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We may think of ecosystems as
enduring parts of nature

http://travel.nationalgeographic.com



But ecosystems and the biosphere are
dynamic, with lots of species turnover,
especially on local scales

5 1st Midwest Fish and Wildlife Conference,
Sprngficld, Thnoss

Sweeney . Ed..




However, though species come and go, there are
characteristic regularities in the macroscopic patterns
in all ecosystems

www.bio.unc.edu

www.yale.edu/yibs

WWW.CSiro.au



These regularities characterize biomes

400

w
o
o

200

Annual Precipitation (cm)

100

Whittaker Biome Diagram
Originally from RH Whittaker
Communities and Ecosystems
1975;

Modified from RE Ricklefs
The Economy of Nature
2000

:_Subtropicel Desert

Tropical
Seasonal
Forest

Savanna

Temperate
Grassland and Desert -

=

30

20 10
Average Temperature (°C)

-10

www.marietta.edu



Characteristic macroscopic patterns are emergent,
independent of much microscopic detail
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Must scale up
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This implies a need to relate
phenomena across scales, from

* cells to organisms to collectives to ecosystems and the

biosphere

and to ask

How robust are the properties of ecosystems?

How does robustness of macroscopic properties relate to
ecological and evolutionary dynamics on finer scales?

Can we develop a statistical mechanics of ecological
communities, and of coupled human-ecological systems?



A perspective from mathematics and
physics can help

“Statistical mechanics” of ecological

communities

Critical transitions

Collective phenomena and collective motion

— Emergence and pattern formation
— Statistical mechanics

Conflict and collective action



A perspective from mathematics and
physics can help

e “Statistical mechanics” of ecological
communities



Mathematical challenges:
Simplification approaches

Coarse graining

Lagrangian to Eulerian transitions
Moment closure schemes
Equation-free methods



Pattern emerges even in simplest
models of ecological competition
Durrett and Levin 1994
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... path dependency, especially due to
finite-size effects, and critical slowing
down

“Critical Slowing Down”’ in Time-to-extinction: an Example of Critical
g p
Phenomena in Ecology

AMAR GANDHI,* SIMON LEVINT AND STEVEN ORSZAG

Program in Applied & Computational Mathematics, Department of Ecology and
FEvolutionary Biology, Princeton University, Princeton, NJ 08544-1003, U.S.A.




Forest growth models have been well-
developed, and exhibit similar path

dependence
( Pacala, Botkin, Shugart, others)

[sns.lm‘.y'cars ]

Deutschman, DH, SA Levin, C Devine and LA Buttel.
1997. Science 277:1688.



Conceptual Coupled Physical - Ecosystem Model
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For forests and oceans alike, challenge
s to simplify these descriptions
through aggregation and
simplification, for example moment
closure methods



Another sort of scaling relates the
ecological and evolutionary time scales

e Adaptive dynamics and emergent population
properties
— Features of forests, grasslands and oceans
* Public goods problems
— N fixation
— Stoichiometry
— Bacterial biofilms



Ecosystems and the Biosphere
are Complex Adaptive Systems

Heterogeneous collections of individual
units (agents) that interact locally, and
evolve based on the outcomes of those
interactions.
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So too are the socio-economic systems
with which they are interlinked

www.suite101l.com *°



Features of CAS

Multiple spatial, temporal and organizational
scales

Self-organization, and consequent
unpredictability

Multiple stable states, path dependence,
hysteresis

Contagious spread and systemic risk

Potential for destabilization and regime shifts
through slow-time-scale evolution

20



Stock markets crash
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Critical transitions occur in
phy5|olog|cal states

http://www.edmontonneurotherapy.com/treatment_of migraine.html



Are there early warning indicators?
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Critical phenomena in atmospheric
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ritical phenomena occur near continuous phase transitions. 25 80
cAs a tuning parameter crosses its critical value, an

order parameter increases as a power law. At criticality, 0 z
order-parameter fluctuations diverge and their spatial 207 60 S
correlation decays as a power law'. In systems where the tuning T =
parameter and order parameter are coupled, the critical point E .| 50 S
can become an attractor, and self-organized criticality (SOC) = g
results®>’. Here we argue, using satellite data, that a critical value = 40 %
of water vapour (the tuning parameter) marks a non-equilibrium 2 10- £
continuous phase transition to a regime of strong atmospheric ] 0 3
convection and precipitation (the order parameter)—with & 20 g
correlated regions on scales of tens to hundreds of kilometres. 50 3
Despite the complexity of atmospheric dynamics, we find that 19 °
important observables conform to the simple functional forms
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COMPLEX SYSTEMS

