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Accelerated Particles — Cosmic Rays

High energy charged particles reaching the Earth’s
atmosphere:

- electrons ~ 1%
- protons ~ 89%

- heavier nuclel, mainly helium ~ 10%

- very few: antiparticles, muons, pions, kaons (from
Interactions of CRs with the interstellar gas)



COSMIC RAY SPECTRUM
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COSMIC RAY SPECTRUM

@ knee:
particles with
E > 1015 eV start to
leak from the galaxy,
maximum from
supernova explosions
near 101° eV

e ankle:
extragalactic
particles

o GZK-cut off at
~ 6 -101° GeV



CR — Magnetic Fields

Charged particles — circular orbits in Magnetic Field (MF):

gyro-radius: /

m—=gvy=<B —> »r — - — |
dt & ¢gB ZeB 4 NG
/ = U galactic plane

» CRs with energies < 10% eV: sky distribution ISOTROPIC

» Higher energy CRs:

are not as much deflected: ANISOTROPIC
Example: .
E = 10% eV
B =2 UG — r,=10kpc
no correlation with galactic plane:
extragalactic origin e L




COSMIC RAY SOURCES

Hillas diagram.1984

For particle to be
confined within
accelerating source:
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Electromagnetic Acceleration

 Time dependent MFs:
Compact sources with large scale magnetic fields

solar sunspots | pulsars



Electromagnetic Acceleration

Faraday's law

VxE=-B

decaying magnetic field = electric field = acceleration
o magnetic flux: ® = B- A = BrR?

@ change of the flux = potential:

[ = fEad5= ¢ = —BrR?

Cyclotron [g
mechanism
eNergy gain
‘ =
AE = el = erR°B
- from one gyration

Kaiser courtesy



Electromagnetic Acceleration

Example : Merging Sunspots

dipole
momsans

7

energy estimate:
2. sunspot
\ o flux tube radius R =~ 10%km

e @ magnetic field I = 2000 G

1. sunspot

@ merging in 1 day,
B = 2000 G/day

= F = 0.73 GeV
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CRs from the Sun
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FERMI ACCELERATION — MIRROR

EFFECT

particles entering regions of higher magnetic field strength are
reflected backwards

@ charged particles follow cyclotron orbits
gyro-radius: 1, = p, /qB

Rule !

The magnetic flux
¢=B~7r’r§ x v3 /B
through the particles’
cyclotron circle is

ool coll constant.
stronger magnetic field
= smaller gyro-radius, increased perpendicular velocity v |
= decrease of parallel velocity v (energy conservation)

= v) — 0, then reflection




FERMI ACCELERATION
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Fermi (1949). could CRs be produced via random scattering with
magnetized interstellar clouds?

|
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FERMI ACCELERATION

¥y Y ¥YY¥Y ¥

Frequency of head-on collisions = frequency of catch-up collisions

particle gas cloud particle gas cloud

Vv - v u

—_— net energy gain by particles 5



FERMI ACCELERATION

Head-on collision:

particle gascloud @ change in kinetic energy:

- AE = sm(v +u)® — 5muv

Catch-up collision:

particle gaSCk)Ud _&Ez — %m{v-ﬂ]g—%mvz
v u

-> Net energy gain:
AE=AEi+ AEy: = | %

>
~

2nd Order Fermi
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2"d ORDER FERMI ACCELERATION

There is net energy gain per collision:

energy gain

average over all angles of incidence v:

AE u?
— [I —
E 12

u <<v % c: the energy gain per collision is very small
» Statistical reflection on many different clouds in a galaxy

» Stochastic acceleration in magnetized turbulent medium
17



2"d ORDER FERMI ACCELERATION

energy gain

average over all angles of incidence v:
AFE (v)z
— [I —
E v

v' Energy increases exponentially with # of reflections (AE « E):

dE -

— = {(AF\v = E=aoF
¢t I: v .

o = Acceleration rate

> BUT - second order energy gain:

too slow to obtain high energy particles in the few million years that
a cosmic ray stays in the galaxy

18



2"d ORDER FERMI ACCELERATION

v’ Particles accelerated in this statistical process satisfy diffusion-loss
equation:
dN 0 N(E,1)

iR e
o aEI' (E,t)aE] ;

o =Acceleration rate o = 4v(V/v)?
Tt = time a cosmic ray stays in the galaxy

» Power Law spectrum:

= N(E) &~ N,E"tl/at)
(E) 0E ™ ;

b
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2"d ORDER FERMI ACCELERATION

Result: power law

fE)x B, 4= (1 a5 —)

Nice, BUT: _
' a~< VE= [Lv=< V%> [Le

= | =100pc = mean separation between clouds (scatterers)
= <VV> =10 km/s = clouds average velocity

= T =2x107anos = decay time of CRs in the Galaxy

a0, 10 e /o
1 zﬁxlﬂ cr_n:x:ﬁ:{ll’} Lffﬁf&ﬁ_ul‘axmd 11
o T ].DI‘EL“FH‘E;S 6o 104 g

Observed y~ 2.7 1l

m==) ond ORDER FERMI: t00 Slow
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1st ORDER FERMI ACCELERATION

REMEMBER:

Head-on collision:

