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Introduction

Questions in Cosmology

• What is the Universe made off?
• How did it start?
• What physical laws govern the dynamics?
• What objects/structures form as the Universe evolves?
• How and when did they form?
• What will happen in the future?

These question connect to fundamental physics, 
astronomy and astrophysics. Many have broad appeal. 
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The Expansion of the Universe

More distant objects are moving away 
from us faster, with a velocity 
proportional to their distance. 

This is what we call the expansion of the 
universe. 

Edwin Hubble
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The History of our Universe



Evolution of the density

Radiation 
domination

Matter 
domination

Matter DE





Nucleosynthesis

Recombination

M-R equality

Cosmological 
Constant

Thermal History



The changing Universe

Conditions in the Universe changed dramatically with 
time.

The history of the Universe can be used to probe 
physics in many different regimes including ones that 
have not been probed in the laboratory. 

Sometimes we can do this by directly looking at 
different regions with our telescopes.
Sometimes we can do this by analyzing fossils.
Sometimes we cannot do it. 
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Fossils



The Spectrum of the CMB

Smoot & Scott ‘98

nγ ≈ 422 cm-3 
Ωγ ≈ 5 10-5

Tγ ≈ 2.7 cm-3

There is also a background of neutrinos with Tν≈ 2 K and nν≈ 115 cm-3.
They are detected indirectly through their effect in the expansion history.

Fossil from the 
first month.



BBN: Nuclear physics applied in an 
expanding universe

The Formation of the light 
elements: Hydrogen, Helium, 

Deuterium, Lithium

Check in the local universe by 
looking at spectra

Start with protons 
and neutrons

Fossil from the first 
minutes.



Produced by the Planck 
satellite

Direct imaging

Age = 380,000 years

Current  Age = 13, 800, 000, 000 years

Scale shows temperature.  Not much 
structure at the time, just tiny differences 
in the temperature of ten parts per 
million. 





Age = 380,000 years
Scale shows the temperature of the 
universe.  No real structure, just tiny 
differences in the temperature of ten 
parts per million. 

Current  Age = 13, 800, 000, 000 years



Anisotropies and gravitational instability



Map of a region of the Universe around us. Each 
point shows the location of a galaxy.

Sloan Digital Sky Survey

Large Scale Structure of the 
Universe



http://lambda.gsfc.nasa.gov/



Anisotropies and gravitational instability

If we know the composition we know the relevant 
dynamical equations but we still need to initial 
conditions. Initial conditions are not forgotten. 

Predictions are statistical in nature. 

We typically compute the amplitude of fluctuations as 
a function of scale or power spectrum. 

Fluctuations are fossils from before the big bang itself.  



Age = 380,000 years
Scale shows the temperature of the 
universe.  No real structure, just tiny 
differences in the temperature of ten 
parts per million. 

Current  Age = 13, 800, 000, 000 years



CMB Spectra

Planck collaboration: CMB power spectra & likelihood

2 10 50
0

1000

2000

3000

4000

5000

6000

D
�[
µ
K

2 ]

90� 18�

500 1000 1500 2000 2500

Multipole moment, �

1� 0.2� 0.1� 0.07�
Angular scale

Figure 37. The 2013 Planck CMB temperature angular power spectrum. The error bars include cosmic variance, whose magnitude
is indicated by the green shaded area around the best fit model. The low-` values are plotted at 2, 3, 4, 5, 6, 7, 8, 9.5, 11.5, 13.5, 16,
19, 22.5, 27, 34.5, and 44.5.

Table 8. Constraints on the basic six-parameter ⇤CDM model using Planck data. The top section contains constraints on the six
primary parameters included directly in the estimation process, and the bottom section contains constraints on derived parameters.

Planck Planck+WP

Parameter Best fit 68% limits Best fit 68% limits

⌦bh2 . . . . . . . . . 0.022068 0.02207 ± 0.00033 0.022032 0.02205 ± 0.00028

⌦ch2 . . . . . . . . . 0.12029 0.1196 ± 0.0031 0.12038 0.1199 ± 0.0027
100✓MC . . . . . . . 1.04122 1.04132 ± 0.00068 1.04119 1.04131 ± 0.00063

⌧ . . . . . . . . . . . . 0.0925 0.097 ± 0.038 0.0925 0.089+0.012
�0.014

ns . . . . . . . . . . . 0.9624 0.9616 ± 0.0094 0.9619 0.9603 ± 0.0073

ln(1010As) . . . . . 3.098 3.103 ± 0.072 3.0980 3.089+0.024
�0.027

⌦⇤ . . . . . . . . . . 0.6825 0.686 ± 0.020 0.6817 0.685+0.018
�0.016

⌦m . . . . . . . . . . 0.3175 0.314 ± 0.020 0.3183 0.315+0.016
�0.018

�8 . . . . . . . . . . . 0.8344 0.834 ± 0.027 0.8347 0.829 ± 0.012

zre . . . . . . . . . . . 11.35 11.4+4.0
�2.8 11.37 11.1 ± 1.1

H0 . . . . . . . . . . 67.11 67.4 ± 1.4 67.04 67.3 ± 1.2

109As . . . . . . . . 2.215 2.23 ± 0.16 2.215 2.196+0.051
�0.060

⌦mh2 . . . . . . . . . 0.14300 0.1423 ± 0.0029 0.14305 0.1426 ± 0.0025
Age/Gyr . . . . . . 13.819 13.813 ± 0.058 13.8242 13.817 ± 0.048
z⇤ . . . . . . . . . . . 1090.43 1090.37 ± 0.65 1090.48 1090.43 ± 0.54
100✓⇤ . . . . . . . . 1.04139 1.04148 ± 0.00066 1.04136 1.04147 ± 0.00062
zeq . . . . . . . . . . . 3402 3386 ± 69 3403 3391 ± 60
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Planck Collaboration: Cosmological parameters

Fig. 10. Planck TT power spectrum. The points in the upper panel show the maximum-likelihood estimates of the primary CMB
spectrum computed as described in the text for the best-fit foreground and nuisance parameters of the Planck+WP+highL fit listed
in Table 5. The red line shows the best-fit base ⇤CDM spectrum. The lower panel shows the residuals with respect to the theoretical
model. The error bars are computed from the full covariance matrix, appropriately weighted across each band (see Eqs. 36a and
36b), and include beam uncertainties and uncertainties in the foreground model parameters.

Fig. 11. Planck T E (left) and EE spectra (right) computed as described in the text. The red lines show the polarization spectra from
the base ⇤CDM Planck+WP+highL model, which is fitted to the TT data only.
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Temperature differences on different 
angular scales
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Fig. 3.— Marginalization method comparison. χ2 is plotted as a
function of ΩΛ when maximizing over all other parameters with no
priors. The squares show the result of using multidimensional spline
interpolation when maximizing and the crosses show the result of
simply picking the smallest χ2-value in the model grid. Note that
a seemingly small error of unity in χ2 changes the likelihood by a
factor of 1.6.

We have chosen to use cubic spline interpolation instead.
As seen in Figure 3, this works substantially better and
eliminates the random jaggedness of the simpler method.

For the reader interested in implementing this method,
we give some additional practical details below. Other
readers may wish to skip directly to the next subsection.

We perform the cubic spline interpolation and subse-
quent maximization one dimension at a time. Just as for
multilinear interpolation, the result of this procedure is
independent of the order in which we interpolate over the
different parameters. We start by maximizing over the
scalar and tensor normalizations, which is readily done
analytically since χ2 depends quadratically on As and At.
We save the remaining 8-dimensional grid in a huge file
together with the optimal values of As and At and the
corresponding χ2 value. To marginalize over any given
parameter pi, we first sort this file so that this parameter
varies fastest. In each block where the remaining parame-
ters are fixed, we then spline over this parameter and find
the maximum p∗i analytically from the spline coefficients.
Since it is interesting to keep track of the physical param-
eters of the best fit models, we save not only the χ2-value
but also the other parameter values spline interpolated to
the point where pi = p∗i , replacing the entire block of mod-
els in the file by this interpolated one.

We found that when χ2 varies rapidly, a standard cubic
spline occasionally causes unwanted oscillations. Such a
rapid rise in χ2 occurs only in the extreme parts of the
parameter grid that we do not care about (since they
are completely ruled out), yet the resulting ringing eas-
ily propagates to the region that we are interested in near
the minimum. We therefore adopted a scheme where we
through away irrelevant distant points before splining if
they were too extreme. Specifically, before performing a
1-dimensional cubic spline, we first located the lowest grid
point. We then included all points to the left of it until we

Fig. 4.— The best fit model is shown for the case of no prior (solid
red/dark grey) and with the priors h = 0.65 ± 0.07, h2Ωb = 0.02
and τ = r = 0 (solid green/light grey). The dotted lines show the
decomposition of the former curve into scalar and tensor fluctua-
tions. The model parameters are listed in Table 2. Although all 65
measurements were used in the fits, they have been averaged into
14 bands in this plot to avoid cluttering. The band powers whose
central #-value fell into any given band were average with minimum-
variance weighting, and their corresponding window functions were
averaged as well. This binning was used only in this plot, not in our
analysis.

reached one whose χ2 was higher by 10 or more. Points to
the right were included analogously. We found this simple
scheme to work quite well in practice. Indeed, the slight
wiggliness of the contour plots shown in the next section
is caused mainly by the plotting software itself (the 2D
interpolation routine of IDL), not by our marginalization
from 10 to 2 dimensions.

3. RESULTS

3.1. Basic results

To avoid having our constraints severely diluted by
“silly” models, we include two prior pieces of information
when presenting our basic results. We assume that the
Hubble parameter h = 0.65± 0.07 at 1− σ (see Freedman
1999 for a recent review of h-measurements) and that the
baryon density ωb = h2Ωb ≈ 0.02 (Burles et al. 1999 re-
port ωb = 0.019 ± 0.0024, and we approximate the ωb

error bars by zero since they are much smaller than our
ωb grid spacing). This value of ωb is roughly consistent
with that measured by Wadsley et al. (1999) using the
Helium Lyman-Alpha Forest. We assume that the error
distribution for h is Gaussian.

The parameters of the best fit model are listed in Table 2
both with and without these priors. The corresponding no-
prior power spectrum is shown in Figure 4 together with
the “vanilla” version with the above-mentioned priors and
τ = r = 0. As can be seen, the fitting procedure uses the
additional freedom to match features in the data in quite
amusing ways. Since the data dip at % ∼ 50 and rise very
sharply thereafter, a feature that simpler models cannot
match, the minimization procedure finds the best fit model
to have a dramatic blue-tilt (ns ∼ 1.7) and almost the

CMB in the year 2000

Model Curve

Data points, with error bars 

Zoom in of difference between data and model

Small structures: PlanckLarge Structures: WMAP

1 degree 0.1 degree



Observational Results

Planck collaboration: CMB power spectra & likelihood
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Figure 37. The 2013 Planck CMB temperature angular power spectrum. The error bars include cosmic variance, whose magnitude
is indicated by the green shaded area around the best fit model. The low-` values are plotted at 2, 3, 4, 5, 6, 7, 8, 9.5, 11.5, 13.5, 16,
19, 22.5, 27, 34.5, and 44.5.

Table 8. Constraints on the basic six-parameter ⇤CDM model using Planck data. The top section contains constraints on the six
primary parameters included directly in the estimation process, and the bottom section contains constraints on derived parameters.

Planck Planck+WP

Parameter Best fit 68% limits Best fit 68% limits

⌦bh2 . . . . . . . . . 0.022068 0.02207 ± 0.00033 0.022032 0.02205 ± 0.00028

⌦ch2 . . . . . . . . . 0.12029 0.1196 ± 0.0031 0.12038 0.1199 ± 0.0027
100✓MC . . . . . . . 1.04122 1.04132 ± 0.00068 1.04119 1.04131 ± 0.00063

⌧ . . . . . . . . . . . . 0.0925 0.097 ± 0.038 0.0925 0.089+0.012
�0.014

ns . . . . . . . . . . . 0.9624 0.9616 ± 0.0094 0.9619 0.9603 ± 0.0073

ln(1010As) . . . . . 3.098 3.103 ± 0.072 3.0980 3.089+0.024
�0.027

⌦⇤ . . . . . . . . . . 0.6825 0.686 ± 0.020 0.6817 0.685+0.018
�0.016

⌦m . . . . . . . . . . 0.3175 0.314 ± 0.020 0.3183 0.315+0.016
�0.018

�8 . . . . . . . . . . . 0.8344 0.834 ± 0.027 0.8347 0.829 ± 0.012

zre . . . . . . . . . . . 11.35 11.4+4.0
�2.8 11.37 11.1 ± 1.1

H0 . . . . . . . . . . 67.11 67.4 ± 1.4 67.04 67.3 ± 1.2

109As . . . . . . . . 2.215 2.23 ± 0.16 2.215 2.196+0.051
�0.060

⌦mh2 . . . . . . . . . 0.14300 0.1423 ± 0.0029 0.14305 0.1426 ± 0.0025
Age/Gyr . . . . . . 13.819 13.813 ± 0.058 13.8242 13.817 ± 0.048
z⇤ . . . . . . . . . . . 1090.43 1090.37 ± 0.65 1090.48 1090.43 ± 0.54
100✓⇤ . . . . . . . . 1.04139 1.04148 ± 0.00066 1.04136 1.04147 ± 0.00062
zeq . . . . . . . . . . . 3402 3386 ± 69 3403 3391 ± 60
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Figure 37. The 2013 Planck CMB temperature angular power spectrum. The error bars include cosmic variance, whose magnitude
is indicated by the green shaded area around the best fit model. The low-` values are plotted at 2, 3, 4, 5, 6, 7, 8, 9.5, 11.5, 13.5, 16,
19, 22.5, 27, 34.5, and 44.5.

Table 8. Constraints on the basic six-parameter ⇤CDM model using Planck data. The top section contains constraints on the six
primary parameters included directly in the estimation process, and the bottom section contains constraints on derived parameters.

Planck Planck+WP
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⌦bh2 . . . . . . . . . 0.022068 0.02207 ± 0.00033 0.022032 0.02205 ± 0.00028

⌦ch2 . . . . . . . . . 0.12029 0.1196 ± 0.0031 0.12038 0.1199 ± 0.0027
100✓MC . . . . . . . 1.04122 1.04132 ± 0.00068 1.04119 1.04131 ± 0.00063

⌧ . . . . . . . . . . . . 0.0925 0.097 ± 0.038 0.0925 0.089+0.012
�0.014

ns . . . . . . . . . . . 0.9624 0.9616 ± 0.0094 0.9619 0.9603 ± 0.0073

ln(1010As) . . . . . 3.098 3.103 ± 0.072 3.0980 3.089+0.024
�0.027
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Initial Conditions

Recombination/Composition

Late times
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4. Lecture 4: Extras

4.1. Possibilities.

• Lensing
• Discussion on cosmic variance
• Defects in the sky
• Defects from reheating
• Discussion of anomalies

5. Equations for Talk
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ȧ
=

1

H
=

1

aH



Take to test particles separated by 
10 million light years and trace 

their position back in time. 

Age of the Universe Distance

14 Billion years 10 Million light years

1/3 second 1/2 light day

light year = distance light can travel in one year =  10 
000 000 000 000 km = 6 000 000 000 000 miles

This happens because of gravity is an attractive force so the expansion of the universe has been 
decelerating. This implies that as you trace the atom back in time it was both closer but also 
moving away from us faster. 
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How accurately can 21 cm tomography constrain cosmology?

Yi Mao,1, ∗ Max Tegmark,1, 2, † Matthew McQuinn,3 Matias Zaldarriaga,3,4 and Oliver Zahn3, 5
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3Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
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(Dated: Submitted to Phys. Rev. D. February 21 2008; Accepted April 29 2008; Published July 25 2008)

There is growing interest in using 3-dimensional neutral hydrogen mapping with the redshifted
21 cm line as a cosmological probe. However, its utility depends on many assumptions. To aid
experimental planning and design, we quantify how the precision with which cosmological parameters
can be measured depends on a broad range of assumptions, focusing on the 21 cm signal from 6 < z <
20. We cover assumptions related to modeling of the ionization power spectrum, to the experimental
specifications like array layout and detector noise, to uncertainties in the reionization history, and
to the level of contamination from astrophysical foregrounds. We derive simple analytic estimates
for how various assumptions affect an experiment’s sensitivity, and we find that the modeling of
reionization is the most important, followed by the array layout. We present an accurate yet robust
method for measuring cosmological parameters that exploits the fact that the ionization power
spectra are rather smooth functions that can be accurately fit by 7 phenomenological parameters.
We find that for future experiments, marginalizing over these nuisance parameters may provide
almost as tight constraints on the cosmology as if 21 cm tomography measured the matter power
spectrum directly. A future square kilometer array optimized for 21 cm tomography could improve
the sensitivity to spatial curvature and neutrino masses by up to two orders of magnitude, to
∆Ωk ≈ 0.0002 and ∆mν ≈ 0.007 eV, and give a 4σ detection of the spectral index running predicted
by the simplest inflation models.

PACS numbers: 98.80.Es, 98.58.Ge

I. INTRODUCTION

Three-dimensional mapping of our Universe using the
redshifted 21 cm hydrogen line has recently emerged as
a promising cosmological probe, with arguably greater
long-term potential than the cosmic microwave back-
ground (CMB). The information garnered about cosmo-
logical parameters grows with the volume mapped, so the
ultimate goal for the cosmology community is to map our
entire horizon volume, the region from which light has
had time to reach us during the 14 billion years since our
Big Bang. Figure 1 illustrates that whereas the CMB
mainly probes a thin shell from z ∼ 1000, and current
large-scale structure probes (like galaxy clustering, grav-
itational lensing, type Ia supernovae and the Lyman α
forest) only map small volume fractions nearby, neutral
hydrogen tomography is able to map most of our horizon
volume.