Ecology for bankers

Robert M. May, Simon A. Levin and George Sugihara

There is common ground in analysing financial systems and ecosystems, especially in the need to identify
conditions that dispose a system to be knocked from seeming stability into another, less happy state.

‘Tipping points, ‘thresholds and breakpoints,
‘regime shifts’ — all are terms that describe
the flip of a complex dynamical system from
one state to another. For banking and other
financial institutions, the Wall Street Crash
of 1929 and the Great Depression epitomize
such an event. These days, the increasingly
complicated and globally interlinked finan-
cial markets are no less immune to such
system-wide (systemic) threats. Who knows,
for instance, how the present concern over
sub-prime loans will pan out?

Well before this recent crisis emerged, the
US National Academies/National Research
Council and the Federal Reserve Bank of New
York collaborated' on an initiative to “stimu-
late fresh thinking on systemic risk” The
main event was a high-level conference held
in May 2006, which brought together experts
from various backgrounds to explore parallels
between systemic risk in the financial sector

spent on studying systemic risk as compared
with that spent on conventional risk man-
agement in individual firms? Second, how
expensive is a systemic-risk event to a national
or global economy (examples being the stock
market crash of 1987, or the turmoil of 1998
associated with the Russian loan default, and
the subsequent collapse of the hedge fund
Long-Term Capital Management)? The answer
to the first question is “comparatively very
little”; to the second, “hugely expensive”

An analogous situation exists within fish-
eries management. For the past half-century,
investments in fisheries science have focused
on management on a species-by-species basis
(analogous to single-firm risk analysis). Espe-
cially with collapses of some major fisheries,
however, this approach is giving way to the view
that such models may be fundamentally incom-
plete, and that the wider ecosystem and envi-
ronmental context (by analogy, the full banking
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Lecture outline

e Critical transitions



Shallow Lakes
(Scheffer, Carpenter)

http://www.lifeinfreshwater.org.uk/Web%20pages/ponds/Pollution.htm



There has been a lot of recent
attention to critical transitions

Anticipating Critical Transitions

Marten Scheffer,™?* Stephen R. Carpenter,®> Timothy M. Lenton,* Jordi Bascompte,’
William Brock,® Vasilis Dakos,™> Johan van de Koppel,”® Ingrid A. van de Leemput,* Simon A. Levin,’

Egbert H. van Nes,* Mercedes Pascual,****

John Vandermeer'®

Tipping points in complex systems may imply risks of unwanted collapse, but also opportunities
for positive change. Our capacity to navigate such risks and opportunities can be boosted by
combining emerging insights from two unconnected fields of research. One line of work is
revealing fundamental architectural features that may cause ecological networks, financial
markets, and other complex systems to have tipping points. Another field of research is uncovering
generic empirical indicators of the proximity to such critical thresholds. Although sudden

shifts in complex systems will inevitably continue to surprise us, work at the crossroads of these
emerging fields offers new approaches for anticipating critical transitions.

bout 12,000 years ago, the Earth sud-
Adenly shifted from a long, harsh glacial

episode into the benign and stable Hol-
ocene climate that allowed human civilization to
develop. On smaller and faster scales, ecosystems
occasionally flip to contrasting states. Unlike grad-
ual trends, such sharp shifts are largely unpre-
dictable (/-3). Nonetheless, science is now carving
into this realm of unpredictability in fundamental
ways. Although the complexity of systems such
as societies and ecological networks prohibits ac-
curate mechanistic modeling, certain features turn
out to be generic markers of the fragility that may

emerging research areas and discuss how excit-
ing opportunities arise from the combination of
these so far disconnected fields of work.

