Acceleration I: Astrophysical Mechanisms

Elisa Bete de Gouveia Dal Pino
(IAG - University of São Paulo)

ICTP-SAIFR School, São Paulo, October 7-18, 2013
• Introduction

• Acceleration mechanisms
 – Changing Magnetic Fields
 – Mirror Effect
 – 2^{nd} Order Fermi Acceleration (turbulence)
 – Diffusive Shock Acceleration (1^{st} Order Fermi)
 – Acceleration in Reconnection zones

• Astrophysical Sites
High energy charged particles reaching the Earth’s atmosphere:

- electrons $\sim 1\%$
- protons $\sim 89\%$
- heavier nuclei, mainly helium $\sim 10\%$
- very few: antiparticles, muons, pions, kaons (from interactions of CRs with the interstellar gas)
COSMIC RAY SPECTRUM

\[N(E) \propto E^{-\gamma} \]

- \(\gamma = 2.7 \) for \(10^9 \text{eV} < E < E_{knee} \),
- \(\gamma = 3.0 \) for \(E_{knee} < E < E_{ankle} \),
- \(\gamma = 2.7 \) for \(E_{ankle} < E < E_{GZK} \)
COSMIC RAY SPECTRUM

- **knee:**
 particles with $E > 10^{15}$ eV start to leak from the galaxy, maximum from supernova explosions near 10^{15} eV

- **ankle:**
 extragalactic particles

- **GZK-cut off** at
 $\approx 6 \cdot 10^{19}$ GeV
CR – Magnetic Fields

Charged particles – circular orbits in Magnetic Field (MF):

\[m \frac{dv}{dt} = qv \times B \]

gyro-radius:

\[r_g = \frac{p}{qB} = \frac{\gamma m_0 v}{ZeB} \]

- **CRs with energies** \(< 10^{15} \text{ eV}$$**: sky distribution **ISOTROPIC**

- **Higher energy CRs:**

 are not as much deflected: **ANISOTROPIC**

 Example:

 \[E = 10^{19} \text{ eV} \]
 \[B = 2 \mu \text{G} \]

 \[r_g = 10 \text{ kpc} \]

 no correlation with galactic plane:

 extragalactic origin
COSMIC RAY SOURCES

Hillas diagram. 1984

For particle to be confined within accelerating source:

\[E_{\text{max}} \approx p_{\text{max}} \leq eBR \]

Gyro-radius < source size

\[r_g < L \]

\[E_{\text{max}} = BL \]

\(E_{\text{max}} \): Maximum energy that can be extracted from the source for acceleration
• Introduction

• Acceleration mechanisms
 – Changing Magnetic Fields
 – Mirror Effect
 – 2nd Order Fermi Acceleration (turbulence)
 – Diffusive Shock Acceleration (1st Order Fermi)
 – Acceleration in Reconnection zones

• Astrophysical Sites
Electromagnetic Acceleration

• Time dependent MFs:
 Compact sources with large scale magnetic fields

solar sunspots pulsars
Electromagnetic Acceleration

Faraday's law

\[\nabla \times \mathbf{E} = -\dot{\mathbf{B}} \]

decaying magnetic field \(\Rightarrow \) electric field \(\Rightarrow \) acceleration

- magnetic flux: \(\Phi = B \cdot A = B\pi R^2 \)
- change of the flux \(\Rightarrow \) potential:

\[U = \oint \mathbf{E} \cdot \mathbf{ds} = -\dot{\Phi} = -\dot{B}\pi R^2 \]

Cyclotron mechanism

Energy gain

\[\Delta E = eU = e\pi R^2 \dot{B} \]

from one gyration

Kaiser courtesy
Electromagnetic Acceleration

Example: Merging Sunspots

- flux tube radius $R \approx 10^4 \text{km}$
- magnetic field $B \approx 2000 \text{ G}$
- merging in 1 day, $\dot{B} = 2000 \text{ G/day}$

$\Rightarrow E = 0.73 \text{ GeV}$
CRs from the Sun

Power law spectrum at high energies

Other mechanisms can be occurring:

- Diffusive shock acceleration
- Magnetic Reconnection
particles entering regions of higher magnetic field strength are reflected backwards

- charged particles follow cyclotron orbits
 \[
 \text{gyro-radius: } r_g = p_\perp / qB
 \]

stronger magnetic field
 ⇒ smaller gyro-radius, increased perpendicular velocity \(v_\perp \)
 ⇒ decrease of parallel velocity \(v_\parallel \) (energy conservation)
 ⇒ \(v_\parallel \) → 0, then reflection

The magnetic flux
\[
\Phi = B \cdot \pi r_g^2 \propto \frac{v_\perp^2}{B}
\]
through the particles' cyclotron circle is constant.
Fermi (1949): could CRs be produced via random scattering with magnetized interstellar clouds?
FERMI ACCELERATION