Several recent studies have forecast the precision with
which such 21 cm tomography can constrain cosmolog-
ical parameters, both by mapping diffuse hydrogen be-
fore and during the reionization epoch [1, 2, 3] and by
mapping neutral hydrogen in galactic halos after reion-

∗Electronic address: ymao@mit.edu
†Electronic address: tegmark@mit.edu

FIG. 1: 21 cm tomography can potentially map most of
our observable universe (light blue/light grey), whereas the
CMB probes mainly a thin shell at z ∼ 103 and current large-
scale structure surveys (here exemplified by the Sloan Digital
Sky Survey and its luminous red galaxies) map only small
volumes near the center. This paper focuses on the convenient
7 ! z ! 9 region (dark blue/dark grey).

ization [4]. These studies find that constraints based on
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Figure 8: Conformal diagram of Big Bang cosmology. The CMB at last-scattering (recombination)

consists of 105 causally disconnected regions!

Also recall that in conformal coordinates null geodesics (ds2 = 0) are always at 45� angles, d⌧ =

±
p

dx2 ⌘ ±dr. Since light determines the causal structure of spacetime this provides a nice way to

study horizons in inflationary cosmology.

During matter or radiation domination the scale factor evolves as

a(⌧) /
(

⌧ RD

⌧2 MD
. (58)

If and only if the universe had always been dominated by matter or radiation, this would imply the

existence of the Big Bang singularity at ⌧i = 0

a(⌧i ⌘ 0) = 0 . (59)

The conformal diagram corresponding to standard Big Bang cosmology is given in Figure 8. The

horizon problem is apparent. Each spacetime point in the conformal diagram has an associated past

light cone which defines its causal past. Two points on a given ⌧ = constant surface are in causal

contact if their past light cones intersect at the Big Bang, ⌧i = 0. This means that the surface

of last-scattering (⌧CMB) consisted of many causally disconnected regions that won’t be in thermal

equilibrium. The uniformity of the CMB on large scales hence becomes a serious puzzle.

During inflation (H ⇡ const.), the scale factor is

a(⌧) = � 1

H⌧
, (60)

and the singularity, a = 0, is pushed to the infinite past, ⌧i ! �1. The scale factor (60) becomes

infinite at ⌧ = 0! This is because we have assumed de Sitter space with H = const., which means

that inflation will continue forever with ⌧ = 0 corresponding to the infinite future t ! +1. In
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Anisotropies in the CMB Temperature

• Basic equations
• Solution under some simplifying assumption
• Basic parameter dependences

Outline
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Figure 37. The 2013 Planck CMB temperature angular power spectrum. The error bars include cosmic variance, whose magnitude
is indicated by the green shaded area around the best fit model. The low-` values are plotted at 2, 3, 4, 5, 6, 7, 8, 9.5, 11.5, 13.5, 16,
19, 22.5, 27, 34.5, and 44.5.

Table 8. Constraints on the basic six-parameter ⇤CDM model using Planck data. The top section contains constraints on the six
primary parameters included directly in the estimation process, and the bottom section contains constraints on derived parameters.

Planck Planck+WP

Parameter Best fit 68% limits Best fit 68% limits

⌦bh2 . . . . . . . . . 0.022068 0.02207 ± 0.00033 0.022032 0.02205 ± 0.00028

⌦ch2 . . . . . . . . . 0.12029 0.1196 ± 0.0031 0.12038 0.1199 ± 0.0027
100✓MC . . . . . . . 1.04122 1.04132 ± 0.00068 1.04119 1.04131 ± 0.00063

⌧ . . . . . . . . . . . . 0.0925 0.097 ± 0.038 0.0925 0.089+0.012
�0.014

ns . . . . . . . . . . . 0.9624 0.9616 ± 0.0094 0.9619 0.9603 ± 0.0073

ln(1010As) . . . . . 3.098 3.103 ± 0.072 3.0980 3.089+0.024
�0.027

⌦⇤ . . . . . . . . . . 0.6825 0.686 ± 0.020 0.6817 0.685+0.018
�0.016

⌦m . . . . . . . . . . 0.3175 0.314 ± 0.020 0.3183 0.315+0.016
�0.018

�8 . . . . . . . . . . . 0.8344 0.834 ± 0.027 0.8347 0.829 ± 0.012

zre . . . . . . . . . . . 11.35 11.4+4.0
�2.8 11.37 11.1 ± 1.1

H0 . . . . . . . . . . 67.11 67.4 ± 1.4 67.04 67.3 ± 1.2

109As . . . . . . . . 2.215 2.23 ± 0.16 2.215 2.196+0.051
�0.060

⌦mh2 . . . . . . . . . 0.14300 0.1423 ± 0.0029 0.14305 0.1426 ± 0.0025
Age/Gyr . . . . . . 13.819 13.813 ± 0.058 13.8242 13.817 ± 0.048
z⇤ . . . . . . . . . . . 1090.43 1090.37 ± 0.65 1090.48 1090.43 ± 0.54
100✓⇤ . . . . . . . . 1.04139 1.04148 ± 0.00066 1.04136 1.04147 ± 0.00062
zeq . . . . . . . . . . . 3402 3386 ± 69 3403 3391 ± 60
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THE PHYSICS OF THE CMB AND LSS 3

4. Lecture 4: Extras

4.1. Possibilities.

• Lensing
• Discussion on cosmic variance
• Defects in the sky
• Defects from reheating
• Discussion of anomalies

5. Equations for Talk
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ṗa

⇢̇a

�⇢a = (⇢a + pa)�a
�pa = c

2
a�⇢a

�̇a = r2
ua + 3 ̇

u̇a = c

2
a�a �H(1� 3c2a)ua +r2

⇡a + �

T

0
a0 = �(⇢a + �⇢a)

T

0
ai = (⇢a + pa)via

T

i
aj = �

i
j(pa + �pa) + (⇢a + pa)⇧

i
aj

via = �riua

⇧i
aj =

3

2
(rirj � 1

3
�

i
jr2)⇡a

da = �a � 3 
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ȧ

a
)2 =

8⇡Ga2

3
⇢

⇢̇ = 3H(⇢+ p)

(1) ds2 = a2(⌧)[�(1 + 2�)d⌧ 2 + (1� 2 )dx2]

⇢0(x0, t0) = ⇢(x((x0, t0), t(x0, t0))(2)

x = x(x0, t0)

t = t(x0, t0)

(3) g0
µ⌫

(x0, t0) =
@x↵

@x0µ
@x�

@x0⌫ g↵�(x((x
0, t0), t(x0, t0))

T µ⌫

a;⌫ = 0

w
a

=
p
a

⇢
a

c2
a

=
ṗ
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⌧ / 1/H H2 / (⇢� + ⇢⌫ + ⇢b + ⇢c)

• Photon-Baryon “fluid”
• Neutrinos
• Cold Dark matter

Components

What determines the temperature of recombination? 

Dependence is weak.

Conformal time depends on total amount of radiation and matter.



Linear Theory: go to Fourier Space
Note relation between k and angle
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ḋ�

k

2
⌧

d

00
� +

12

6x+ x

3
d

0
� + [

1

3
� 4

6 + x

2
]d� = 0

x = k⌧

0 =
d

dx

x << 1 ! d� / 1/x ; constant

THE PHYSICS OF THE CMB AND LSS 5

d� = d�,ini(2
sin'

'

� cos')

v� = d�,inic�
(2� '

2) sin'� 2' cos'

'

2

� = d�,ini
2(' cos'� sin')

'

3

' = c�x

d� = d�,ini(1 +
'

2

6
+ · · · )

v� = �d�,inic�
'

3
+ · · ·

� = d�,ini(�2

9
+

'

2

45
+ · · · )

Out[85]=

5 10 15 20 25 30

-3

-2

-1

1

2

3

4

Only relevant parameter initial amplitude.

Caution: Quantities 
outside the horizon are 
particularly gauge 
dependent. Gravitational potential decays



38

Two fluid model
Radiation-matter universe only. Neglect 
neutrinos (for perturbations).
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d̈c +Hḋc = �k

2�

c

2
� =

1

3
⇡� = 0

d̈� � 1

3
r2

d� = r2(�+ )

c

2
�b =

1

3(1 +Rb)
Rb =

3⇢�
4⇢b

⇡�b = 0

d̈�b +
HRb

(1 +Rb)
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�b

+ c2
�b

k2d
�b

= �k2 2 +R
b

(1 +R
b

)
�

⌧
d

=
1

a2n
e

�
T

[
1

6
� 7

45(1 +R
b

)
+

1

6(1 +R
b

)2
]

⇥eff

0 ⌘ 1

3
d
�

+ �+ ⇡ A
e�k

2
x

2
S

(1 +R
b

)1/4
cos(kS + �')�R

b

�

S(⌧) =

Z
⌧

0

c
s

d⌧ 0 x2
S

(⌧) =

Z
⌧

0

⌧
d

d⌧ 0 A ⇡ �d
�,ini

(1 +�
�

)

3

� =  = �1

5
d
�,ini

⇥eff

0 ⇡ � 1

15
d
�,ini

⇡ �

3

6 MATIAS ZALDARRIAGA

Two Fluid: Damping

d̈
�b

+
HR

b

(1 +R
b

)
ḋ
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�

k
⇡ A

p
3

e�k

2
x

2
S

(1 +R
b

)3/4
sin(kS + �')

S(⌧) =

Z
⌧

0

c
s

d⌧ 0 x2
S

(⌧) =

Z
⌧

0

⌧
d

d⌧ 0 A ⇡ �d
�,ini

(1 +�
�

)

3

� =  = �1

5
d
�,ini

⇥eff

0 ⇡ � 1

15
d
�,ini

⇡ �

3

⌧̄

⌧̄



43

Simple formula
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d⌧ [ġ(⇥eff

0 + u
�

@

@⌧0
) + g(�̇+  ̇)]ei(⌧0�⌧)~k·n̂

h⇣(k1)⇣(k2)i = (2⇡)3�D(k1 � k2)P⇣

(k)

C
l

=
2

⇡

Z
k2dkP

⇣

(k)|
Z

d⌧ [ġ(⇥eff

0 + u
�

@

@⌧0
) + g(�̇+  ̇)]j

l

(k(⌧0 � ⌧))|2

C
l

⇡ 2

⇡

Z
k2dkP

⇣

(k)|⇥eff

0 |2j
l

(kD)2 + |ku
�

|2j0
l

(kD)2

6 MATIAS ZALDARRIAGA

Two Fluid: Damping

d̈
�b

+
HR

b

(1 +R
b

)
ḋ
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4. Lecture 4: Extras

4.1. Possibilities.

• Lensing
• Discussion on cosmic variance
• Defects in the sky
• Defects from reheating
• Discussion of anomalies

5. Equations for Talk
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d⌧ [ġ(⇥eff

0 + u
�

@

@⌧0
) + g(�̇+  ̇)]ei(⌧0�⌧)~k·n̂

h⇣(k1)⇣(k2)i = (2⇡)3�D(k1 � k2)P⇣

(k)

C
l

=
2

⇡

Z
k2dkP

⇣

(k)|
Z

d⌧ [ġ(⇥eff
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Beware: 
The observed spectrum will 
have additional damping 
due to the finite width of the 
last scattering surface.  



Planck Spectra We now know what the state of the plasma was at 
recombination. We still need to connect it with what we 
observe. 

What is the relation of the peaks in the previous 
transparency and the power spectrum?

Planck collaboration: CMB power spectra & likelihood
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Figure 37. The 2013 Planck CMB temperature angular power spectrum. The error bars include cosmic variance, whose magnitude
is indicated by the green shaded area around the best fit model. The low-` values are plotted at 2, 3, 4, 5, 6, 7, 8, 9.5, 11.5, 13.5, 16,
19, 22.5, 27, 34.5, and 44.5.

Table 8. Constraints on the basic six-parameter ⇤CDM model using Planck data. The top section contains constraints on the six
primary parameters included directly in the estimation process, and the bottom section contains constraints on derived parameters.

Planck Planck+WP

Parameter Best fit 68% limits Best fit 68% limits

⌦bh2 . . . . . . . . . 0.022068 0.02207 ± 0.00033 0.022032 0.02205 ± 0.00028

⌦ch2 . . . . . . . . . 0.12029 0.1196 ± 0.0031 0.12038 0.1199 ± 0.0027
100✓MC . . . . . . . 1.04122 1.04132 ± 0.00068 1.04119 1.04131 ± 0.00063

⌧ . . . . . . . . . . . . 0.0925 0.097 ± 0.038 0.0925 0.089+0.012
�0.014

ns . . . . . . . . . . . 0.9624 0.9616 ± 0.0094 0.9619 0.9603 ± 0.0073

ln(1010As) . . . . . 3.098 3.103 ± 0.072 3.0980 3.089+0.024
�0.027

⌦⇤ . . . . . . . . . . 0.6825 0.686 ± 0.020 0.6817 0.685+0.018
�0.016

⌦m . . . . . . . . . . 0.3175 0.314 ± 0.020 0.3183 0.315+0.016
�0.018

�8 . . . . . . . . . . . 0.8344 0.834 ± 0.027 0.8347 0.829 ± 0.012

zre . . . . . . . . . . . 11.35 11.4+4.0
�2.8 11.37 11.1 ± 1.1

H0 . . . . . . . . . . 67.11 67.4 ± 1.4 67.04 67.3 ± 1.2

109As . . . . . . . . 2.215 2.23 ± 0.16 2.215 2.196+0.051
�0.060

⌦mh2 . . . . . . . . . 0.14300 0.1423 ± 0.0029 0.14305 0.1426 ± 0.0025
Age/Gyr . . . . . . 13.819 13.813 ± 0.058 13.8242 13.817 ± 0.048
z⇤ . . . . . . . . . . . 1090.43 1090.37 ± 0.65 1090.48 1090.43 ± 0.54
100✓⇤ . . . . . . . . 1.04139 1.04148 ± 0.00066 1.04136 1.04147 ± 0.00062
zeq . . . . . . . . . . . 3402 3386 ± 69 3403 3391 ± 60
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d⌧ [ġ(⇥eff

0 + u
�

@

@⌧0
) + g(�̇+  ̇)]j

l

(k(⌧0 � ⌧))|2

C
l

⇡ 2

⇡

Z
k2dkP

⇣

(k)|⇥eff

0 |2j
l

(kD)2 + |ku
�

|2j0
l

(kD)2

THE PHYSICS OF THE CMB AND LSS 7

⇥(n̂) =

Z
d⌧ ġ[
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Observational Results

Planck collaboration: CMB power spectra & likelihood
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Figure 37. The 2013 Planck CMB temperature angular power spectrum. The error bars include cosmic variance, whose magnitude
is indicated by the green shaded area around the best fit model. The low-` values are plotted at 2, 3, 4, 5, 6, 7, 8, 9.5, 11.5, 13.5, 16,
19, 22.5, 27, 34.5, and 44.5.

Table 8. Constraints on the basic six-parameter ⇤CDM model using Planck data. The top section contains constraints on the six
primary parameters included directly in the estimation process, and the bottom section contains constraints on derived parameters.

Planck Planck+WP

Parameter Best fit 68% limits Best fit 68% limits

⌦bh2 . . . . . . . . . 0.022068 0.02207 ± 0.00033 0.022032 0.02205 ± 0.00028

⌦ch2 . . . . . . . . . 0.12029 0.1196 ± 0.0031 0.12038 0.1199 ± 0.0027
100✓MC . . . . . . . 1.04122 1.04132 ± 0.00068 1.04119 1.04131 ± 0.00063

⌧ . . . . . . . . . . . . 0.0925 0.097 ± 0.038 0.0925 0.089+0.012
�0.014

ns . . . . . . . . . . . 0.9624 0.9616 ± 0.0094 0.9619 0.9603 ± 0.0073

ln(1010As) . . . . . 3.098 3.103 ± 0.072 3.0980 3.089+0.024
�0.027

⌦⇤ . . . . . . . . . . 0.6825 0.686 ± 0.020 0.6817 0.685+0.018
�0.016

⌦m . . . . . . . . . . 0.3175 0.314 ± 0.020 0.3183 0.315+0.016
�0.018

�8 . . . . . . . . . . . 0.8344 0.834 ± 0.027 0.8347 0.829 ± 0.012

zre . . . . . . . . . . . 11.35 11.4+4.0
�2.8 11.37 11.1 ± 1.1

H0 . . . . . . . . . . 67.11 67.4 ± 1.4 67.04 67.3 ± 1.2

109As . . . . . . . . 2.215 2.23 ± 0.16 2.215 2.196+0.051
�0.060

⌦mh2 . . . . . . . . . 0.14300 0.1423 ± 0.0029 0.14305 0.1426 ± 0.0025
Age/Gyr . . . . . . 13.819 13.813 ± 0.058 13.8242 13.817 ± 0.048
z⇤ . . . . . . . . . . . 1090.43 1090.37 ± 0.65 1090.48 1090.43 ± 0.54
100✓⇤ . . . . . . . . 1.04139 1.04148 ± 0.00066 1.04136 1.04147 ± 0.00062
zeq . . . . . . . . . . . 3402 3386 ± 69 3403 3391 ± 60
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Figure 37. The 2013 Planck CMB temperature angular power spectrum. The error bars include cosmic variance, whose magnitude
is indicated by the green shaded area around the best fit model. The low-` values are plotted at 2, 3, 4, 5, 6, 7, 8, 9.5, 11.5, 13.5, 16,
19, 22.5, 27, 34.5, and 44.5.

Table 8. Constraints on the basic six-parameter ⇤CDM model using Planck data. The top section contains constraints on the six
primary parameters included directly in the estimation process, and the bottom section contains constraints on derived parameters.