The Architecture of Fragility

Sharp regime shifts that punctuate the usual fluc-
tuations around trends in ecosystems or societies
may often be simply the result of an unpredict-
able external shock. However, another possibility
is that such a shift represents a so-called critical
transition (3, 4). The likelihood of such tran-
sitions may gradually increase as a system ap-
proaches a “tipping point” [i.e., a catastrophic

points. The basic ingredient for a tipping point
is a positive feedback that, once a critical point
is passed, propels change toward an alternative
state (6). Although this principle is well under-
stood for simple isolated systems, it is more chal-
lenging to fathom how heterogeneous structurally
complex systems such as networks of species,
habitats, or societal structures might respond to
changing conditions and perturbations. A broad
range of studies suggests that two major features
are crucial for the overall response of such sys-
tems (7): (i) the heterogeneity of the components
and (ii) their connectivity (Fig. 1). How these
properties affect the stability depends on the na-
ture of the interactions in the network.

Domino effects. One broad class of networks
includes those where units (or “nodes’) can flip
between alternative stable states and where the
probability of being in one state is promoted by
having neighbors in that state. One may think, for
instance, of networks of populations (extinct or
not), or ecosystems (with alternative stable states),
or banks (solvent or not). In such networks, het-
erogeneity in the response of individual nodes
and a low level of connectivity may cause the net-
work as a whole to change gradually—rather than
abruptly—in response to environmental change.
This is because the relatively isolated and diffes-
ent nodes will each shift at another level of an en-
vironmental driver (8). By contrast, homogeneity
(nodes being more similar) and a highly connected
network may provide resistance to change until a

ciencemag.org on October 21, 2012



Many such transitions have
characteristic signals

Critical slowing down
ncreasing variance =
ncreasing autocorrelation

~lickering

Bardy, B.; Oullier, O.; Bootsma, R. J.;
Stoffregen, T. A.:J. Exp. Psych. Vol 28(3):

499-514.



More on this and the need for caution
tomorrow



Grassland
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Alternative stable states

Nature Vol. 269 6 October 1977

are well-documented in ecology

471

review article

Thresholds and breakpoints in ecosystems
with a multiplicity of stable states

Robert M. May*

Theory and observation indicate that natural multi-species assemblies of plants and animals are likely to
possess several different equilibrium points. This review discusses how alternate stable states can arise in
simple 1- and 2-species systems, and applies these ideas to grazing systems, to insect pests, and to some

human host-parasite systems.

IN all but the most trivial areas of enquiry. there arise questions
about the extent to which events are shaped by predictable natural
laws as against the accidents of initial conditions and per-
turbations. Is the human story largely a deterministic tale of
civilisations marching to Toynbee’s tune, three and a half beats to
disintegration, or did the hinge of history turn on the length of
Cleopatra’s nosc? Such questions of the relative roles of chance
and necessity! arc fundamental in modern cosmology?-, in the
foundations of statistical mechanics®-?, and in evolutionary
biology' and ecology. even though they may arise in less blatant
and romantic fashion than the ‘what ifs" of history and the social
sciences.

Viewing the grand sweep of evolution, we can see many
examples where the taxonomic details of the plant or animal that
occupies a given niche at a given time and place depend on
historical accident, but where the niches themselves, and the broad
patterns of community organisation. are remarkably constant® ?.

Taking a much narrower and more local view, it is interesting to
consider a particular assembly of species, with specified in-
teractions among them. and to ask questions about the dynamics
of the system. s the dynamical behaviour described by the multi-
dimensional generalisation of a single valley (a global attractor)?
Or is the dynamical landscape pockmarked with many different
valleys. separated by hills and watersheds? If the former, the
system has a unique stable state. to which it will tend (like a marble
sceking the bottom of a cup) from all initial conditions, and
following any disturbance. If the latter, the state into which the
<vetem <ettles denends on the initial condition<: the svetem mav

able reality.” A similar conclusion emerges from Connell’s and
Slatyer’s'? survey of mechanisms of succession in natural com-
munities.