Frequency of head-on collisions > frequency of catch-up collisions

net energy gain by particles
FERMI ACCELERATION

Head-on collision:

\[\Delta E = \frac{1}{2} m (v + u)^2 - \frac{1}{2} mv^2 \]

Catch-up collision:

\[\Delta E_2 = \frac{1}{2} m (v-u)^2 - \frac{1}{2} mv^2 \]

\[\Delta E = \Delta E_1 + \Delta E_2 \]

\[\left| \frac{\Delta E}{E} \right| = 2 \frac{u^2}{v^2} \]

\(\rightarrow\) Net energy gain:

\(2^{nd}\) Order Fermi
2nd ORDER FERMI ACCELERATION

There is net energy gain per collision:

\[\langle \frac{\Delta E}{E} \rangle \propto \frac{u^2}{v^2} \]

\(u \ll v \approx c \): the energy gain per collision is very small

- Statistical reflection on many different clouds in a galaxy
- Stochastic acceleration in magnetized turbulent medium
Energy increases exponentially with # of reflections ($\Delta E \propto E$):

$$\frac{dE}{dt} = \langle \Delta E \rangle v = 4v \left(\frac{V}{v} \right)^2 E \equiv \alpha E$$

$\alpha = \text{Acceleration rate}$

BUT - second order energy gain:

too slow to obtain high energy particles in the few million years that a cosmic ray stays in the galaxy
2nd ORDER FERMI ACCELERATION

✓ Particles accelerated in this statistical process satisfy diffusion-loss equation:

\[
\frac{dN}{dt} \approx -\frac{\partial}{\partial E} [N(E, t)\alpha E] - \frac{N(E, t)}{\tau}
\]

\[\alpha = \text{Acceleration rate} \quad \alpha \equiv 4\nu(V/\nu)^2\]

\[\tau = \text{time a cosmic ray stays in the galaxy}\]

➢ Power Law spectrum:

\[N(E) \approx N_0 E^{-(1+1/\alpha\tau)}\]
2nd ORDER FERMI ACCELERATION

Nice, BUT:

\[\alpha \sim \frac{\langle V^2 \rangle}{L \nu} \Rightarrow \frac{\langle V^2 \rangle}{Lc} \]

- \(L = 100 \text{pc} \) = mean separation between clouds (scatterers)
- \(\langle V \rangle = 10 \text{ km/s} \) = clouds average velocity
- \(\tau = 2 \times 10^7 \text{anos} \) = decay time of CRs in the Galaxy

\[
\frac{1}{\alpha \tau} = \frac{3 \times 10^{20} \text{cm} \times 3 \times 10^{10} \text{cm/s}}{10^{12} \text{cm}^2/\text{s} \times 6 \times 10^{14} \text{s}} \approx 1.5 \times 10^4
\]

Observed \(\gamma \sim 2.7 \) !!

2nd ORDER FERMI: too slow
1st ORDER FERMI ACCELERATION

REMEMBER:

Head-on collision:

→ Net energy gain:

\[\Delta E \propto E, \quad \frac{\Delta E}{E} = 2 \frac{uv}{c^2} + \frac{u^2}{c^2} \quad v \approx c \]

\[\approx \frac{2u}{c} + \frac{u^2}{c^2} \]

1st order(±) 2nd order

Thus we need scattering in a CONVERGING FLOW:

→ acceleration in a SHOCK (Bell et al. 78)
• Particles with higher velocity than the plasma flow may travel against the stream and cross the shock.

• Scatter and interact with magnetic field fluctuations (Alfven waves).

• Shock contains **converging** scatterers because particles experience **higher** (head-on) collision velocities **upstream** than (catch-up) velocities **downstream**.
DIFFUSIVE SHOCK ACCELERATION

picture in the rest frame of the shock front

- reflection in upstream \Rightarrow energy gain $\propto v_{up}/c$
- reflection in downstream \Rightarrow smaller energy loss $\propto v_{down}/c$
- repetition until particle is not scattered back upstream
Every round trip: particle executes one catch-up and one head-on

\[\frac{\langle \Delta E \rangle}{E} \approx \frac{2(u_1 - u_2)}{v} = \frac{2\Delta u}{v} \]

1st order in \(\sim u/c \)

\[\rightarrow \text{Fermi I more efficient than Fermi II} \]
DIFFUSIVE SHOCK ACCELERATION

- $\Delta E/E \sim u/c$
- loss of particles downstream in each cycle: $\Delta N_{\text{loss}}/N \propto u/c$

⇒

- energy increases exponentially with # of cycles
- # of participating particles N decreases exponentially with # of cycles

power law for $E > E_{\text{inj}}$

$$f(E) \propto \left(\frac{E}{E_{\text{inj}}} \right)^{-\gamma(M)} \theta(E - E_{\text{inj}})$$
DIFFUSIVE SHOCK ACCELERATION

Power law for $E > E_{\text{inj}}$

\[
f(E) \propto \left(\frac{E}{E_{\text{inj}}} \right)^{-\gamma(M)} \theta(E - E_{\text{inj}})
\]