Planck Planck+WP

Parameter Best fit 68% limits Best fit 68% limits

⌦bh2 . . . . . . . . . 0.022068 0.02207 ± 0.00033 0.022032 0.02205 ± 0.00028

⌦ch2 . . . . . . . . . 0.12029 0.1196 ± 0.0031 0.12038 0.1199 ± 0.0027
100✓MC . . . . . . . 1.04122 1.04132 ± 0.00068 1.04119 1.04131 ± 0.00063

⌧ . . . . . . . . . . . . 0.0925 0.097 ± 0.038 0.0925 0.089+0.012
�0.014

ns . . . . . . . . . . . 0.9624 0.9616 ± 0.0094 0.9619 0.9603 ± 0.0073

ln(1010As) . . . . . 3.098 3.103 ± 0.072 3.0980 3.089+0.024
�0.027

⌦⇤ . . . . . . . . . . 0.6825 0.686 ± 0.020 0.6817 0.685+0.018
�0.016

⌦m . . . . . . . . . . 0.3175 0.314 ± 0.020 0.3183 0.315+0.016
�0.018

�8 . . . . . . . . . . . 0.8344 0.834 ± 0.027 0.8347 0.829 ± 0.012

zre . . . . . . . . . . . 11.35 11.4+4.0
�2.8 11.37 11.1 ± 1.1

H0 . . . . . . . . . . 67.11 67.4 ± 1.4 67.04 67.3 ± 1.2

109As . . . . . . . . 2.215 2.23 ± 0.16 2.215 2.196+0.051
�0.060

⌦mh2 . . . . . . . . . 0.14300 0.1423 ± 0.0029 0.14305 0.1426 ± 0.0025
Age/Gyr . . . . . . 13.819 13.813 ± 0.058 13.8242 13.817 ± 0.048
z⇤ . . . . . . . . . . . 1090.43 1090.37 ± 0.65 1090.48 1090.43 ± 0.54
100✓⇤ . . . . . . . . 1.04139 1.04148 ± 0.00066 1.04136 1.04147 ± 0.00062
zeq . . . . . . . . . . . 3402 3386 ± 69 3403 3391 ± 60
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Parameter dependencies

http://space.mit.edu/home/tegmark/cmb/movies.html
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What is Cosmic Variance? 
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Statistical nature of predictions is also an issue when dealing with anomalies
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Fig. 2. Comparison of the base ⇤CDM model parameters for Planck+lensing only (colour-coded samples), and the 68% and 95%
constraint contours adding WMAP low-` polarization (WP; red contours), compared to WMAP-9 (Bennett et al. 2012; grey con-
tours).

matter density parameters, and DA depends on the late-time evo-
lution and geometry. Parameter combinations that fit the Planck
data must be constrained to be close to a surface of constant ✓⇤.
This surface depends on the model that is assumed. For the base
⇤CDM model, the main parameter dependence is approximately
described by a 0.3% constraint in the three-dimensional ⌦m–h–
⌦bh2 subspace:

⌦mh3.2(⌦bh2)�0.54 = 0.695 ± 0.002 (68%; Planck). (11)

Reducing further to a two-dimensional subspace gives a 0.6%
constraint on the combination

⌦mh3 = 0.0959 ± 0.0006 (68%; Planck). (12)

The principle component analysis direction is actually ⌦mh2.93

but this is conveniently close to ⌦mh3 and gives a similar con-
straint. The simple form is a coincidence of the ⇤CDM cos-
mology, error model, and particular parameter values of the

model (Percival et al. 2002; Howlett et al. 2012). The degener-
acy between H0 and ⌦m is illustrated in Fig. 3: parameters are
constrained to lie in a narrow strip where ⌦mh3 is nearly con-
stant, but the orthogonal direction is much more poorly con-
strained. The degeneracy direction involves consistent changes
in the H0,⌦m, and⌦bh2 parameters, so that the ratio of the sound
horizon and angular diameter distance remains nearly constant.
Changes in the density parameters, however, also have other
e↵ects on the power spectrum and the spectral index ns also
changes to compensate. The degeneracy is not exact; its extent
is much more sensitive to other details of the power spectrum
shape. Additional data can help further to restrict the degeneracy.
Figure 3 shows that adding WMAP polarization has almost no ef-
fect on the⌦mh3 measurement, but shrinks the orthogonal direc-
tion slightly from ⌦mh�3 = 1.03 ± 0.13 to ⌦mh�3 = 1.04 ± 0.11.

10

Planck Collaboration: Cosmological parameters

Planck Planck+lensing Planck+WP

Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits

⌦bh2 . . . . . . . . . . 0.022068 0.02207 ± 0.00033 0.022242 0.02217 ± 0.00033 0.022032 0.02205 ± 0.00028

⌦ch2 . . . . . . . . . . 0.12029 0.1196 ± 0.0031 0.11805 0.1186 ± 0.0031 0.12038 0.1199 ± 0.0027

100✓MC . . . . . . . . 1.04122 1.04132 ± 0.00068 1.04150 1.04141 ± 0.00067 1.04119 1.04131 ± 0.00063

⌧ . . . . . . . . . . . . 0.0925 0.097 ± 0.038 0.0949 0.089 ± 0.032 0.0925 0.089+0.012
�0.014

ns . . . . . . . . . . . 0.9624 0.9616 ± 0.0094 0.9675 0.9635 ± 0.0094 0.9619 0.9603 ± 0.0073

ln(1010As) . . . . . . . 3.098 3.103 ± 0.072 3.098 3.085 ± 0.057 3.0980 3.089+0.024
�0.027

⌦⇤ . . . . . . . . . . . 0.6825 0.686 ± 0.020 0.6964 0.693 ± 0.019 0.6817 0.685+0.018
�0.016

⌦m . . . . . . . . . . . 0.3175 0.314 ± 0.020 0.3036 0.307 ± 0.019 0.3183 0.315+0.016
�0.018

�8 . . . . . . . . . . . 0.8344 0.834 ± 0.027 0.8285 0.823 ± 0.018 0.8347 0.829 ± 0.012

zre . . . . . . . . . . . 11.35 11.4+4.0
�2.8 11.45 10.8+3.1

�2.5 11.37 11.1 ± 1.1

H0 . . . . . . . . . . . 67.11 67.4 ± 1.4 68.14 67.9 ± 1.5 67.04 67.3 ± 1.2

109As . . . . . . . . . 2.215 2.23 ± 0.16 2.215 2.19+0.12
�0.14 2.215 2.196+0.051

�0.060

⌦mh2 . . . . . . . . . 0.14300 0.1423 ± 0.0029 0.14094 0.1414 ± 0.0029 0.14305 0.1426 ± 0.0025

⌦mh3 . . . . . . . . . 0.09597 0.09590 ± 0.00059 0.09603 0.09593 ± 0.00058 0.09591 0.09589 ± 0.00057

YP . . . . . . . . . . . 0.247710 0.24771 ± 0.00014 0.247785 0.24775 ± 0.00014 0.247695 0.24770 ± 0.00012

Age/Gyr . . . . . . . 13.819 13.813 ± 0.058 13.784 13.796 ± 0.058 13.8242 13.817 ± 0.048

z⇤ . . . . . . . . . . . 1090.43 1090.37 ± 0.65 1090.01 1090.16 ± 0.65 1090.48 1090.43 ± 0.54

r⇤ . . . . . . . . . . . 144.58 144.75 ± 0.66 145.02 144.96 ± 0.66 144.58 144.71 ± 0.60

100✓⇤ . . . . . . . . . 1.04139 1.04148 ± 0.00066 1.04164 1.04156 ± 0.00066 1.04136 1.04147 ± 0.00062

zdrag . . . . . . . . . . 1059.32 1059.29 ± 0.65 1059.59 1059.43 ± 0.64 1059.25 1059.25 ± 0.58

rdrag . . . . . . . . . . 147.34 147.53 ± 0.64 147.74 147.70 ± 0.63 147.36 147.49 ± 0.59

kD . . . . . . . . . . . 0.14026 0.14007 ± 0.00064 0.13998 0.13996 ± 0.00062 0.14022 0.14009 ± 0.00063

100✓D . . . . . . . . . 0.161332 0.16137 ± 0.00037 0.161196 0.16129 ± 0.00036 0.161375 0.16140 ± 0.00034

zeq . . . . . . . . . . . 3402 3386 ± 69 3352 3362 ± 69 3403 3391 ± 60

100✓eq . . . . . . . . . 0.8128 0.816 ± 0.013 0.8224 0.821 ± 0.013 0.8125 0.815 ± 0.011

rdrag/DV(0.57) . . . . 0.07130 0.0716 ± 0.0011 0.07207 0.0719 ± 0.0011 0.07126 0.07147 ± 0.00091

Table 2. Cosmological parameter values for the six-parameter base ⇤CDM model. Columns 2 and 3 give results for the Planck
temperature power spectrum data alone. Columns 4 and 5 combine the Planck temperature data with Planck lensing, and columns
6 and 7 include WMAP polarization at low multipoles. We give best fit parameters as well as 68% confidence limits for constrained
parameters. The first six parameters have flat priors. The remainder are derived parameters as discussed in Sect. 2. Beam, calibration
parameters, and foreground parameters (see Sect. 4) are not listed for brevity. Constraints on foreground parameters for Planck+WP
are given later in Table 5.

3.2. Hubble parameter and dark energy density

The Hubble constant, H0, and matter density parameter, ⌦m,
are only tightly constrained in the combination ⌦mh3 discussed
above, but the extent of the degeneracy is limited by the e↵ect
of ⌦mh2 on the relative heights of the acoustic peaks. The pro-
jection of the constraint ellipse shown in Fig. 3 onto the axes
therefore yields useful marginalized constraints on H0 and ⌦m
(or equivalently ⌦⇤) separately. We find the 2% constraint on
H0:

H0 = (67.4 ± 1.4) km s�1 Mpc�1 (68%; Planck). (13)

The corresponding constraint on the dark energy density param-
eter is

⌦⇤ = 0.686 ± 0.020 (68%; Planck), (14)

and for the physical matter density we find

⌦mh2 = 0.1423 ± 0.0029 (68%; Planck). (15)

Note that these indirect constraints are highly model depen-
dent. The data only measure accurately the acoustic scale, and

the relation to underlying expansion parameters (e.g., via the
angular-diameter distance) depends on the assumed cosmology,
including the shape of the primordial fluctuation spectrum. Even
small changes in model assumptions can change H0 noticeably;
for example, if we neglect the 0.06 eV neutrino mass expected
in the minimal hierarchy, and instead take

P
m⌫ = 0, the Hubble

parameter constraint shifts to

H0 = (68.0 ± 1.4) km s�1 Mpc�1 (68%; Planck,
P

m⌫ = 0). (16)

3.3. Matter densities

Planck can measure the matter densities in baryons and dark
matter from the relative heights of the acoustic peaks. However,
as discussed above, there is a partial degeneracy with the spec-
tral index and other parameters that limits the precision of the
determination. With Planck there are now enough well measured
peaks that the extent of the degeneracy is limited, giving ⌦bh2 to
an accuracy of 1.5% without any additional data:

⌦bh2 = 0.02207 ± 0.00033 (68%; Planck). (17)
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Fig. 25. The Planck+WP+highL data combination (samples; colour-coded by the value of H0) partially breaks the geometric degen-
eracy between ⌦m and ⌦⇤ due to the e↵ect of lensing in the temperature power spectrum. These limits are significantly improved
by the inclusion of the Planck lensing reconstruction (black contours). Combining also with BAO (right; solid blue contours) tightly
constrains the geometry to be nearly flat.

In summary, there is no evidence from Planck for any depar-
ture from a spatially flat geometry. The results of Eqs. (68a) and
(68b) suggest that our Universe is spatially flat to an accuracy of
better than a percent.

6.3. Neutrino physics and constraints on relativistic
components

A striking illustration of the interplay between cosmology and
particle physics is the potential of CMB observations to con-
strain the properties of relic neutrinos, and possibly of additional
light relic particles in the Universe (see e.g., Dodelson et al.
1996; Hu et al. 1995; Bashinsky & Seljak 2004; Ichikawa et al.
2005; Lesgourgues & Pastor 2006; Hannestad 2010). In the fol-
lowing subsections, we present Planck constraints on the mass of
ordinary (active) neutrinos assuming no extra relics, on the den-
sity of light relics assuming they all have negligible masses, and
finally on models with both light massive and massless relics.

6.3.1. Constraints on the total mass of active neutrinos

The detection of solar and atmospheric neutrino oscillations
proves that neutrinos are massive, with at least two species being
non-relativistic today. The measurement of the absolute neutrino
mass scale is a challenge for both experimental particle physics
and observational cosmology. The combination of CMB, large-
scale structure and distance measurements already excludes a
large range of masses compared to beta-decay experiments.
Current limits on the total neutrino mass

P
m⌫ (summed over the

three neutrino families) from cosmology are rather model depen-
dent and vary strongly with the data combination adopted. The
tightest constraints for flat models with three families of neutri-
nos are typically around 0.3 eV (95% CL; e.g., de Putter et al.
2012). Since

P
m⌫ must be greater than approximately 0.06 eV

in the normal hierarchy scenario and 0.1 eV in the degener-
ate hierarchy (Gonzalez-Garcia et al. 2012), the allowed neu-
trino mass window is already quite tight and could be closed
further by current or forthcoming observations (Jimenez et al.
2010; Lesgourgues et al. 2013).

Cosmological models, with and without neutrino mass, have
di↵erent primary CMB power spectra. For observationally-
relevant masses, neutrinos are still relativistic at recombina-
tion and the unique e↵ects of masses in the primary power
spectra are small. The main e↵ect is around the first acoustic
peak and is due to the early integrated Sachs-Wolfe (ISW) ef-
fect; neutrino masses have an impact here even for a fixed red-
shift of matter–radiation equality (Lesgourgues & Pastor 2012;
Hall & Challinor 2012; Hou et al. 2012; Lesgourgues et al.
2013). To date, this e↵ect has been the dominant one in con-
straining the neutrino mass from CMB data, as demonstrated in
Hou et al. (2012). As we shall see here, the Planck data move
us into a new regime where the dominant e↵ect is from gravi-
tational lensing. Increasing neutrino mass, while adjusting other
parameters to remain in a high-probability region of parameter
space, increases the expansion rate at z >⇠ 1 and so suppresses
clustering on scales smaller than the horizon size at the non-
relativistic transition (Kaplinghat et al. 2003; Lesgourgues et al.
2006). The net e↵ect for lensing is a suppression of the CMB
lensing potential and, for orientation, by ` = 1000 the suppres-
sion is around 10% in power for

P
m⌫ = 0.66 eV.

Here we report constraints assuming three species of degen-
erate massive neutrinos. At the level of sensitivity of Planck, the
e↵ect of mass splittings is negligible, and the degenerate model
can be assumed without loss of generality.

Combining the Planck+WP+highL data, we obtain an upper
limit on the summed neutrino mass of

X
m⌫ < 0.66 eV (95%; Planck+WP+highL). (69)

The posterior distribution is shown by the solid black curve in
Fig. 26. To demonstrate that the dominant e↵ect leading to the
constraint is gravitational lensing, we remove the lensing infor-
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Planck Collaboration: Planck 2013 results. XVIII. Gravitational lensing-infrared background correlation

Fig. 4. Temperature maps of size 1 deg2 at 545 and 857 GHz stacked on the 20,000 brightest peaks (left column), troughs (centre
column) and random map locations (right column). The stacked (averaged) temperature maps is in K. The arrows indicate the
lensing deflection angle deduced from the gradient of the band-pass filtered lensing potential map stacked on the same peaks. The
longest arrow corresponds to a deflection of 6.300, which is only a fraction of the total deflection angle because of our filtering. This
stacking allows us to visualize in real space the lensing of the CMB by the galaxies that generate the CIB. A small and expected
o↵set ('10) was corrected by hand when displaying the deflection field.

was corrected for in this plot. We have verified in simulations
that this is due to noise in the stacked lensing potential map that
shifts the peak. As expected, we see that the temperature max-
ima of the CIB, which contain a larger than average number of
galaxies, deflect light inward, i.e., they correspond to gravita-
tional potential wells, while temperature minima trace regions
with fewer galaxies and deflect light outward, i.e., they corre-
spond to gravitational potential hills.

5. Statistical and systematic error budget

The first pass of our pipeline suggests a strong correlation of
the CIB with the CMB lensing potential. We now turn to in-
vestigate the strength and the origin of this signal. We will first
discuss the di↵erent contributions to the statistical error budget
in Sect. 5.1, and then possible systematic e↵ects in Sect. 5.2.
Although the most straightforward interpretation of the signal is
that it arises from dusty star-forming galaxies tracing the large-
scale mass distribution, in Sect. 5.3 we consider other potential
astrophysical origins for the observed correlation.

5.1. Statistical error budget

In this section we discuss any noise contribution that does not
lead to a bias in our measurement. The prescription adopted
throughout this paper is to obtain the error estimates from the
naive Gaussian analytical error bars calculated using the mea-
sured auto-spectra of the CIB and lensing potential. We find that
these errors are approximately equal to 1.2 times the naive scat-
ter within an `-bin, and we will sometimes use this prescription
where appropriate for convenience (as will be stated in the text).
This is justified in Appendix A where we consider six di↵erent
methods of quantifying the statistical errors using both simula-
tions and data. The Gaussian analytical errors, �ĈT�

` , are calcu-
lated using the naive prescription

fsky (2` + 1)�`
⇣
�ĈT�
`

⌘2
= ĈTT

` Ĉ��` +
⇣
CT�
`

⌘2
, (3)

where as before fsky is the fraction of the sky that is unmasked,
�` = 126 for our 15 linear bins between ` = 100 and ` = 2000,
ĈTT
` and Ĉ��` are the spectra measured using the data, and CT�

`
is the model cross spectrum. This last term provides a negligi-
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Ψ

δθ

δβ

χ∗

χ

Fig. 1. Weak lensing geometry for a source (the CMB) at comoving distance χ∗ lensed by a potential
Ψ at distance χ, assuming a flat universe. The lensing deflection by an angle δβ changes the observed
angle of the source by an angle δθ.

us and the source, we have a total deflection

α = −2
∫ χ∗

0
dχ

fK(χ∗ − χ)

fK(χ∗)
∇⊥Ψ(χn̂; η0 − χ). (1.3)

This is the main result that tells us the deflection angle in terms of the potential gradients
along the line of sight. The quantity η0 − χ is the conformal time at which the photon was at
position χn̂. It is only valid for weak lensing (small angles), and is only valid to lowest order
in the potential. For a flat universe fK(χ∗ − χ)/fK(χ∗) = 1 − χ/χ∗.