—> Net energy gain:

relativistic calculation —

AFE wv  u’ e u u
1st order(£) 2nd order

_|.> 1st Order Fermi

2

Thus we need scattering in a CONVERGING FLOW:
- acceleration in a SHOCK (Bell et al. 78)

21



DIFFUSIVE SHOCK ACCELERATION

picture in the rest frame of the shock front

upsiream (pre—shock)
* Particles with higher velocity than the plasma flow may travel against the stream

and cross the shock

 Scatter and interact with magnetic field fluctuations (Alfven waves)

* Shock contains converging scatterers because particles experience higher
(head-on) collision velocities upstream than (catch-up) velocities downstream



DIFFUSIVE SHOCK ACCELERATION

picture in the rest frame of the shock front

upstream (pre—shock)

@ reflection in upstream = energy gain o< v/ c
@ reflection in downstream => smaller energy loss o vgown/C

@ repetition until particle is not scattered back upstream



DIFFUSIVE SHOCK ACCELERATION
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Every round trip: particle executes one catch-up and one head-on

- Average energy gain:

(AE) 2 mwe) | 2AN e gst grder in ~u/c

) U 1

= Fermi I more efficient than Fermi I1I 24



DIFFUSIVE SHOCK ACCELERATION

e AE/E ~ u/c
* loss of particles downstream in each cycle: AN, ,../N < u/c

—
e energy Increases exponentially with # of cycles

e # of participating particles N decreases exponentially with # of
cycles

power law for E > Ej;

18y (3

inj

—y(M)
) 0(E — Ein;)

25



DIFFUSIVE SHOCK ACCELERATION

power law for £ > Ej;

E —y(M)
f(E) (Einj) O(E — Einj)

mach number M = Uupﬁtream,/ﬂsound

spectral index depends on Mach number

1 L .
1 relativistic regime
L -

]
! strong shock

thermal particles

26



DIFFUSIVE SHOCK ACCELERATION

Calculating the spectrum

2Au
B= average particle energy change/collision: |# =1+ —=

P= probability that particle remains in the acceleration regime after one collision
After k collisions, the number of particles still scattering N:
N = Ny P*

E = Ey g

Thus, eliminating 4:

N E InP/Ing
No ~ (Fu) 2 |dN = KE"P/"A-1y4E

27



DIFFUSIVE SHOCK ACCELERATION

P= probability that particle remains in the acceleration region after one
collision:

- number of particles (w/ ~ c) crossing unit surface area/time: j—INC

- steady state, the number of particles that cross back upstream: *;IENC — s N

l f
N P—ZNC_HZN—l_iu_?'

1
4N.': e

Thus: In??:ln(]_dﬂ)g_ﬁ'ﬂ and Enﬁ:ln(lJr

[ 4 C

for STRONG shock > M>>1 > iy /ur, = 4

S e T — wE—5/3
nE = 2 —uy = 3| ™ |4N(E) =KE™" dE|




LIMITS TO ACCELERATION

@ energy gains have to exceed the losses:

e radiative: synchrotron radiation, bremsstrahlung, inverse
Compton scattering

¢ non-radiative: coulomb scattering, ionization
e catastrophic: hadronic interactions: p + p. ..

o GZK-cut-off: interaction with CMB photons

29



ACCELERATION SITES

> Varying large scale MFs:

- pulsars
- sunspots
> Diffusive shock acceleration (1st order Fermi):

- structure formation shocks (e.g. in merging galaxy clusters)
- supernovae remnants
- shocks in jets and active galactic nuclei (AGNs)
- compact sources (near black holes or neutron stars)
- galactic winds
- solar flares?
> 2"d Order Fermi acceleration:

- near shock fronts (smaller contribution a <5 )
- turbulent regions in ISM and IGM (scattering @ B irregularities)
> Acceleration in Reconnection zones (15t order Fermi ?):

- solar/stellar flares

- accretion disks (around black holes, neutron stars,...) “



ACCELERATION SITES

Supernova Remnants (SNRs):

e SN II eject shell — shock

(exploded 300 years ago)
front

Cassiopeia A

M= 10 M,

v=100 km/s

SN rate = 102 yr!
> Power output:

Poy = 5 x 1042 ] yrd

x-ray picture - hot gas radio picture - synchrotron radiation i

* Power to accelerate CRs in the Galaxy:
galactic radius: R~15 kpc SNRs more than
thickness: D~0.2 kpc sufficient to

CRs energy density: py,=1 eV cm*’;l_) account for GCRs
Pcr = 2x104 ] yrt




ACCELERATION SITES

Merging clusters of galaxies:
Galaxy cluster Abell 3376

Bagchi et
al. 2006

@ Mpc-scale supersonic radio-emitting shockwaves

@ radio sources (synchrotron radiation..) may be acceleration sites
boosting particles up to 10%eV ???

@ hints to subcluster merger activities

oL



ACCELERATION SITES

Astrophysical Jets:

Shock Acceleration:
in internal shocks
and terminal shocks (hot spots)

Acceleration in
Magnetic
Reconnection




ACCELERATION SITES

ISM and Star formation regions in galaxies:
galaxy M51

e Synchrotron radiation traces MFs
and relativistic electrons — CR sites

e turbulent MFs in spiral arms
where ISM, star formation regions, and
SNRs

- diffusive shock acceleration
(1st order)
behind shocks in stellar jets
and SNRs

—>2nd grder Fermi in turbulent
ISM 34
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