The view that complicated ecosystems possess many alternative
stable states is also supported by theoretical studies of mathemati-
cal models that caricature such systems. From the growing number
of possible examples, I mention only two, chosen from opposite
ends of the spectrum. Austin and Cook'? have made computer
studies of a system in which 94 species (embracing plants,
herbivores and carnivores) are linked together by interactions that
aim to be relatively realistic; the system has many equilibrium
points, and is easily transferred from one to another. Case and
Gilpin'# have explored a relatively abstract system, in which the
coefficients in the interaction matrix for a n-species
Lotka- Volterra model are assigned random values: if n is at all
large, the system typically collapses to one or other of a variety of
simpler systems with fewer species, and this final steady state
depends on the initial population values. The notion of “resilience’
has been introduced by Holling!® in an attempt to characterise the
degree to which a system can endure perturbations without
collapsing or being carried into some new and qualitatively
different state. Theoretical ideas about resilience, along with
interpretive reviews of diverse other meanings that can be attached
to ‘stability” inan ecological context, are the subject of many recent
papers'® 22,

Itis thusclear that real ecosystems possess multiple stable states,
as do plausible mathematical models. Unfortunately, the com-
nlications inherent in milti-snecies svetems almost invariablv



Savanna-forest systems exhibit bistability in
vegetation distribution

- Deterministic savanna
. 8 Bistable, currently savanna
- Bistable, currently forest
B Deterministic forest

Changes in precipitation can drive system flips
Staver et al. 2011 (Ecology and Science)
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avanna/Forest Distributions

Fire separates savanna from forest within the intermediate
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KRUGER NATIONAL PARK, SAVANNA

Carla Staver



Relatively simple models can capture this behavior

T _____ \
\____ w(G

(all -tree) —_—> (all gras})
rass

Grass d_G — MS + Vv — ﬁGT
dt
Saplings ﬁ = /))GT — O)(G)S — MS
dt
Trees d_T - CU(G)S -vI
dt
G+S5+T =1

Staver et al. 2011 (Ecology) and Staver & Levin
(Amer.Natur.)



Archibald, Staver, Levin PNAS2011
- Recreating historical regimes
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Fig. 4. Broadly showing the six stages of human evolution used to determine parameters for the stochastic model runs. The parameters p and p were derived
from published relationships between population density and fire density (B) and population density and land transformation (D), respectively; A was de-
termined from field data on fire spread probability in the wet and dry seasons in a savanna national park (C). See Table 1 and Materials and Methods for more
details on the parameterization. In B and D the data represent medians with 75th and 25th percentiles.
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The form of the transition functions can
be derived from fire percolation models

®
)
| -
©
-
c
—
-
m

Percent burnt area

Tree cover




Savanna/Forest Distributions

At equilibrium:
G)=—-Y
(G- pG-v
L(G)=w(G)
G ="
£G)= o

For stability:
£ (G)> £, (G)
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Staver et al. 2011 (Ecology) and Staver & Levin 2012

(Amer.Natur.)



4 Backward

_ ¢ Responses to changes in
4 shift

rainfall status will be rapid,
threshold transitions

Ecosystem state

 Changes will not be linear or
easy to reverse

* Similar phenomena in other
systems, such as lakes and
pathogen systems

Ecosystem state

Precipitation

Modified very slightly from Scheffer et al. 2003, Nature



Adding Forest Trees (fire sensitive)

a;—G=uS+vT+¢(G)F—ﬁGT—aGF
[

% = pGT —w(G)S — uS —aSF
d—T =w(G)S —vT -alF
dt
‘;—1: =(a(1-F)-¢(G))F

G+S+T+F =1

Staver and Levin, American Naturalist 2012



This model exhibits complex orbits. How real are they?
Full nonlinear analysis still lacking

—— grass (G)
---- savanna sapling cover (S)
- — savanna tree cover (T)
A B forest tree cover (F)
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*Heteroclinic cycles.

Staver & Levin (American Naturalist, 2012)



Lecture outline

* Collective phenomena and collective motion
— Emergence and pattern formation
— Statistical mechanics
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More Is Different

Broken symmetry and the nature of

the hierarchical structure of science.