The lensed CMB temperature in a direction n̂ is given by the unlensed temperature in a
deflected direction n̂′, T̃ (n̂) = T (n̂′) = T (n̂+α). The derivative of the deflection angle defines
a magnification matrix (see e.g. Ref. (24))

Aij ≡ δij +
∂

∂θi
αj =







1 − κ− γ1 −γ2 + ω

−γ2 − ω 1 − κ + γ1





 . (1.4)

An infinitesimal source with surface brightness I(n̂+δξ) at position δξ about n̂ before lensing,
becomes, after lensing, I(n̂′ + Aδξ). At lowest order the magnification of the intensity µ ≡
|A|−1 = 1/[(1 − κ)2 + ω2 − |γ|2] ≈ 1 + 2κ is determined by the convergence, κ = −1

2∇ · α.
The shear γ1 + iγ2 determines the area-preserving distortion, and the antisymmetric piece ω
determines the rotation. Since Eq. (1.3) is purely a derivative, the antisymmetric rotation ω
vanishes at lowest order.
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and to dominate the spectrum on arcminute scales.

1.3 Weak-lensing deflection angle

The idea that gravity can bend light dates back over two hundred years (23). In this subsection
we give some simple non-rigorous derivations to get the correct lowest order result for the
deflection angle. In Section 2 we use General Relativity to give a more rigorous derivation and
discuss higher-order corrections.

Consider weak lensing of a photon with velocity v by a point of mass M within Newtonian
theory. By weak lensing we mean that deflections due to the lensing are a small perturbations,
so deflection angles etc. are small and may be treated accurately using first-order results.
The acceleration due to the mass is given by the gradient of the potential Ψ, causing a small
transverse acceleration v̇⊥ = −∇⊥Ψ = GM cos θ/r2, where θ is the angle of the photon from
the mass relative to its angle at distance of closest approach R0. Integrating over the photon
path for constant speed |v| = c gives a total deflection angle v⊥/|v| = 2GM/c2R0, which is
the standard Newtonian result. From now on we shall use natural units with c = 1.

What changes in General Relativity? The idea that acceleration is due to a force holds in GR,
with Dχv̂ = −∇⊥Ψ in the Newtonian gauge, where Dχ represents the covariant derivative
along the photon world line. However to relate this local acceleration to a change in observed
coordinate we also have to account for the curvature of space. The total effect is a local deflec-
tion angle δβ = −2δχ∇⊥Ψ, where δχ is a small distance along the photon path. Essentially
the GR result is the inertial Newtonian result plus an equal term from the effect of spacetime
curvature.

Since potentials are generally small (|Ψ| ! 10−3; smaller on linear scales) the deflection angles
are small, consistent with our small angle assumption. Now let’s consider how this deflection
affects the observed angle θ of an object at comoving distance χ∗. Comoving distances are
related to angles via the angular diameter distance fK(χ), where

fK(χ) =















K−1/2 sin(K1/2χ) for K > 0, closed,

χ for K = 0, flat,

|K|−1/2 sinh(|K|1/2χ) for K < 0, open.

(1.1)

The comoving distance that the source appears to have moved due to the lensing is, in the
small angle approximation, fK(χ∗−χ)δβ = fK(χ∗)δθ (see Fig. 1). Solving for δθ, the deflection
due to the source at χ is

δθχ =
fK(χ∗ − χ)δβ

fK(χ∗)
= −

fK(χ∗ − χ)

fK(χ∗)
2δχ∇⊥Ψ (1.2)

in the direction of ∇⊥Ψ. Adding up the deflections from all the potential gradients between
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angle of the source by an angle δθ.
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the power spectrum due to lensing. Both plots are for a typical concordance ΛCDM model.

C̃Θ
l ≈ (1 − l2Rψ)CΘ

l + l2CΘ
l

∫ d2l′

(2π)2

[l′ · (l − l′)]2

l′2
Cψ

|l−l′|

= (1 − l2Rψ)CΘ
l + l2CΘ

l

∫ d2l1

(2π)2

[(l1 − l) · l1]2

(l − l1)2
Cψ

l1
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l

∫ dl1
l1

l41C
ψ
l1

4π
+ l2CΘ

l
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l

dl1
l1

l41C
ψ
l1

4π

(

1 − (l/l1)
2
)

= CΘ
l



1 + l2
∫ ∞

l

dl1
l1

l41C
ψ
l1

4π

(

1 − (l/l1)
2
)



 . (4.14)

The remaining integral is generally small, and the lensed spectrum only deviates from scale
invariant at the O(10−3) level. If there were no lensing power at l > l0, scale invariance would
be preserved on scales l > l0: a large-scale lensing mode magnifies and demagnifies small-
scale structures, which has no effect if the structures are scale invariant. Lensing of the CMB
is important because the acoustic oscillations and small scale damping give a well defined
non-scale-invariant structure to the power spectrum.
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fractional change in the E power spectrum due to lensing. All results are for a fiducial standard
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5.3.2 Lensed polarization correlation functions

As in the case of the temperature spectrum, the series expansion in the deflection angle that we
have used in the previous section is not expected to be very accurate on small scales, so for a
more accurate calculation of the lensed power spectra we need a non-perturbative calculation,
most easily performed via the correlation function. The calculation is rather similar to the
one for the temperature we did in Section 4.2, so we shall not labour the similar parts of the
derivations here. The calculation was first done in Ref. (90), though here we include new fully
non-perturbative results as well as lowest terms in the series expansion.

We shall work from the spin-2 polarization field P . The scalar correlation function between
polarization at x and x′ should be independent of the basis used to define P at the two points.
To do this, we want to describe the polarization in the physically relevant basis defined by
r ≡ x − x′. If r makes an angle φr to the ex axis, this amounts to rotating the basis by an
angle φr anticlockwise at each point, giving Pr(x) = e−2iφrP (x). In this physical basis we can
then define the basis-independent correlation functions
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Fig. 25. The Planck+WP+highL data combination (samples; colour-coded by the value of H0) partially breaks the geometric degen-
eracy between ⌦m and ⌦⇤ due to the e↵ect of lensing in the temperature power spectrum. These limits are significantly improved
by the inclusion of the Planck lensing reconstruction (black contours). Combining also with BAO (right; solid blue contours) tightly
constrains the geometry to be nearly flat.

In summary, there is no evidence from Planck for any depar-
ture from a spatially flat geometry. The results of Eqs. (68a) and
(68b) suggest that our Universe is spatially flat to an accuracy of
better than a percent.

6.3. Neutrino physics and constraints on relativistic
components

A striking illustration of the interplay between cosmology and
particle physics is the potential of CMB observations to con-
strain the properties of relic neutrinos, and possibly of additional
light relic particles in the Universe (see e.g., Dodelson et al.
1996; Hu et al. 1995; Bashinsky & Seljak 2004; Ichikawa et al.
2005; Lesgourgues & Pastor 2006; Hannestad 2010). In the fol-
lowing subsections, we present Planck constraints on the mass of
ordinary (active) neutrinos assuming no extra relics, on the den-
sity of light relics assuming they all have negligible masses, and
finally on models with both light massive and massless relics.

6.3.1. Constraints on the total mass of active neutrinos

The detection of solar and atmospheric neutrino oscillations
proves that neutrinos are massive, with at least two species being
non-relativistic today. The measurement of the absolute neutrino
mass scale is a challenge for both experimental particle physics
and observational cosmology. The combination of CMB, large-
scale structure and distance measurements already excludes a
large range of masses compared to beta-decay experiments.
Current limits on the total neutrino mass

P
m⌫ (summed over the

three neutrino families) from cosmology are rather model depen-
dent and vary strongly with the data combination adopted. The
tightest constraints for flat models with three families of neutri-
nos are typically around 0.3 eV (95% CL; e.g., de Putter et al.
2012). Since

P
m⌫ must be greater than approximately 0.06 eV

in the normal hierarchy scenario and 0.1 eV in the degener-
ate hierarchy (Gonzalez-Garcia et al. 2012), the allowed neu-
trino mass window is already quite tight and could be closed
further by current or forthcoming observations (Jimenez et al.
2010; Lesgourgues et al. 2013).

Cosmological models, with and without neutrino mass, have
di↵erent primary CMB power spectra. For observationally-
relevant masses, neutrinos are still relativistic at recombina-
tion and the unique e↵ects of masses in the primary power
spectra are small. The main e↵ect is around the first acoustic
peak and is due to the early integrated Sachs-Wolfe (ISW) ef-
fect; neutrino masses have an impact here even for a fixed red-
shift of matter–radiation equality (Lesgourgues & Pastor 2012;
Hall & Challinor 2012; Hou et al. 2012; Lesgourgues et al.
2013). To date, this e↵ect has been the dominant one in con-
straining the neutrino mass from CMB data, as demonstrated in
Hou et al. (2012). As we shall see here, the Planck data move
us into a new regime where the dominant e↵ect is from gravi-
tational lensing. Increasing neutrino mass, while adjusting other
parameters to remain in a high-probability region of parameter
space, increases the expansion rate at z >⇠ 1 and so suppresses
clustering on scales smaller than the horizon size at the non-
relativistic transition (Kaplinghat et al. 2003; Lesgourgues et al.
2006). The net e↵ect for lensing is a suppression of the CMB
lensing potential and, for orientation, by ` = 1000 the suppres-
sion is around 10% in power for

P
m⌫ = 0.66 eV.

Here we report constraints assuming three species of degen-
erate massive neutrinos. At the level of sensitivity of Planck, the
e↵ect of mass splittings is negligible, and the degenerate model
can be assumed without loss of generality.

Combining the Planck+WP+highL data, we obtain an upper
limit on the summed neutrino mass of

X
m⌫ < 0.66 eV (95%; Planck+WP+highL). (69)

The posterior distribution is shown by the solid black curve in
Fig. 26. To demonstrate that the dominant e↵ect leading to the
constraint is gravitational lensing, we remove the lensing infor-
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Fig. 1. Sky-averaged lens reconstruction noise levels for the 100,
143, and 217 GHz Planck channels (red, green, and blue solid,
respectively), as well as for experiments that are cosmic-variance
limited to a maximum multipole `max = 1000, 1500, and 1750
(upper to lower solid grey lines). A fiducial ⇤CDM lensing po-
tential using best-fit parameters to the temperature power spec-
trum from Planck Collaboration XVI (2013) is shown in dashed
black. The noise level for a minimum-variance (“MV”) combi-
nation of 143+217 GHz is shown in black (the gain from adding
100 GHz is negligible).

Fig. 2. Overview of forecasted contributions to the detection sig-
nificance as a function of lensing multipole L for the C��L power
spectrum (solid black), as well as for several other mass tracers,
at the noise levels of our MV lens reconstruction. Our measure-
ment of the power spectrum C��L is presented in Sect. 6, The
ISW-� correlation believed to be induced by dark energy is stud-
ied in Sect. 6.2. The NVSS-� correlation is studied (along with
other Galaxy correlations) in Sect. 6.3. The CIB-� prediction
(dashed cyan) uses the linear SSED model of Hall et al. (2010),
assuming no noise or foreground contamination. A full analy-
sis and interpretation of the CIB-� correlation is performed in
Planck Collaboration XVIII (2013).

based on the lensing multipole range 40  L  400.
This multipole range (highlighted as a dark grey band
in Fig. 2), was chosen as the range in which Planck
has the greatest sensitivity to lensing power, encap-
sulating over 90% of the anticipated signal-to-noise,
while conservatively avoiding the low-L multipoles
where mean-field corrections due to survey anisotropy
(discussed in Appendix C) are large, and the high-L
multipoles where there are large corrections to the power
spectra from Gaussian (disconnected) noise bias. Distilled
to a single amplitude, our likelihood corresponds to a
4% measurement of the amplitude of the fiducial ⇤CDM
lensing power spectrum, or a 2% measurement of the
amplitude of the matter fluctuations (neglecting parameter
degeneracies).

Our e↵orts to validate these products are aided by the fre-
quency coverage of the three Planck channels that we employ,
which span a wide range of foreground, beam, and noise prop-
erties. For the mask levels that we use, the root-mean-squared
(RMS) foreground contamination predicted by the Planck sky
model (Delabrouille et al. 2012) has an amplitude of 14, 22,
and 70 µK at 100, 143, and 217 GHz, which can be compared
to a CMB RMS for the Planck best-fitting ⇤CDM power spec-
trum of approximately 110 µK. The dominant foreground com-
ponent at all three CMB frequencies is dust emission, both from
our Galaxy as well as the cosmic infrared background (CIB),
although at 100 GHz free-free emission is thought to consti-
tute approximately 15% of the foreground RMS. Contamination
from the thermal Sunyaev-Zeldovich (tSZ) e↵ect is a potential
worry at 100 and 143 GHz, but negligible at 217 GHz (Sunyaev
& Zeldovich 1980). On the instrumental side, these frequency
channels also span a wide range of beam asymmetry, with typi-
cal ellipticities of 19%, 4%, and 18% at 100, 143, and 217 GHz.
The magnitude of correlated noise on small scales (due to de-
convolution of the bolometer time response) also varies signifi-
cantly. The ratio of the noise power (before beam deconvolution)
at ` = 1500 to that at ` = 500 is a factor of 1.5, 1.1, and 1.0 at
100, 143, and 217 GHz. The agreement of lens reconstructions
based on combinations of these three channels allows a powerful
suite of consistency tests for both foreground and instrumental
biases. We will further validate the robustness of our result to
foreground contamination using the component separated maps
from the Planck consortium (Planck Collaboration XII 2013).

At face value, the 4% measurement of C��L in our fiducial
likelihood corresponds to a 25� detection of gravitational lens-
ing e↵ects. In fact, a significant fraction (approximately 25% of
our error bar) is due to sample variance of the lenses themselves,
and so the actual “detection” of lensing e↵ects (under the null
hypothesis of no lensing) is significantly higher. We have also
been conservative in terms of mask and multipole range in the
construction of our fiducial lensing likelihood. As we will show
in Sect. 7.1, we obtain consistent results on sky fractions larger
than our fiducial 70% sky mask.

The Planck lensing potential is part of a significant shift for
CMB lensing science from the detection regime to that of preci-
sion cosmological probe. The NVSS quasar catalogue, for exam-
ple, has been a focus of previous lensing cross-correlation stud-
ies with WMAP (Hirata et al. 2004; Smith et al. 2007; Hirata
et al. 2008), where evidence for cross-correlation was found at
approximately 3.5�. As we will see in Sect. 6.3, the significance
for this correlation with Planck is now 20�. Notably, this is less
than the significance with which lensing may be detected inter-
nally with Planck. The lensing potential measured by Planck

3

2

Fig. 1.— An exaggerated example of the lensing effect on a 10◦ × 10◦ field. Top: (left-to-right) unlensed temperature field, unlensed
E-polarization field, spherically symmetric deflection field d(n). Bottom: (left-to-right) lensed temperature field, lensed E-polarization field,
lensed B-polarization field. The scale for the polarization and temperature fields differ by a factor of 10.

gravitational waves.

2. LENSING

Weak lensing by the large-scale structure of the Universe
remaps the primary temperature field Θ(n̂) = ∆T (n̂)/T
and dimensionless Stokes parameters Q(n̂) and U(n̂) as
(Blanchard & Schneider 1987; Bernardeau 1997; Zaldar-
riaga & Seljak 1998)

Θ(n̂) = Θ̃(n̂ + d(n̂)) , (1)

[Q ± iU ](n̂) = [Q̃ ± iŨ ](n̂ + d(n̂)) ,

where n̂ is the direction on the sky, tildes denote the un-
lensed field, and d(n̂) is the deflection angle. It is related
to the line of sight projection of the gravitational potential
Ψ(x, D) as d = ∇φ,

φ(n̂) = −2

∫

dD
(Ds − D)

D Ds
Ψ(Dn̂, D) , (2)

where D is the comoving distance along the line of sight in
the assumed flat cosmology and Ds denotes the distance to
the last-scattering surface. In the fiducial cosmology the
rms deflection is 2.6′ but its coherence is several degrees.