Mach number $M = v_{\text{upstream}}/c_{\text{sound}}$

Spectral index depends on Mach number
Calculating the spectrum

\[\beta = \text{average particle energy change/collision:} \]

\[\mathcal{P} = \text{probability that particle remains in the acceleration regime after one collision} \]

After \(k \) collisions, the number of particles still scattering \(N \):

\[N = N_0 \mathcal{P}^k \]

\[E = E_0 \beta^k \]

Thus, eliminating \(k \):

\[\frac{N}{N_0} = \left(\frac{E}{E_0} \right)^{\ln \mathcal{P}/\ln \beta} \]

\[dN = KE^{\ln \mathcal{P}/\ln \beta - 1} dE \]
DIFFUSIVE SHOCK ACCELERATION

- **Probability**: $P = \text{probability that particle remains in the acceleration region after one collision:}
- \text{number of particles (w/ } \sim c\text{) crossing unit surface area/time: } \frac{1}{4}Nc$
- \text{steady state, the number of particles that cross back upstream: } \frac{1}{4}Nc - u_2N$

$$P = \frac{\frac{1}{4}Nc - u_2N}{\frac{1}{4}Nc} = 1 - \frac{4u_2}{c}$$

Thus: $\ln P = \ln \left(1 - \frac{4u_2}{c}\right) \approx -\frac{4u_2}{c}$ and $\ln \beta = \ln \left(1 + \frac{2\Delta u}{c}\right) \approx \frac{2\Delta u}{c}$

- **For strong shock** $\Rightarrow M >> 1 \Rightarrow \frac{u_1}{u_2} = 4$

$$\frac{\ln P}{\ln \beta} = \frac{-4u_2}{2(u_1 - u_2)} = -\frac{2}{3}$$

$$dN(E) = KE^{-5/3} \, dE$$
LIMITS TO ACCELERATION

- energy gains have to exceed the **losses**:
 - **radiative**: synchrotron radiation, bremsstrahlung, inverse Compton scattering
 - **non-radiative**: coulomb scattering, ionization
 - **catastrophic**: hadronic interactions: $p + p \ldots$
 - **GZK-cut-off**: interaction with CMB photons
ACCELERATION SITES

- **Varying large scale MFs:**
 - pulsars
 - sunspots

- **Diffusive shock acceleration (1st order Fermi):**
 - structure formation shocks (e.g. in merging galaxy clusters)
 - supernovae remnants
 - shocks in jets and active galactic nuclei (AGNs)
 - compact sources (near black holes or neutron stars)
 - galactic winds
 - solar flares?

- **2nd Order Fermi acceleration:**
 - near shock fronts (smaller contribution $\frac{u^2}{c^2} \ll \frac{u}{c}$)
 - turbulent regions in ISM and IGM (scattering @ B irregularities)

- **Acceleration in Reconnection zones (1st order Fermi ?):**
 - solar/stellar flares
 - accretion disks (around black holes, neutron stars,...)
Supernova Remnants (SNRs):

- SN II eject shell – shock front
 \[M = 10 \, M_{\text{sol}} \]
 \[v=100 \, \text{km/s} \]
 \[\text{SN rate} = 10^{-2} \, \text{yr}^{-1} \]

 ➤ Power output:
 \[P_{\text{SN}} = 5 \times 10^{42} \, \text{J yr}^{-1} \]

- Power to accelerate CRs in the Galaxy:
 - galactic radius: \(R \sim 15 \, \text{kpc} \)
 - thickness: \(D \sim 0.2 \, \text{kpc} \)
 - CRs energy density: \(\rho_E = 1 \, \text{eV cm}^{-3} \)

 \[P_{\text{CR}} = 2 \times 10^{41} \, \text{J yr}^{-1} \]
Merging clusters of galaxies:

Galaxy cluster Abell 3376

- Mpc-scale supersonic radio-emitting shockwaves
- radio sources (synchrotron radiation..) may be acceleration sites boosting particles up to 10^{19} eV
- hints to subcluster merger activities

Bagchi et al. 2006
Astrophysical Jets:

Shock Acceleration: in internal shocks and terminal shocks (hot spots)

Cygnus A

Acceleration in Magnetic Reconnection
ISM and Star formation regions in galaxies:

galaxy M51

• Synchrotron radiation traces MFs and relativistic electrons – CR sites

• turbulent MFs in spiral arms where ISM, star formation regions, and SNRs

→ diffusive shock acceleration (1st order) behind shocks in stellar jets and SNRs

→ 2nd order Fermi in turbulent ISM
REFERENCES

Grupen, C., Astroparticle Physics, Springer 2005

de Gouveia Dal Pino, E., Plasma Astrophysics Notes, 2005

Melia, F., High Energy Astrophysics

Lugones, G., Procs. of Science, 2011 (in press)

Perkins, D., Particle Astrophysics, 2006

de Gouveia Dal Pino, e. & Kowal, G. 2013