We will work mainly in harmonic space and consider suf-
ficiently small sections of the sky such that spherical har-
monic moments of order (l, m) may be replaced by plane
waves of wavevector l. The all-sky generalization will be

presented in a separate work (Okamoto & Hu, in prep).
In this case, the temperature, polarization, and potential
fields may be decomposed as

Θ(n̂) =

∫

d2l

(2π)2
Θ(l)eil·n̂ , (3)

[Q ± iU ](n̂) = −
∫

d2l

(2π)2
[E(l) ± iB(l)]e±2iϕleil·n̂ ,

φ(n̂) =

∫

d2L

(2π)2
φ(L)eiL·n̂ ,

where ϕl = cos−1(x̂ · l̂). Lensing changes the Fourier mo-
ments by (Hu 2000b)

δΘ(l) =

∫

d2l′

(2π)2
Θ̃(l′)W (l′,L) , (4)

δE(l) =

∫

d2l′

(2π)2

[

Ẽ(l′) cos 2ϕl′l − B̃(l′) sin 2ϕl′l

]

W (l′,L) ,

δB(l) =

∫

d2l′

(2π)2

[

B̃(l′) cos 2ϕl′l + Ẽ(l′) sin 2ϕl′l

]

W (l′,L) ,

where ϕl′l ≡ ϕl′ − ϕl, L = l − l′, and

W (l,L) = −[l · L]φ(L) . (5)

Here δΘ = Θ − Θ̃ for example. In Fig. 1, we show a toy
example of the effect of lensing on the temperature and po-
larization fields (see also Benabed et al. 2001). The effect

〈Θ̃(l)Θ̃∗(l − L)〉Θ = δ(L) CΘ
l −

∫ d2l′

2π

[

l′ · (l − l′)ψ(l − l′)〈Θ(l′)Θ∗(l − L)〉

+ l′ · (l − L− l′)ψ∗(l − L − l′)〈Θ(l)Θ∗(l′)〉
]

+ O(ψ2)

= δ(L) CΘ
l +

1

2π

[

(L − l) · LCΘ
|l−L| + l · LCΘ

l

]

ψ(L) + O(ψ2). (7.1)

The L $= 0 correlation therefore probes the lensing potential. The ψ(L = 0) mode of the lensing
potential is not observable (zero gradient), so below we implicitly consider only |L| > 0. To
estimate the lensing potential on our sky we perform a weighted average of the off-diagonal
terms, defining the quadratic estimator

ψ̂(L) ≡ N(L)
∫ d2l

2π
Θ̃(l)Θ̃∗(l − L)g(l,L), (7.2)

where g(l,L) is some weighting function. In order for the estimator to be unbiased at lowest
order we want 〈ψ̂(L)〉Θ = ψ(L), so the normalization is

N(L)−1 =
∫ d2l

(2π)2

[

(L− l) · LCΘ
|l−L| + l · LCΘ

l

]

g(l,L). (7.3)

We are then free to choose g to maximize the signal to noise. To zeroth order in Cψ
l the

variance is given by 〈|ψ̂(L)−ψ(L)|2〉 ∼ 〈|ψ̂(L)|2〉 and the non-Gaussian connected part of the
four-point function (Eq. (6.4)) can be neglected. We then have

〈ψ̂∗(L)ψ̂(L′)〉 = δ(L − L′)2N(L)2
∫ d2l

(2π)2
C̃tot

l C̃tot
|l−L|[g(l,L)]2 + O(Cψ

l ), (7.4)

where C̃tot
l = C̃Θ

l +Nl and Nl is the noise contribution. Minimizing the leading-order variance
gives a weight function (123)

g(l,L) =
(L− l) · LCΘ

|l−L| + l · LCΘ
l

2C̃tot
l C̃tot

|l−L|

. (7.5)

Here we have chosen the arbitrary normalization of g so that the lowest order ‘noise’ on the
reconstructed potential is determined by

δ(0)〈|ψ̂(L)|2〉−1 = N(L)−1 =
∫ d2l

(2π)2

[

(L− l) · LCΘ
|l−L| + l · LCΘ

l

]2

2C̃tot
l C̃tot

|l−L|

. (7.6)

The delta function here should be interpreted in terms of the sky area in the usual way:
δ(0) = fsky/π.

These results allow us to estimate the lensing potential to within some ‘noise’ determined by a
combination of cosmic variance from the finite number of temperature modes and observational
noise. Note that the estimator is only valid to lowest order in the lensing potential; this
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Lensing Multipole L
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Fig. 10. Lensing potential power spectrum estimates based on the individual 100, 143, and 217 GHz sky maps, as well our fiducial
minimum-variance (MV) reconstruction which forms the basis for the Planck lensing likelihood. The black line is for the best-fit
⇤CDM model of Planck Collaboration XVI (2013).

perform additional cross-checks using these bins to ascertain
whether they would have any significant implications for cos-
mology.

In addition to the Planck power spectrum measurements, in
Fig. 11 we have overplotted the ACT and SPT measurements
of the lensing potential power spectrum (Das et al. 2013; van
Engelen et al. 2012). It is clear that all are very consistent.
The Planck measurement has the largest signal-to-noise of these
measurements; as we have already discussed the 40 < L < 400
lensing likelihood provides a 4% constraint on the amplitude of
the lensing potential power spectrum, while the constraint from
current ACT and SPT measurements are 32% and 16% respec-
tively. These measurements are nevertheless quite complemen-
tary. As a function of angular scale, the full-sky Planck power
spectrum estimate has the smallest uncertainty per multipole of
all three experiments at L < 500, at which point the additional
small-scale modes up to `max = 3000 used in the SPT lensing
analysis lead to smaller error bars. The good agreement in these
estimates of C��L is reassuring; in addition to the fact that the ex-
periments and analyses are completely independent, these mea-
surements are sourced from fairly independent angular scales
in the temperature map, with ` <⇠ 1600 in the case of Planck,
` < 2300 in the case of ACT, and ` < 3000 in the case of SPT.
Cross-correlation of the Planck lensing map with these indepen-
dent measures of the lensing potential will provide an additional
cross-check on their consistency, however at the power spectrum
level they are already in good agreement.

6.1. Parameters

Weak gravitational lensing of the CMB provides sensitivity
to cosmological parameters a↵ecting the late-time growth of
structure which are otherwise degenerate in the primary CMB

anisotropies imprinted around recombination. Examples include
the dark energy density in models with spatial curvature and the
mass of neutrinos that are light enough (m⌫ < 0.5 eV) still to
have been relativistic at recombination.

To connect our measurement of the lensing power spectrum
to parameters, we construct a lensing likelihood nominally based
on the multipole range 40  L  400, cut into eight equal-width
bins with �L = 45 to maintain parameter leverage from shape
information in addition to our overall amplitude constraint. In
Table 1 we present bandpowers for these eight bins using the in-
dividual 100, 143, and 217 GHz reconstructions as well as the
MV reconstruction which is the basis for our nominal likeli-
hood. The bandpower estimates and their uncertainties are bro-
ken down into constituent parts as discussed in Sect. 2. Based on
these bandpowers, we form a likelihood following Eq. (23). The
measurement errors on each bin are measured by Monte-Carlo
using 1000 simulations, and the bins are su�ciently wide that
we can neglect any small covariance between them (this is dis-
cussed further in Appendix D). We analytically marginalize over
uncertainties that are correlated between bins, including them in
the measurement covariance matrix. This includes beam transfer
function uncertainties (as described in Sect 5.2), uncertainties in
the point source correction (Sect. 7.2) and uncertainty in the N(1)

correction.
As the lensing likelihood is always used in conjunction with

the Planck TT power spectrum likelihood, we coherently ac-
count for uncertainty in CTT

` by renormalizing our lensing po-
tential measurement for each sample, as described in Sect. 5.3.

The lensing likelihood is combined with the main Planck
TT likelihood (Planck Collaboration XV 2013) – constructed
from the temperature (pseudo) cross-spectra between detec-
tor sets at intermediate and high multipoles, and an exact ap-
proach for Gaussian temperature anisotropies at low multipoles
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improve on this first full-sky map of the CMB lensing poten-
tial. As is illustrated in the simulated reconstruction of Fig. 4,
there will be clear visual correlations between this map and fu-
ture measurements.

In Fig. 10 we plot the power spectra of our individual 100,
143, and 217 GHz reconstructions as well as the minimum-
variance reconstruction. The agreement of all four spectra is
striking. Overall, our power spectrum measurement is reason-
ably consistent with the ⇤CDM prediction, given our measure-
ment error bars. Dividing the L 2 [1, 2048] multipole range into
bins of �L = 64 and binning uniformly in [L(L + 1)]2C��L , we
obtain a reduced �2 for the di↵erence between our power spec-
trum estimate and the model of 40.7 with 32 degrees of freedom.
The associated probability to exceed is 14%. On a detailed level,
there are some discrepancies between the shape and amplitude
of our power spectrum and the fiducial model however. Our like-
lihood is based on the multipole range 40  L  400, which
captures 90% of the available signal-to-noise for an amplitude
constraint on C��L . This range was chosen as the region of our
spectrum least likely to be contaminated by systematic e↵ects
(primarily uncertainties in the mean-field corrections at low-L,
and uncertainties in the Gaussian and point-source bias correc-
tions at high-L). Estimating an average amplitude for the fiducial
lensing power spectrum for a single bin over this multipole range
using Eq. (25) we find an amplitude of Â40!400 = 0.94 ± 0.04
relative to the fiducial model (which has A = 1). The power in
this region is consistent with the fiducial model, although 1.5�
low (the corresponding probability-to-exceed for the �2 of this
di↵erence is 15%). The low- and high-L extent of our likelihood
were deliberately chosen to have enough expected lensing signal
to enable a 10� detection of lensing on either side, bookending
our likelihood with two additional consistency tests. On the low-
L side, we have a good agreement with the expected power. As
will be discussed in Sect. 7.4, our measurement at L < 10 fails
some consistency tests at a level comparable to the expected sig-
nal. The L < 10 modes, which we suspect are somewhat con-
taminated by errors in the mean-field subtraction, are neverthe-
less consistent with the fiducial expectation, as can be seen in
Fig. 10; we measure Â1!10 = 0.44±0.54. Extending to the lower
limit of our likelihood, with a single bin from 10  L  40 we
measure Â10!40 = 1.02 ± 0.12. On the high-L side of our fidu-
cial likelihood, there is tension however. Extending from the fi-
nal likelihood multipole at L = 400 to the maximum multipole
of our reconstruction, we find Â400!2048 = 0.68 ± 0.13, which
is in tension with A = 1 at a level of just over 2.4�. The rel-
atively low power in our reconstruction is driven by a dip rel-
ative to the ⇤CDM model spectrum between 500 < L < 750,
as can be seen in Fig. 10. We show this feature more clearly
in the residual plot of Fig. 11. This deficit of power is in turn
driven by the 143 GHz data. For an estimate of the power spec-
trum using only 143 GHz, we measure Â143

400!2048 = 0.37 ± 0.18.
The 217 GHz reconstruction is more consistent with the model,
having Â217

400!2048 = 0.82 ± 0.17. These two measurements are
in tension; we have Â217�143

400!2048 = 0.45 ± 0.18, which is a 2.5�
discrepancy. The error bar on this di↵erence accounts for the ex-
pected correlation between the two channels due to the fact that
they see the same CMB sky. A larger set of consistency tests
will be presented in Sect. 7. We note for now that the bins from
40 < L < 400 used in our likelihood pass all consistency tests,
and show better agreement between 143 and 217 GHz. Although
L < 40 and L > 400 are not included in our nominal likelihood,
when discussing the use of the lensing likelihood for cosmo-
logical parameter constraints in the following section we will

�WF(n̂)

Galactic North

�WF(n̂)

Galactic South

Fig. 8. Wiener-filtered lensing potential estimate
�WF

LM ⌘ C��L (�̄LM � �̄MF
LM ) for our MV reconstruction, in Galactic

coordinates using orthographic projection. The reconstruction
is bandpass filtered to L 2 [10, 2048]. The Planck lens recon-
struction has S/N  1 for individual modes on all scales, so
this map is noise dominated. Comparison between simulations
of reconstructed and input � in Fig. 4 show the expected level
of visible correlation between our reconstruction and the true
lensing potential.

Galactic South - 143 GHz Galactic South - 217 GHz

Fig. 9. Wiener-filtered lensing potential estimates, as in Fig. 8,
for the individual 143 and 217 GHz maps.
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L

Fig. 11. Replotting of Fig. 10, removing 100 GHz for easier
comparison of 143 and 217 GHz. Also plotted are the SPT band-
powers from van Engelen et al. (2012), and the ACT bandpow-
ers from Das et al. (2013). All three experiments are very consis-
tent. The lower panel shows the di↵erence between the measured
bandpowers and the fiducial best-fit ⇤CDM model.

– in Planck Collaboration XVI (2013) to derive parameter con-
straints for the six-parameter ⇤CDM model and well-motivated
extensions. Lensing also a↵ects the power spectrum, or 2-point
function, of the CMB anisotropies, and this e↵ect is accounted
for routinely in all Planck results. On the angular scales rele-
vant for Planck, the main e↵ect is a smoothing of the acoustic
peaks and this is detected at around 10� in the Planck tempera-
ture power spectrum (Planck Collaboration XVI 2013). The in-
formation about C��L that is contained in the lensed temperature
power spectrum for multipoles ` <⇠ 3000 is limited to the ampli-
tude of a single eigenmode (Smith et al. 2006). In extensions of
⇤CDM with a single additional late-time parameter, lensing of
the power spectrum itself can therefore break the geometric de-
generacy (Stompor & Efstathiou 1999; Sherwin et al. 2011; van
Engelen et al. 2012; Planck Collaboration XVI 2013). As dis-
cussed in Appendix D and Schmittfull et al. (2013), cosmic vari-
ance of the lenses produces weak correlations between the CMB
2-point function and our estimates of C��L , but they are small
enough that ignoring the correlations in combining the two like-
lihoods should produce only sub-percent underestimates of the
errors in physical cosmological parameters.

In the following, we illustrate the additional constraining
power of our C��L measurements in ⇤CDM models and one-
parameter extensions, highlighting those results from Planck
Collaboration XVI (2013) where the lensing likelihood is influ-
ential.

6.1.1. Six-parameter ⇤CDM model

In the six-parameter ⇤CDM model, the matter densities, Hubble
constant and spectral index of the primordial curvature perturba-
tions are tightly constrained by the Planck temperature power
spectrum alone. However, in the absence of lensing the am-
plitude As of the primordial power spectrum and the reioniza-
tion optical depth ⌧ are degenerate, with only the combination
Ase�2⌧, which directly controls the amplitude of the anisotropy
power spectrum on intermediate and small scales being well de-
termined. This degeneracy is broken by large-angle polarization
since the power from scattering at reionization depends on the
combination As⌧2. In this first release of Planck data, we use
the WMAP nine-year polarization maps (Bennett et al. 2012) in
combination with Planck temperature data. With this data com-
bination, C��L is rather tightly constrained in the ⇤CDM model
(see Fig. 12) and the direct measurements reported here provide
a non-trivial consistency test of the model.

The eight C��L bandpowers used in the lensing likelihood are
compared to the expected spectrum in Fig. 12 (upper-left panel).
For the latter, we have used parameter values determined from
the main Planck likelihood in combination with WMAP polar-
ization (hereafter denoted WP) and small-scale power spectrum
measurements (hereafter highL) from ACT (Das et al. 2013) and
SPT (Reichardt et al. 2012)†. In this plot, we have renormalized
the measurements and their error bars (rather than the theory) us-
ing the best-fit model with a variant of the procedure described
in Sect. 5.3. Since the lensed temperature power spectrum in the
best-fit model is very close to that in the fiducial model used
to normalise the power spectrum estimates throughout this pa-
per, the power spectrum renormalisation factor (1 + �TT

L )2 of
Eq. (44) is less than 0.5% in magnitude. The predicted C��L in
the best-fit model di↵ers from the fiducial model by less than
2.5% for L < 1000. The best-fit model is a good fit to the mea-
surements, with �2 = 10.9 and the corresponding probability
to exceed equal to 21%. Significantly, we see that the ⇤CDM
model, calibrated with the CMB fluctuations imprinted around
z = 1100, correctly predicts the evolution of structure and geom-
etry at much lower redshifts. The 68% uncertainty in the ⇤CDM
prediction of C��L is shown by the dashed lines in the upper-left
panel of Fig. 12. We can assess consistency with the direct mea-
surements, properly accounting for this uncertainty, by introduc-
ing an additional parameter A��L that scales the theory C��L in the
lensing likelihood. (Note that we choose not to alter the lensing
e↵ect in CTT

` .) As reported in Planck Collaboration XVI (2013),
we find

A��L = 0.99 ± 0.05 (68%; Planck+lensing+WP+highL),

in excellent agreement with A��L = 1.
An alternative route to breaking the As-⌧ degeneracy is pos-

sible for the first time with Planck. Since C��L is directly propor-
tional to As, the lensing power spectrum measurements and the
smoothing e↵ect of lensing in CTT

` (which at leading order varies
as A2

s e�2⌧) can separately constrain As and ⌧ without large-angle
polarization data. The variation of C��L with ⌧ in ⇤CDM models

† As discussed in detail in Planck Collaboration XVI (2013), the pri-
mary role of the ACT and SPT data in these parameter fits is to constrain
more accurately the contribution of extragalactic foregrounds which
must be carefully modelled to interpret the Planck power spectra on
small scales. For ⇤CDM, the foreground parameters are su�ciently de-
coupled from the cosmological parameters that the inclusion of the ACT
and SPT data has very little e↵ect on the cosmological constraints.
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Fig. 15. Two views of the geometric degeneracy in curved ⇤CDM models which is partially broken by lensing. Left: the degeneracy
in the⌦m-⌦⇤ plane, with samples from Planck+WP+highL colour coded by the value of H0. The contours delimit the 68% and 95%
confidence regions, showing the further improvement from including the lensing likelihood. Right: the degeneracy in the ⌦K-H0
plane, with samples colour coded by ⌦⇤. Spatially-flat models lie along the grey dashed lines.

constraint. We see that the CMB alone now constrains the ge-
ometry to be flat at the percent level. Previous constraints on
curvature via CMB lensing have been reported by SPT in com-
bination with the WMAP-7 data:⌦K = �0.003+0.014

�0.018 (68%; Story
et al. 2012). This constraint is consistent, though almost a factor
of two weaker, than that from Planck. Tighter constraints on cur-
vature result from combining the Planck data with other astro-
physical data, such as baryon acoustic oscillations, as discussed
in Planck Collaboration XVI (2013).

Lensing e↵ects provide evidence for dark energy from the
CMB alone, independent of other astrophysical data (Sherwin
et al. 2011). In curved⇤CDM models, we find marginalised con-
straints on ⌦⇤ of

⌦⇤ = 0.57+0.073
�0.055 (68%; Planck+WP+highL)

⌦⇤ = 0.67+0.027
�0.023 (68%; Planck+lensing+WP+highL).

Again, lensing reconstruction improves the errors by more than
a factor of two over those from the temperature power spectrum
alone.

6.1.4. Neutrino masses

The unique e↵ect in the unlensed temperature power spectrum
of massive neutrinos that are still relativistic at recombination
is small. With the angular scale of the acoustic peaks fixed
from measurements of the temperature power spectrum, neutrino
masses increase the expansion rate at z > 1 and so suppress clus-
tering on scales larger than the horizon size at the non-relativistic
transition (Kaplinghat et al. 2003). This e↵ect reduces C��L for
L > 10 (see Fig. 12) and gives less smoothing of the acoustic
peaks in CTT

` . As discussed in Planck Collaboration XVI (2013),
the constraint on

P
m⌫ from the Planck temperature power spec-

trum (and WMAP low-` polarization) is driven by the smoothing
e↵ect of lensing:

P
m⌫ < 0.66 eV (95%; Planck+WP+highL).

Curiously, this constraint is weakened by additionally including
the lensing likelihood to

X
m⌫ < 0.85 eV, (95%; Planck+WP+highL),

reflecting mild tensions between the measured lensing and tem-
perature power spectra, with the former preferring larger neu-

trino masses than the latter. Possible origins of this tension are
explored further in Planck Collaboration XVI (2013) and are
thought to involve both the C��L measurements and features in
the measured CTT

` on large scales (` < 40) and small scales
` > 2000 that are not fit well by the ⇤CDM+foreground model.
As regards C��L , Fisher estimates show that the bandpowers in
the range 130 < L < 309 carry most of the statistical weight
in determining the marginal error on

P
m⌫, and Fig. 12 reveals

a preference for high
P

m⌫ from this part of the spectrum. (We
have checked that removing the first bandpower from the lensing
likelihood, which is the least stable to data cuts and the details
of foreground cleaning as discussed in Sect. 7, has little impact
on our neutrino mass constraints.) We also note that a similar
trend for lower lensing power than the ⇤CDM expectation on
intermediate scales is seen in the ACT and SPT measurements
(Fig. 11). Adding the high-L information to the likelihood weak-
ens the constraint further, pushing the 95% limit to 1.07 eV. This
is consistent with our small-scale measurement having a signifi-
cantly lower amplitude. At this stage it is unclear what to make
of this mild tension between neutrino mass constraints from the
4-point function and those from the 2-point, and we caution
over-interpreting the results. We expect to be able to say more
on this issue with the further data, including polarization, that
will be made available in future Planck data releases.

6.2. Correlation with the ISW Effect

As CMB photons travel to us from the last scattering surface,
the gravitational potentials that they traverse may undergo a non-
negligible amount of evolution. This produces a net redshift or
blueshift of the photons concerned, as they fall into and then
escape from the evolving potentials. The overall result is a con-
tribution to the CMB temperature anisotropy known as the late-
time integrated Sachs-Wolfe (ISW) e↵ect, or the Rees-Sciama
(R-S) e↵ect depending on whether the evolution of the poten-
tials concerned is in the linear (ISW) or non-linear (R-S) regime
of structure formation (Sachs & Wolfe 1967; Rees & Sciama
1968). In the epoch of dark energy domination, which occurs af-
ter z ⇠ 0.5 for the concordance ⇤CDM cosmology, large-scale
potentials tend to decay over time as space expands, resulting
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dominate over most of the sky. Gravitational lensing by large-
scale structure produces small shear and magnification e↵ects in
the observed fluctuations, which can be exploited to reconstruct
an integrated measure of the gravitational potential along the line
of sight Okamoto & Hu (2003). This “CMB lensing potential”
is sourced primarily by dark matter halos located at 1 . z . 3,
halfway between ourselves and the last scattering surface (see
Blandford & Jaroszynski 1981; Blanchard & Schneider 1987, or
Lewis & Challinor 2006 for a review). In the upper frequency
bands (353, 545, and 857 GHz), the dominant extragalactic sig-
nal is not the CMB, but the cosmic infrared background (CIB),
composed of redshifted thermal radiation from UV-heated dust,
enshrouding young stars. The CIB contains much of the energy
from processes involved in structure formation. According to
current models, the dusty star-forming galaxies (DSFGs), which
form the CIB have a redshift distribution peaked between z ⇠ 1
and z ⇠ 2, and tend to live in 1011–1013M� dark matter halos
(see, e.g., Béthermin et al. 2012, and references therein).

As first pointed out by Song et al. (2003), the halo mass and
redshift dependence of the CMB lensing potential and the CIB
fluctuations are well matched, and as such a significant correla-
tion between the two is expected. This point is illustrated quan-
titatively in Fig. 1, where we plot estimates for the redshift- and
mass- kernels of the two tracers. In this paper we report on the
first detection of this correlation.

Measurements of both CMB lensing and CIB fluctuations
are currently undergoing a period of rapid development. While
the CIB mean was first detected using the FIRAS and DIRBE
instruments aboard COBE (Puget et al. 1996; Fixsen et al. 1998;
Hauser et al. 1998), CIB fluctuations were later detected by
the Spitzer Space Telescope (Lagache et al. 2007) and by the
BLAST balloon experiment (Viero et al. 2009) and the Herschel
Space Observatory (Amblard et al. 2011; Viero et al. 2012),
as well as the new generation of CMB experiments, includ-
ing Planck, which have extended these measurements to longer
wavelengths (Hall et al. 2010; Dunkley et al. 2011; Planck
Collaboration XVIII 2011; Reichardt et al. 2012). The Planck
early results paper: Planck Collaboration XVIII (2011) (hence-
forth referred to as PER) presented measurements of the angu-
lar power spectra of CIB anisotropies from arc-minute to degree
scales at 217, 353, 545, and 857 GHz, establishing Planck as a
potent probe of the clustering of the CIB, both in the linear and
non-linear regimes. A substantial extension of PER is presented
in a companion paper to this work (Planck Collaboration 2013,
henceforth referred to as PIR).

The CMB lensing potential, on the other hand, which was
first detected statistically through cross-correlation with galaxy
surveys (Smith et al. 2007; Hirata et al. 2008, and more recently
Bleem et al. 2012; Sherwin et al. 2012), has now been observed
directly in CMB maps by the Atacama Cosmology Telescope
and the South Pole Telescope (Das et al. 2011; van Engelen et al.
2012).

Planck’s frequency coverage, sensitivity and survey area, al-
low high signal-to-noise measurements of both the CIB and the
CMB lensing potential. Accompanying the release of this pa-
per, Planck Collaboration XVII (2013) reports the first measure-
ment and characterisation of the CMB lensing potential with the
Planck data, which has several times more statistical power than
previous measurements, over a large fraction (approximately
70% of the sky). We will use this measurement of the lensing
potential in cross-correlation with measurements of the CIB in
the PlanckHFI bands to make the first detection of the lensing-
infrared background correlation. In addition to our measure-
ment, we discuss the implications for models of the CIB fluc-

Fig. 1. Redshift- and mass- integrand for the CIB and CMB lens-
ing potential power spectra at ` = 500, calculated using the
CIB halo model of Planck Collaboration XVIII (2011), evalu-
ated at 217 GHz. The good match between the redshift and halo
mass distributions leads to an expected correlation up to 80 %.
The sharper features in the CIB kernel are artefacts from the
Béthermin et al. (2012) model. We note that the low mass, high
z behavior of our calculation is limited by the accuracy of the
mass function we use (Tinker & Wetzel 2010). All of our mass
integrals use Mmin = 105 M�.

tuations. The outline of this paper is as follows. In Sect. 2 we
describe the data we will use, followed by a description of our
pipeline for correlating the CIB and lensing signals in Sect. 3.
Our main result is presented in Sect. 4, with a description of our
error budget, consistency tests and an array of systematic tests in
Sect. 5. We discuss the implications of the measured correlation
for CIB modelling in Sect. 6.

2. Data sets

2.1. Planck maps

Planck (Tauber et al. 2010; Planck Collaboration I 2011) is the
third generation space mission to measure the anisotropy of the
CMB. It observes the sky with high sensitivity in nine frequency
bands covering 30–857 GHz at an angular resolution from 310 to
50. The Low Frequency Instrument (LFI; Mandolesi et al. 2010;
Bersanelli et al. 2010; Mennella et al. 2011) covers the 30, 44,
and 70 GHz bands with radiometers that incorporate amplifiers
cooled to 20 K. The High Frequency Instrument (HFI; Lamarre
et al. 2010; Planck HFI Core Team 2011a) covers the 100, 143,
217, 353, 545, and 857 GHz bands with bolometers cooled to
0.1 K. Polarization is measured in all but the highest two bands
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Fig. 4. Temperature maps of size 1 deg2 at 545 and 857 GHz stacked on the 20,000 brightest peaks (left column), troughs (centre
column) and random map locations (right column). The stacked (averaged) temperature maps is in K. The arrows indicate the
lensing deflection angle deduced from the gradient of the band-pass filtered lensing potential map stacked on the same peaks. The
longest arrow corresponds to a deflection of 6.300, which is only a fraction of the total deflection angle because of our filtering. This
stacking allows us to visualize in real space the lensing of the CMB by the galaxies that generate the CIB. A small and expected
o↵set ('10) was corrected by hand when displaying the deflection field.

was corrected for in this plot. We have verified in simulations
that this is due to noise in the stacked lensing potential map that
shifts the peak. As expected, we see that the temperature max-
ima of the CIB, which contain a larger than average number of
galaxies, deflect light inward, i.e., they correspond to gravita-
tional potential wells, while temperature minima trace regions
with fewer galaxies and deflect light outward, i.e., they corre-
spond to gravitational potential hills.

5. Statistical and systematic error budget

The first pass of our pipeline suggests a strong correlation of
the CIB with the CMB lensing potential. We now turn to in-
vestigate the strength and the origin of this signal. We will first
discuss the di↵erent contributions to the statistical error budget
in Sect. 5.1, and then possible systematic e↵ects in Sect. 5.2.
Although the most straightforward interpretation of the signal is
that it arises from dusty star-forming galaxies tracing the large-
scale mass distribution, in Sect. 5.3 we consider other potential
astrophysical origins for the observed correlation.

5.1. Statistical error budget

In this section we discuss any noise contribution that does not
lead to a bias in our measurement. The prescription adopted
throughout this paper is to obtain the error estimates from the
naive Gaussian analytical error bars calculated using the mea-
sured auto-spectra of the CIB and lensing potential. We find that
these errors are approximately equal to 1.2 times the naive scat-
ter within an `-bin, and we will sometimes use this prescription
where appropriate for convenience (as will be stated in the text).
This is justified in Appendix A where we consider six di↵erent
methods of quantifying the statistical errors using both simula-
tions and data. The Gaussian analytical errors, �ĈT�

` , are calcu-
lated using the naive prescription

fsky (2` + 1)�`
⇣
�ĈT�
`

⌘2
= ĈTT

` Ĉ��` +
⇣
CT�
`

⌘2
, (3)

where as before fsky is the fraction of the sky that is unmasked,
�` = 126 for our 15 linear bins between ` = 100 and ` = 2000,
ĈTT
` and Ĉ��` are the spectra measured using the data, and CT�

`
is the model cross spectrum. This last term provides a negligi-
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Fig. 3. Angular cross-spectra between the reconstructed lensing map and the temperature map at the six HFI frequencies. The error
bars correspond to the scatter within each band. The solid line is the expected result based on the PER model and is not a fit to
these data (see Fig. 16 for an adjusted model), although it is already a satisfying model. In each panel we also show the correlation
between the lens reconstruction at 143 GHz and the 143 GHz temperature map in grey. This is a simple illustration of the frequency
scaling of our measured signal and also the strength of our signal as compared to possible intra-frequency systematic errors.

cance as follows. We count the number of standard deviations as
the quadrature sum of the significance in the di↵erent multipole
bins:

s⌫ =

vut
15X

i=1

0
BBBBB@

CT�
i

�CT�
i

1
CCCCCA

2

. (2)

For our nominal parameters this gives us 3.6�, 4.3�, 8.3�,
31�, 42�, and 32�, at, respectively, 100, 143, 217, 343, 545
and 857 GHz. Note that these numbers include an additional
20 % contribution to the statistical error to account for mode cor-
relations (which we discuss in Sect. 5.1), but do not include sys-
tematic errors or our point source correction. As a comparison, in
each panel we plot the correlation between the lens reconstruc-
tion at 143 GHz and the 143 GHz map in grey. This shows the
frequency scaling of our measured signal and also the strength
of the signal, as compared to possible intra-frequency systematic
e↵ects. This will be studied in depth in Sect. 5.

This first pass on our raw data demonstrates a strong detec-
tion that is in good agreement with the expected CIB-lensing
signal. To get a better intuition for this detection, we show in
Fig. 4 the real-space correlation between the observed tempera-

ture and the lens deflection angles. This figure allows us to vi-
sualize the correlation between the CIB and the CMB lensing
deflection angles for the first time. These images were generated
using the following stacking technique. We first mask the 545
and 857 GHz temperature maps with our combined mask that
includes the 20 % Galaxy mask, and identify 20,000 local max-
ima and minima in these maps. We also select 20,000 random
locations outside the masked region to use in a null test. We then
band pass filter the lens map between ` = 400–600 to remove
scales larger than our stacked map as well as small-scale noise.
We stack a 1 deg2 region around each point in both the filtered
temperature map and lensing potential map, to generate stacked
CIB and stacked lensing potential images. We take the gradient
of the stacked lensing potential to calculate the deflection angles,
which we display in Fig. 4 as arrows. The result of the stack-
ing over the maxima, minima and random points is displayed
from left to right in Fig. 4. The strong correlation seen already
in the cross-power spectrum is clearly visible in both the 545 and
857 GHz extrema, while the stacking on random locations leads
to a lensing signal consistent with noise. From simulations, we
expect a small o↵-set (' 100) in the deflection field. This o↵set
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The Sunyaev Zeldovich effect

Planck Collaboration: Cosmology with the all-sky Planck Compton parameter y-map

Fig. 1. Reconstructed Planck all-sky Compton parameter maps for NILC (top) and MILCA (bottom) in orthographic projections.
The difference of contrast observed between the NILC and MILCA maps comes both from differences in the noise and instrumental
systematic contribution and from the differences in the filtering applied for display purpose to the original Compton parameter
maps.
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A map of the hot gas in the Universe 'Bridge' of hot gas connecting two galaxy clusters

Planck Collaboration: Cosmology from SZ clusters counts
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Fig. 1. The distribution on the sky of the Planck SZ cluster sub-sample used in this paper, with the 35% mask overlaid.

The present-day expansion rate of the Universe is quantified by
the Hubble constant H0 = 100 h km s�1 Mpc�1.

The cluster number counts are very sensitive to the ampli-
tude of the matter power spectrum. When studying cluster counts
it is usual to parametrize this in terms of the density variance
in spheres of radius 8h�1 Mpc, denoted �8, rather than overall
power spectrum amplitude, As. In cases where we include pri-
mary CMB data we use As and compute �8 as a derived param-
eter. In addition to the parameters above, we also allow the other
standard cosmological parameters to vary: ns representing the
spectral index of density fluctuations; and ⌦bh2 quantifying the
baryon density.

The number of clusters predicted to be observed by a survey
in a given redshift interval [zi, zi+1] can be written

ni =

Z zi+1

zi

dz
dN
dz

(1)

with

dN
dz
=

Z
d⌦
Z

dM500 �̂(z,M500, l, b)
dN

dz dM500 d⌦
, (2)

where d⌦ is the solid angle element and M500 is the mass within
the radius where the mean enclosed density is 500 times the crit-
ical density. The quantity �̂(z,M500, l, b) is the survey complete-
ness at a given location (l, b) on the sky, given by

�̂ =

Z
dY500

Z
d✓500P(z,M500|Y500, ✓500) �(Y500, ✓500, l, b) . (3)

Here P(z,M500|Y500, ✓500) is the distribution of (z,M500) for a
given (Y500, ✓500), where Y500 and ✓500 are the SZ flux and size
of a cluster of redshift and mass (z,M500).

This distribution is obtained from the scaling relations be-
tween Y500, ✓500, and M500, discussed later in this section. Note
that �̂(z,M500, l, b) depends on cosmological parameters through
P(z,M500|Y500, ✓500), while the completeness in terms of the ob-
servables, �(Y500, ✓500, l, b), does not depend on the cosmology
as it refers directly to the observed quantities.

For the present work, we restrict our analysis to the quan-
tity dN/dz which measures the total counts in redshift bins.
In particular, we do not use the blind SZ flux estimated by
the cluster candidate extraction methods that, as detailed in
Planck Collaboration VIII (2011), is found to be significantly
higher than the flux predicted from X-ray measurements. In con-
trast to the blind SZ flux, the blind S/N is in good agreement with
the S/N measured using X-ray priors. Figure 2 shows the blind
S/N (S/Nblind) versus the S/N re-extracted at the X-ray position
and using the X-ray size (S/NX). The clusters follow the equality
line. In Sect. 3, we use the (S/Nblind) values to define our cosmo-
logical sample, while for the predicted counts (defined in Sect. 2)
we use the completeness based on S/NX. Our analysis relies on
the good match between these two quantities.

To carry out a prediction of the counts expected in a survey,
given cosmological assumptions, we therefore need the follow-
ing inputs:

– a mass function that tells us the number distribution of clus-
ters with mass and redshift;

– scaling relations that can predict observable quantities from
the mass and redshift;

– the completeness of the survey in terms of those observables,
which tells us the probability that a model cluster would
make it into the survey catalogue.

These are described in the remainder of this section and in the
next.

2.2. Mass function

Our main results use the mass function from Tinker et al. (2008),
which is given by

dN
dM500

(M500, z) = f (�)
⇢m(z = 0)

M500

d ln��1

dM500
, (4)

where

f (�) = A

1 +
✓�

b

◆�a�
exp
✓
� c
�2

◆
, (5)
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Fig. 1. The cusp-core problem. (Left) An optical image of the galaxy F568-3 (small inset, from the Sloan Digital Sky Survey) is superposed on the the dark matter
distribution from the “Via Lactea” cosmological simulation of a Milky Way-mass cold dark matter halo (Diemand et al. 2007). In the simulation image, intensity encodes the
square of the dark matter density, which is proportional to annihilation rate and highlights low mass substructure. (Right) The measured rotation curve of F568-3 (points)
compared to model fits assuming a cored dark matter halo (blue solid curve) or a cuspy dark matter halo with an NFW profile (red dashed curve, concentration c = 9.2,
V200 = 110 km s�1). The dotted green curve shows the contribution of baryons (stars+gas) to the rotation curve, which is included in both model fits. An NFW halo
profile overpredicts the rotation speed in the inner few kpc. Note that the rotation curve is measured over roughly the scale of the 40 kpc inset in the left panel.

typical for galaxy mass halos. When normalized to match the
observed rotation at large radii, the NFW halo overpredicts
the rotation speed in the inner few kpc, by a factor of two or
more.

Early theoretical discussions of the cusp-core problem de-
voted considerable attention to the predicted central slope of
the density profiles and to the e↵ects of finite numerical reso-
lution and cosmological parameter choices on the simulation
predictions (see Ludlow et al. 2013 for a recent, state-of-the-
art discussion). However, the details of the profile shape are
not essential to the conflict; the basic problem is that CDM
predicts too much dark matter in the central few kpc of typical
galaxies, and the tension is evident at scales where vc(r) has
risen to ⇠ 1/2 of its asymptotic value (see, e.g., Alam, Bul-
lock, & Weinberg 2002; Kuzio de Naray & Spekkens 2011).
On the observational side, the most severe discrepancies be-
tween predicted and observed rotation curves arise for fairly
small galaxies, and early discussions focused on whether beam
smearing or non-circular motions could artificially suppress
the measured vc(r) at small radii. However, despite uncer-
tainties in individual cases, improvements in the observations,
sample sizes, and modeling have led to a clear overall picture:
a majority of galaxy rotation curves are better fit with cored
dark matter profiles than with NFW-like dark matter profiles,
and some well observed galaxies cannot be fit with NFW-like
profiles, even when one allows halo concentrations at the low
end of the theoretically predicted distribution and accounts for
uncertainties in modeling the baryon component (e.g., Kuzio
de Naray et al. 2008). Resolving the cusp-core problem there-
fore requires modifying the halo profiles of typical spiral galax-
ies away from the profiles that N-body simulations predict for
collisionless CDM.

Figure 2 illustrates the “missing satellite” problem. The
left panel shows the projected dark matter density distribu-
tion of a 1012M

�

CDM halo formed in a cosmological N-body
simulation. Because CDM preserves primordial fluctuations
down to very small scales, halos today are filled with enormous
numbers of subhalos that collapse at early times and preserve
their identities after falling into larger systems. Prior to 2000,
there were only nine dwarf satellite galaxies known within the

⇠ 250 kpc virial radius of the Milky Way halo (illustrated
in the right panel), with the smallest having stellar velocity
dispersions ⇠ 10 km s�1. Klypin et al. (1999) and Moore et
al. (1999b) predicted a factor ⇠ 5 � 20 more subhalos above
a corresponding velocity threshold in their simulated Milky
Way halos. Establishing the “correspondence” between satel-
lite stellar dynamics and subhalo properties is a key technical
point (Stoehr et al. 2002), which we will return to below, but
a prima facie comparison suggests that the predicted satellite
population far exceeds the observed one.

Fortunately (or perhaps unfortunately), the missing satel-
lite problem seems like it could be solved fairly easily by
baryonic physics. In particular, the velocity threshold at
which subhalo and dwarf satellite counts diverge is close to
the ⇠ 30 km s�1 value at which heating of intergalactic gas
by the ultraviolet photoionizing background should suppress
gas accretion onto halos, which could plausibly cause these
halos to remain dark (Bullock, Kravtsov, & Weinberg 2000;
Benson et al. 2002; Somerville 2002). Alternatively, super-
novae and stellar winds from the first generation of stars could
drive remaining gas out of the shallow potential wells of these
low mass halos. Complicating the situation, searches using
the Sloan Digital Sky Survey have discovered another ⇠ 15
“ultra-faint” satellites with luminosities of only 103 � 105L

�

(e.g., Willman et al. 2005; Belokurov et al. 2007). The high-
latitude SDSS imaging covered only ⇠ 20% of the sky, and
many of the newly discovered dwarfs are so faint that they
could only be seen to 50-100 kpc (Koposov et al. 2008; Walsh
et al. 2009), so extrapolating to the full volume within the
Milky Way virial radius suggests a population of several hun-
dred faint dwarf satellites (Tollerud et al. 2008). Estimates
from stellar dynamics imply that the mass of dark matter in
the central 0.3 kpc of the host subhalos is M0.3 ⇡ 107M

�

across an enormous range of luminosities, L ⇠ 103 � 107L
�

(encompassing the “classical” dwarf spheroidals as well as the
SDSS dwarfs), which suggests that the mapping between halo
mass and luminosity becomes highly stochastic near this mass
threshold (Strigari et al. 2008). The luminosity function of
the faint and ultra-faint dwarfs can be explained by semi-
analytic models invoking photoionization and stellar feedback
(e.g., Koposov et al. 2009; Macciò et al. 2009), though the e�-

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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Figure 13. Images of substructure within substructure. The top left panel shows the dark matter distribution in a cubic region of side
2.5 × r50 centred on the main halo in the Aq-A-1 simulation. The circles mark six subhalos that are shown enlarged in the surrounding
panels, and in the bottom left panel, as indicated by the labels. All these first generation subhalos contain other, smaller subhalos which
are clearly visible in the images. SUBFIND finds these second generation subhalos and identifies them as daughter subhalos of the larger
subhalos. If these (sub-)subhalos are large enough, they may contain a third generation of (sub-)subhalos, and sometimes even a fourth
generation. The bottom panels show an example of such a situation. The subhalo shown on the bottom left contains another subhalo
(circled) which is really made up of two main components and several smaller ones (bottom, second from left). The smaller of the
two components is a third generation substructure (bottom, third from left) which itself contains three subhalos which are thus fourth
generation objects (bottom right).

c© 0000 RAS, MNRAS 000, 000–000
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Fig. 2. The missing satellite and “too big to fail” problems. (Left) Projected dark matter distribution (600 kpc on a side) of a simulated, 1012M
�

CDM halo
(Garrison-Kimmel, Boylan-Kolchin, & Bullock, in preparation). As in Figure 1, the numerous small subhalos far exceed the number of known Milky Way satellites. Circles mark
the nine most massive subhalos. (Right) Spatial distribution of the “classical” satellites of the Milky Way. The central densities of the subhalos in the left panel are too high
to host the dwarf satellites in the right panel, predicting stellar velocity dispersions higher than observed. The diameter of the outer sphere in the right panel is 300 kpc; relative
to the simulation prediction (and to the Andromeda galaxy) the Milky Way’s satellite system is unusually centrally concentrated (Yniguez et al. 2013).

ciency of converting baryons to stars remains surprisingly low
(⇠ 0.1%� 1%) well above the photoionization threshold, and
it is unclear which if any of the ultra-faint dwarfs are “fossils”
from before the epoch of reionization (Bovill & Ricotti 2009).
Despite the gaps in understanding, it seems reasonable for now
to regard the relation between low mass subhalos and ultra-
faint dwarfs as a puzzle of galaxy formation physics rather
than a contradiction of CDM.

Instead, attention has focused recently on the most lumi-
nous satellites. Circles in Figure 2 mark the nine most mas-
sive subhalos in the simulation, which one would expect to
host galaxies like the Milky Way’s “classical” dwarf satellites.
However, the mass in the central regions of these subhalos
exceeds the mass inferred from stellar dynamics of observed
dwarfs, by a factor ⇠ 5 (Boylan-Kolchin et al. 2011, 2012;
Springel et al. 2008; Parry et al. 2012). While it is pos-
sible in principle that these massive subhalos are dark and
that the observed dwarfs reside in less massive hosts, this
outcome seems physically unlikely; in the spirit of the times,
Boylan-Kolchin et al. (2011) titled this conflict “too big to
fail.” The degree of discrepancy varies with the particular re-
alization of halo substructure and with the mass of the main
halo, but even for a halo mass at the low end of estimates
for the Milky Way the discrepancy appears too large to be a
statistical fluke, and a similar conflict is found in the satellite
system of the Andromeda galaxy (Tollerud et al. 2012). While
“missing satellites” in low mass subhalos may be explained by
baryonic e↵ects, the “too big to fail” problem arises in more
massive systems whose gravitational potential is dominated
by dark matter. In its present form, therefore, the satellite
puzzle looks much like the cusp-core problem: numerical sim-
ulations of CDM structure formation predict too much mass
in the central regions of halos and subhalos. Indeed, Walker
& Peñarrubia (2011), Amorisco et al. (2013), and others have
reported evidence that the Milky Way satellites Fornax and
Sculptor have cored density profiles.

Solutions in Baryonic Physics?
When the cusp-core problem was first identified, the conven-
tional lore was that including baryonic physics would only
exacerbate the problem by adiabatically contracting the dark
matter density distribution (Blumenthal et al. 1986; Flores
& Primack 1994). Navarro, Eke, & Frenk (1996) proposed
a scenario, which seemed extreme at the time, for producing
a cored dark matter distribution: dissipative baryons draw
in the dark matter orbits adiabatically by slowly deepening
the gravitational potential, then release them suddenly when
the supernova feedback of a vigorous starburst blows out a
substantial fraction of the baryonic material, leaving the dark
matter halo less concentrated than the one that would have
formed in the absence of baryons. Since then, hydrodynamic
simulations have greatly improved in numerical resolution and
in the sophistication with which they model star formation
and supernova feedback. With the combination of a high gas
density threshold for star formation and e�cient feedback,
simulations successfully reproduce the observed stellar and
cold gas fractions of field galaxies. The ejection of low angular
momentum gas by feedback plays a critical role in suppressing
the formation of stellar bulges in dwarf galaxies (Governato et
al. 2010), another long-standing problem in early simulations
of galaxy formation. The episodic gas outflows also produce
rapid fluctuations of the gravitational potential, in contrast to
the steady growth assumed in adiabatic contraction models.

Figure 3, based on Governato et al. (2012), illustrates the
impact of this episodic feedback on the dark matter density
profile. In the left panel, the upper dot-dashed curve shows
the final halo profile of an N-body simulation run with grav-
ity and dark matter only. Other curves show the evolution of
the dark matter density profile in a hydrodynamic simulation
with star formation and feedback, from the same initial con-
ditions. Over time, the central dark matter density drops,
and the cuspy profile is transformed to one with a nearly
constant density core (lower solid curve). Pontzen & Gov-
ernato (2012) present an analytic model that accurately de-
scribes this transformation (and its dependence on simulation
assumptions); essentially, the rapid fluctuations in the central
potential pump energy into the dark matter particle orbits, so

Footline Author PNAS Issue Date Volume Issue Number 3
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Fig. 1.— The nine rising curves show the largest virialized mass scale as a function of time for different values of Q. Structures with
M

∼
< Meq (horizontal line) are seen to all virialize about a factor Q−3/2 after the end of the radiation-dominated epoch (shaded, left), whereas

for later times, the virialized mass scale asymptotes to about Q3/2 times the horizon mass (shaded, upper left). Cooling is inefficient in the
remaining shaded region (right). The star corresponds to the Milky Way.
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a b c
X-ray wavelengths Optical wavelengths Millimeter wavelengths

Figure 7
Images of Abell 1835 (z = 0.25) at (a) X-ray, (b) optical, and (c) millimeter wavelengths, exemplifying the regular multiwavelength
morphology of a massive, dynamically relaxed cluster. All three images are centered on the X-ray peak position and have the same
spatial scale, 5.2 arcmin or ∼1.2 Mpc on a side (extending out to ∼r2,500; Mantz et al. 2010a). Figure credits: (a) X-ray: Chandra X-ray
Observatory/A. Mantz; (b) optical: Canada-France-Hawaii Telescope/A. von der Linden et al.; (c) millimeter: Sunyaev Zel’dovich
Array/D. Marrone.

3. OBSERVATIONAL TECHNIQUES
In this section we review briefly the physics underlying multiwavelength observations of galaxy
clusters. We summarize efforts to construct cluster catalogs, with an emphasis on surveys that have
led to cosmological constraints. We discuss techniques used to measure the masses of clusters and
observable proxies that correlate tightly with mass.

3.1. Multiwavelength Measurements of Galaxy Clusters
3.1.1. X-ray observations. Most of the baryons in the Universe are in diffuse gas. Typically,
this gas is very difficult to observe. Within galaxy clusters, however, gravity squeezes the gas,
heating it to virial temperatures of 107–108 K, which causes it to shine brightly in X-rays. Galaxy
clusters therefore light up at X-ray wavelengths as luminous, continuous, spatially extended sources
(Figure 7).

The primary X-ray emission mechanisms from the diffuse ICM are collisional: free-free emis-
sion (bremsstrahlung); free-bound emission (recombination); and bound-bound emission (mostly
line radiation). The emissivities of these processes are proportional to the square of the electron
density, which ranges from ∼10−1 cm−3 in the centers of bright cool core clusters to ∼10−5 cm−3

in cluster outskirts. At these low densities, the X-ray-emitting plasma is optically thin and in the
coronal limit, which makes modeling straightforward.

For survey observations, the primary X-ray observables are flux, spectral hardness, and spatial
extent. Using deeper, follow-up observations of individual clusters, modern X-ray satellites allow
the spatially resolved spectra of clusters to be determined precisely, permitting measurements of
the density, temperature and metallicity profiles of the ICM, and a host of derived thermodynamic
quantities. For reviews of the principles underlying X-ray observations of clusters see, e.g., Sarazin
(1988) and Böhringer & Werner (2010).

3.1.2. Optical and near-infrared observations. The optical and near-IR emission from galaxy
clusters is predominantly starlight. The galaxy populations of clusters are dominated by ellipticals
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that statistics sensitive to the cluster formation process, such as cluster abundance and clustering,
can provide about the primordial non-Gaussianity and possible deviations of gravity from General
Relativity. We refer readers to recent extensive reviews on cosmological uses of galaxy clusters by
Allen, Evrard & Mantz (2011) and Weinberg et al. (2012) for a more extensive discussion of this
topic.

2. THE OBSERVED PROPERTIES OF GALAXY CLUSTERS
Observational studies of galaxy clusters have now developed into a broad, multifaceted and mul-
tiwavelength field. Before we embark on our overview of different theoretical aspects of cluster
formation, we briefly review the main observational properties of clusters and, in particular, the
basic properties of their main matter constituents.

Figure 1 shows examples of the multiwavelength observations of two massive clusters at two
different cosmic epochs: the Abell 1689 at z = 0.18 and the SPT-CL J2106-5844 at z = 1.133.
It illustrates all of the main components of the clusters: the luminous stars in and around galaxies
(the intracluster light or ICL), the hot ICM observed via its X-ray emission and the Sunyaev-
Zel’dovich effect and, in the case of Abell 1689, even the presence of invisible DM manifesting
itself through gravitational lensing of background galaxies distorting their images into extended,
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Figure 1
(a) The composite X-ray/optical image (556 kpc on a side) of the galaxy cluster Abell 1689 at redshift z = 0.18. The purple haze shows
X-ray emission of the T ∼ 108 K gas, obtained by the Chandra X-ray Observatory. Images of galaxies in the optical band, colored in
yellow, are from observations performed with the Hubble Space Telescope. The long arcs in the optical image are caused by the
gravitational lensing of background galaxies by matter in the galaxy cluster, the largest system of such arcs ever found (Credit: X-ray:
NASA/CXC/MIT; Optical: NASA/STScI). (b) The galaxy cluster SPT-CL J2106-5844 at z = 1.133, the most massive cluster known
at z > 1 discovered via its Sunyaev-Zel’dovich (SZ) signal (M 200 ≈ 1.3 × 1015 M$). The color image shows the Magellan/LDSS3
optical and Spitzer/IRAC mid-IR measurements (corresponding to the blue-green-red color channels). The frame subtends 4.8 ×
4.8 arcmin, which corresponds to 2.4 × 2.4 Mpc at the redshift of the cluster. The solid yellow contours correspond to the South Pole
Telescope SZ significance values, as labeled, where dashed yellow contours are used for the negative significance values. Adapted from
Foley et al. 2011.
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Counting clusters
Planck Collaboration: Cosmology from SZ clusters counts
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Fig. 1. The distribution on the sky of the Planck SZ cluster sub-sample used in this paper, with the 35% mask overlaid.

The present-day expansion rate of the Universe is quantified by
the Hubble constant H0 = 100 h km s�1 Mpc�1.

The cluster number counts are very sensitive to the ampli-
tude of the matter power spectrum. When studying cluster counts
it is usual to parametrize this in terms of the density variance
in spheres of radius 8h�1 Mpc, denoted �8, rather than overall
power spectrum amplitude, As. In cases where we include pri-
mary CMB data we use As and compute �8 as a derived param-
eter. In addition to the parameters above, we also allow the other
standard cosmological parameters to vary: ns representing the
spectral index of density fluctuations; and ⌦bh2 quantifying the
baryon density.

The number of clusters predicted to be observed by a survey
in a given redshift interval [zi, zi+1] can be written

ni =

Z zi+1

zi

dz
dN
dz

(1)

with

dN
dz
=

Z
d⌦
Z

dM500 �̂(z,M500, l, b)
dN

dz dM500 d⌦
, (2)

where d⌦ is the solid angle element and M500 is the mass within
the radius where the mean enclosed density is 500 times the crit-
ical density. The quantity �̂(z,M500, l, b) is the survey complete-
ness at a given location (l, b) on the sky, given by

�̂ =

Z
dY500

Z
d✓500P(z,M500|Y500, ✓500) �(Y500, ✓500, l, b) . (3)

Here P(z,M500|Y500, ✓500) is the distribution of (z,M500) for a
given (Y500, ✓500), where Y500 and ✓500 are the SZ flux and size
of a cluster of redshift and mass (z,M500).

This distribution is obtained from the scaling relations be-
tween Y500, ✓500, and M500, discussed later in this section. Note
that �̂(z,M500, l, b) depends on cosmological parameters through
P(z,M500|Y500, ✓500), while the completeness in terms of the ob-
servables, �(Y500, ✓500, l, b), does not depend on the cosmology
as it refers directly to the observed quantities.

For the present work, we restrict our analysis to the quan-
tity dN/dz which measures the total counts in redshift bins.
In particular, we do not use the blind SZ flux estimated by
the cluster candidate extraction methods that, as detailed in
Planck Collaboration VIII (2011), is found to be significantly
higher than the flux predicted from X-ray measurements. In con-
trast to the blind SZ flux, the blind S/N is in good agreement with
the S/N measured using X-ray priors. Figure 2 shows the blind
S/N (S/Nblind) versus the S/N re-extracted at the X-ray position
and using the X-ray size (S/NX). The clusters follow the equality
line. In Sect. 3, we use the (S/Nblind) values to define our cosmo-
logical sample, while for the predicted counts (defined in Sect. 2)
we use the completeness based on S/NX. Our analysis relies on
the good match between these two quantities.

To carry out a prediction of the counts expected in a survey,
given cosmological assumptions, we therefore need the follow-
ing inputs:

– a mass function that tells us the number distribution of clus-
ters with mass and redshift;

– scaling relations that can predict observable quantities from
the mass and redshift;

– the completeness of the survey in terms of those observables,
which tells us the probability that a model cluster would
make it into the survey catalogue.

These are described in the remainder of this section and in the
next.

2.2. Mass function

Our main results use the mass function from Tinker et al. (2008),
which is given by

dN
dM500

(M500, z) = f (�)
⇢m(z = 0)

M500

d ln��1

dM500
, (4)

where

f (�) = A

1 +
✓�

b

◆�a�
exp
✓
� c
�2

◆
, (5)

3

Planck cluster counts: The 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problem 

constraints 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clusters 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primary CMB 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Fig. 1 Role of feedback in modifying the galaxy luminosity function

where ↵ = e

2
/(h̄c) and ↵g = Gm

2
p/e

2 are the electromagnetic and gravitational fine structure con-
stants. For a cooling function ⇤(T ) / T

�
, over the relevant temperature range (105 � 107 K), one can

take � ⇡ �1/2 for a low metallicity plasma (Gnat & Sternberg, 2007). The result is that one finds a
characteristic galactic halo mass, in terms of fundamental constants, to be of order 1012M� (Silk, 1977).
The inferred value of the mass-to-light ratio M/L is similar to that observed for L⇤ galaxies. This is a
success for theory: dissipation provides a key ingredient in understanding the stellar masses of galaxies,
at least for the “typical” galaxy. The characteristic galactic mass is understood by the requirement that
cooling within a dynamical time is a necessary condition for efficient star formation (Fig. 1).

However, the naı̈ve assumption that stellar mass follows halo mass, leads to too many small galax-
ies, too many big galaxies in the nearby universe, too few massive galaxies at high redshift, and too
many baryons within the galaxy halos. In addition there are structural problems: for example, massive
galaxies with thin disks and/or without bulges are missing, and the concentration and cuspiness of cold
dark matter is found to be excessive in barred galaxies and in dwarfs. The resolution to all of these
difficulties must lie in feedback. There are various flavors of feedback that span the range of processes
including reionization at very high redshift, supernova (SN) explosions, tidal stripping and input from
active galactic nuclei (AGN). All of these effects no doubt have a role, but we shall see that what is
missing is a robust theory of star formation as well as adequate numerical resolution to properly model
the interactions between baryons, dynamics and dark matter.

2.2 Star formation rate and efficiency

In addressing star-forming galaxies, the problem reduces to our fundamental ignorance of star formation.
Phenomenology is used to address this gap in our knowledge. Massive star feedback in giant molecular
clouds, the seat of most galactic star formation, implies a star formation efficiency (SFE), defined as star
formation rate (SFR) divided by the ratio of gas mass to dynamical or disk rotation time, of around 2%.
This is also found to be true globally in the Milky Way (MW) disk.

Remarkably, a similar SFE is found in nearby star-forming disk galaxies. Indeed, SFRs per unit area
in disk galaxies, both near and far, can be described by a simple law, with SFE being the controlling
parameter (Silk, 1997; Elmegreen, 1997):

SFE =
SFR⇥DYNAMICALTIME

GASMASS
⇡ 0.02. (1)
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The motivation comes from the gravitational instability of cold gas-rich disks, which provides the
scaling, although the normalization depends on feedback physics. For the global law, in terms of
SFR and gas mass per unit area, SN regulation provides the observed efficiency of about 2% which
fits essentially all local star–forming galaxies. One finds from simple momentum conservation that
SFE = �gasvcoolm⇤SN/Einitial

SN ⇡ 0.02. Here, vcool is the SN-driven swept-up shell velocity at which
approximate momentum conservation sets in and m⇤SN ⇡ 150M� is the mass formed in stars per SNII,
in this case for a Chabrier (2003) initial mass function (IMF). This is a crude estimator of the efficiency
of SN momentum input into the interstellar medium, but it reproduces the observed global normalization
of the star formation law.

The fit applies not only globally but to star formation complexes in individual galaxies such as M51
and also to starburst galaxies. The star formation law is known as the Schmidt-Kennicutt law (Kennicutt
et al., 2007), and its application reveals that molecular gas is the controlling gas ingredient. In the outer
parts of galaxies, where the molecular fraction is reduced due to the ambient UV radiation field and
lower surface density, the SFR per unit gas mass also declines (Bigiel et al., 2011).

Fig. 2 Schmidt-Kennicutt laws on nearby (including Local Group galaxies as shaded regions)
and distant galaxies, as well as Milky Way Giant Molecular Clouds (Krumholz et al., 2012).
The solid line is similar to equation (1).

For disk instabilities to result in cloud formation, followed by cloud agglomeration and consequent
star formation, one also needs to maintain a cold disk by accretion of cold gas. There is ample evidence
of a supply of cold gas, for example in the M33 group. Other spiral galaxies show extensive reservoirs of
HI in their outer regions, for example NGC 6946 (Boomsma et al., 2008) and UGC 2082 (Heald et al.,

The Current Status of Galaxy Formation 9

Fig. 8 Black hole mass versus spheroid velocity dispersion (luminosity-weighted within one
effective radius), from McConnell et al. (2011)

(Graham et al., 2011), and gives the correct normalization of the relation, at least in order of magnitude.
This is the early feedback quasar mode.

There is also a role for AGN feedback at late epochs, when the AGN radio mode drives jets and
cocoons that heat halo gas, inhibit cooling, resolve the galaxy luminosity function bright end problem
and account for the red colors of massive early-type galaxies. AGN feedback in the radio mode may
also account for the suppression in numbers of intermediate mass and satellite galaxies (e.g., Cattaneo
et al., 2009 and references therein). Feedback from AGN in the host galaxies also preheats the halo gas
that otherwise would be captured by satellites.

2.8 Galaxies downsize

Our understanding of galaxy formation is driven by observations. Prior to 2000 or so, it was accepted
that hierarchical galaxy formation predicted that small galaxies form prior to massive galaxies. The first
indications that this was in error came from the recognition that more massive early-type galaxies have
redder colors (de Vaucouleurs, 1961), higher metallicities (Faber, 1973) and enhanced [↵]/[Fe] metallic-
ity ratios (Ziegler et al., 2005), indicative of an older stellar population with a shorter star formation time
(see Fig. 9). This effect is called downsizing, as the most massive galaxies have their stellar populations
in place early. In effect, we have a cosmic clock: incorporation into stars of debris from SNe II ( <⇠ 108

yr) versus SNe I ( >⇠ 109 yr) provides a means of dating the duration of star formation. This result was
soon followed by infrared observations that showed that stellar mass assembly favored more massive
systems at earlier epochs (González et al., 2011a).
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Fig. 5.— The reconstructed matter power spectrum: the stars show the power spectrum from combining ACT and WMAP data (top
panel). The solid and dashed lines show the nonlinear and linear power spectra respectively from the best-fit ACT ⇤CDM model with
spectral index of ns = 0.96 computed using CAMB and HALOFIT (Smith et al. 2003). The data points between 0.02 < k < 0.19 Mpc�1

show the SDSS DR7 LRG sample, and have been deconvolved from their window functions, with a bias factor of 1.18 applied to the data.
This has been rescaled from the Reid et al. (2010) value of 1.3, as we are explicitly using the Hubble constant measurement from Riess et al.
(2011) to make a change of units from h�1Mpc to Mpc. The constraints from CMB lensing (Das et al. 2011), from cluster measurements
from ACT (Sehgal et al. 2011), CCCP (Vikhlinin et al. 2009) and BCG halos (Tinker et al. 2011), and the power spectrum constraints
from measurements of the Lyman–↵ forest (McDonald et al. 2006) are indicated. The CCCP and BCG masses are converted to solar mass
units by multiplying them by the best-fit value of the Hubble constant, h = 0.738 from Riess et al. (2011). The bottom panel shows the
same data plotted on axes where we relate the power spectrum to a mass variance, �M/M, and illustrates how the range in wavenumber k
(measured in Mpc�1) corresponds to range in mass scale of over 10 orders of magnitude. Note that large masses correspond to large scales
and hence small values of k. This highlights the consistency of power spectrum measurements by an array of cosmological probes over a
large range of scales.
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ing and the constraint of �8(⌦m/0.27)0.59 = 0.79 ± 0.03
from the CFHTLenS are both symptoms of this tension.
A simple illustration of this point is to just compare
the expected lensing spectra for the best fitting mod-
els to Planck CMB+WP+BAO reported in [9]. In Fig. 1
we have plotted the measurements of the CMB lensing
power spectrum, C��

` , and the galaxy lensing correlation
function, ⇠+(✓) (the Hankel transform of the convergence
power spectrum P), along with model predictions colour
coded by their likelihood. It is clear that, in both cases,
those parameter combinations that are a good fit to the
CMB+BAO data predict a higher level of lensing corre-
lations than observed (��2 ⇠ 20), indicating that there
could be something missing within the model. We will
make this explicit by performing a full joint likelihood
analysis of the publicly available lensing data and com-
bining this with a prior on �8(⌦m/0.27)0.3 coming from
the SZ cluster counts, which will lead to a significant
preference for such models. We note that this is not
equivalent to performing a full joint analysis including
the SZ likelihood – which is not publicly available – but
we have tested that this leads to similar results to those
presented in [10].

There are two separate analyses that we have per-
formed: a model with the standard six parameters, p,
and 1 extra parameter

P
m⌫ with N⌫ = 3 (N⌫ is the

number of massive neutrinos) and Ne↵ = 3.046; a model
with a total of 8 parameters – p+{me↵

⌫, sterile, Ne↵} – andP
m⌫ = 0.06 eV, N⌫ = 1. The first represents a degener-

ate active neutrino scenario, that is appropriate for large
values of

P
m⌫ , whereas the second is a sterile neutrino

scenario with active neutrinos in a standard hierarchy
that has the lowest value of

P
m⌫ allowed by the solar

and atmospheric constraints on the mass di↵erences.
In both cases we will follow the procedure out-

lined in [10] and use the Planck likelihood [20] that
includes a number of nuisance parameters describ-
ing the contamination from our own galaxy, extra-
galactic sources and the SZ e↵ect. We will consider
three data combinations: (I) Planck CMB+WP+BAO;
(II) Planck CMB+WP+BAO+lensing where lensing
is both the CMB lensing from Planck and SPT
and galaxy lensing from CFHTLenS; (III) Planck

CMB+WP+BAO+lensing+SZ cluster counts imposed
using a prior in the �8 � ⌦m plane of �8(⌦m/0.27)0.3 =
0.78 ± 0.01. For CFHTLenS we use the ⇠± correla-
tion functions and covariance matrix as described in [17],
choosing the smallest and largest angular scales to be 0.9
and 300 arcmin respectively. To compare the shear with
that measured from large scale structure we correct the
power spectrum on non-linear scales using the Halofit
fitting formulae [18, 19]. For SPT lensing data we follow
the same procedure as in [16], rescaling the diagonals of
the covariance matrix according to sample variance, and
adding an additional calibration-induced uncertainty to
the covariance.

Detailed constraints on the parameters are presented
in table I. We first turn our attention to the active
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FIG. 1: The CMB lensing power spectrum (top) data points
from Planck (green squares) and SPT (blue squares) and
the shear correlation function ⇠+ from CFHTLenS (bottom),
compared to predictions for parameters from samples of the
Planck CMB+WP+BAO MCMC chains with non-linear cor-
rections [18, 19]. In both cases, the data is systematically
lower than theory, although the significance is somewhat lower
than the eye would suggest in the case of CFHTLenS due to
correlations between data points.

neutrino case. In Fig. 2 we present the 1D likelihood
for

P
m⌫ which illustrates that the upper bound ofP

m⌫ < 0.254 eV that we find in the case of (I) is weak-
ened by the inclusion of the lensing data and that a peak
develops in the likelihood at non-zero

P
m⌫ . By itself the

lensing data is not su�ciently strong to induce a strong
preference, but the inclusion of the prior from the SZ
cluster catalogue leads to

P
m⌫ = (0.320 ± 0.081) eV,

which corresponds to ⇡ 4� detection of
P

m⌫ > 0.

We now consider the sterile neutrino model which
leads to a similar, but even stronger result. The re-
sults are present in Fig. 3. For (II) we find that there
is a 2.3� preference for me↵

⌫, sterile > 0 with me↵
⌫, sterile =

(0.326±0.143) eV although there is only an upper bound
of �Ne↵ < 0.96. This is strengthened to me↵

⌫, sterile =
(0.450 ± 0.124) eV and �Ne↵ = 0.45 ± 0.23 for (III).

The sterile neutrino model has the added feature that
it can be made compatible with the direct measurement
of Hubble’s constant from Cepheid variables in nearby

3

Active neutrinos Sterile neutrinos

Parameter I II III I II III

⌦bh
2 0.02218± 0.00025 0.02231± 0.00024 0.02234± 0.00024 0.02244± 0.00029 0.02256± 0.00028 0.02258± 0.00027

⌦ch
2 0.1184± 0.0018 0.1162± 0.0013 0.1152± 0.0013 0.1244± 0.0051 0.1221± 0.0041 0.1206± 0.0040

100✓MC 1.04151± 0.00056 1.04163± 0.00056 1.04170± 0.00056 1.04086± 0.00072 1.04106± 0.00065 1.04117± 0.00065

⌧R 0.092± 0.013 0.093± 0.013 0.096± 0.014 0.096± 0.014 0.099± 0.014 0.097± 0.014

nS 0.9643± 0.0059 0.9685± 0.0052 0.9701± 0.0056 0.9775± 0.0106 0.9792± 0.0106 0.9772± 0.0104

log(1010AS) 3.091± 0.025 3.088± 0.024 3.091± 0.026 3.115± 0.030 3.116± 0.031 3.109± 0.030
P

m⌫ [eV] < 0.254 < 0.358 0.320± 0.081 - - -

me↵
⌫, sterile [eV] - - - < 0.479 0.326± 0.143 0.450± 0.124

�Ne↵ - - - < 0.98 < 0.96 0.45± 0.23

H0 67.65± 0.90 67.80± 1.08 67.00± 1.07 69.69± 1.68 69.51± 1.41 69.02± 1.21

⌦m 0.310± 0.12 0.306± 0.13 0.314± 0.13 0.308± 0.12 0.308± 0.12 0.312± 0.12

�8 0.818± 0.023 0.789± 0.020 0.757± 0.014 0.813± 0.032 0.779± 0.020 0.756± 0.012

�2 lnLCMB 9804.96 9808.41 9811.35 9804.69 9809.15 9809.09

�2 lnLBAO 1.38 3.09 1.29 1.62 1.61 1.99

�2 lnLLensing,Planck �1009.56? -1030.12 -1030.05 �1018.68? -1031.76 -1031.43

�2 lnLLensing,SPT �1009.56? -1030.12 -1030.05 �1018.68? -1031.76 -1031.43

�2 lnLSZ 92.49? 5.61? 2.19 59.62? 5.74? 0.37

�2 lnL 9806.34 8781.37 8784.78 9806.31 8779.00 8780.02

TABLE I: Summary of parameter constraints for both the active and sterile neutrino analyses discussed in the text. Likelihoods
denoted by ? are not included in the total likelihood for that particular dataset.
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FIG. 2: Marginalized likelihoods for
P

m⌫ . The datasets are
colour coded in the legend, but the solid line is for (I), the
dashed line is for (II) and the dotted line is for (III). It is clear
that inclusion of lensing leads to a preference for

P
m⌫ > 0

which is compatible with that coming from the SZ cluster
counts and that there is a strong preference (⇡ 4�) in the
case of dataset (III).

galaxies which appears to be at odds with the values of
inferred by CMB analyses [21]. This is illustrated by
preferred values of H0 in these models presented in ta-
ble I being significantly larger than in the active neutrino
model without leading to an increased �2 lnLBAO. In-
cluding the prior h = 0.738±0.024 from [22] to (III) mod-

ifies the constraints to
P

m⌫ = (0.246± 0.077) eV in the
active neutrino model and me↵

⌫, sterile = (0.425±0.122) eV,
�Ne↵ = 0.592±0.275 in the sterile neutrino model, with
��2 = 6.3 between the two.

The main argument that we have presented in this
paper is that amplitude of Large-Scale Structure (LSS)
when normalized to the amplitude of CMB fluctuations
are in excess of that inferred by lensing and cluster
counts, and indeed that these two measures of the am-
plitude of the power spectrum are consistent. If we add
massive neutrinos – either active or sterile – to the cos-
mological model then we get significant detections that
are due to the decrease in small- relative to large-scale
power in such models. These measures of the amplitude
of LSS are not without their modelling di�culties, but
the fact that they appear to agree is encouraging. There
are, however, caveats to what we have said.

Firstly, we note that the improved global fit when in-
cluding massive neutrinos is usually at the expense of an
increase in �2 lnLCMB. This increase is ⇡ 6.3 for the
best-fitting model in the active neutrino case and ⇡ 4.4
for sterile neutrinos. This is outweighed by the signifi-
cant reductions in �2 lnLLensing and �2 lnLSZ (see ta-
ble I), but is reflected by the fact that preferred values
in the case of detections overlap somewhat the 95% CL
limits in the case of (I). It could be that there exists a
variant of, for example, the sterile neutrino model that
leads to a better fit to the CMB data while preserving
the positive impact on the amplitude of LSS.
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