The reductionist hypothesis may still
be a topic for controversy among phi-
losophers, but among the great majority
of active scientists I think it is accepted
without question. The workings of our
minds and bodies, and of all the ani-
mate or inanimate matter of which we
have any detailed knowledge, are as-
sumed to be controlled by the same set
of fundamental laws, which except
under certain extreme conditions we
feel we know pretty well.

It seems inevitable to go on uncrit-
ically to what appears at first sight to
be an obvious corollary of reduction-
ism: that if everything obeys the same

P. W. Anderson

planation "of phenomena in terms of
known fundamental laws. As always, dis-
tinctions of this kind are not unambiguous,
but they are clear in most cases, Solid
state physics, plasma physics, and perhaps
also biology are extensive. High energy
physics and a good part of nuclear physics
are intensive. There is always much less
intensive research going on than extensive.
Once new fundamental laws are discov-
ered, a large and ever increasing activity
begins in order to apply the discoveries to
hitherto unexplained phenomena. Thus,
there are two dimensions to basic re-
search. The frontier of science extends all
along a long line from the newest and most
modern intensive research, over the ex-
tensive research recently spawned by the
intensive research of yesterday, to the

SCIENCE

less relevance they seem to have to the
very real problems of the rest of sci-
ence, much less to those of society.

The constructionist hypothesis breaks
down when confronted with the twin
difficulties of scale and complexity. The
behavior of large and complex aggre-
gates of elementary particles, it turns
out, is not to be understood in terms
of a simple extrapolation of the prop-
erties of a few particles. Instead, at
each level of complexity entirely new
properties appear, and the understand-
ing of the new behaviors requires re-
search which I think is as fundamental
in its nature as any other. That is, it
seems to me that one may array the
sciences roughly linearly in a hierarchy,
according to the idea: The elementary
entities of science X obey the laws of
science Y.

X Y

solid state or elementary particle

many-body physics physics
chemistry many-body physics
molecular biology chemistry

cell biology molecular biology

psychology physiology

social sciences psychology

But this hierarchy does not imply

e e wmy %@ A
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Power laws can
Positive feedbacks promote power-law clustering . .
of Kalahari vegetation arise in ma ny WayS

Todd M. Scanlon’, Kelly K. Caylor?, Simon A. Levin® & Ignacio Rodriguez-lturbe*

Satellite Image (Pandamatenga) Global constraint only Global constralnt w/ positive local feedbacks
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Vegetation patterns in semi-arid
landscapes are self-organized

Meron et al. 2004. Chaos, Solitons & Fractals

Volume 19, Issue 2, January 2004, Pages 367—376




Pattern forms from a combination of
interaction and redistribution

>IAM KEVIEW © 1985 Society for Industrial and Applied Mathematics
Vol. 27, No. 1, March 1985 002

i

PATTERN GENERATION IN SPACE AND ASPECT*

SIMON A. LEVINT anDp LEE A. SEGEL*

Abstract. A survey is presented of theories for the generation and maintenance of spatial pattern in
reaction-diffusion equations and their generalizations. Applications are selected from the biological sciences
and physical chemistry. Special emphasis is placed on nonlocal interaction, as manifested by the inclusion of
terms involving higher derivatives or integrals. It is stressed that traditional ideas of spatial pattern generation
can usefully be extended to the study of pattern in general descriptive (“aspect”) variables, particularly in
understanding ecological diversity and heterogeneity.

Key words. pattern formation, reaction-diffusion, diffusion, mathematical biology, population ecology

1. Introduction. Striking spatial patterns are found in a variety of physical sys-



There iIs a long history concerned with
the modeling of animal movements

Haldane Fisher Wright



The null movement hypothesis: a
random walk plus growth

-15 =10 -5

onlot = D(I°n/ox* +d°n/dy°) + f(n)

mathworld.w



The rde approach extends easily to
coupled populations

ou
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*
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Alan Turing (1912-1954)

Developmental Biology

Alan Turing posited the existence of two
Interacting chemicals (morphogens) in a

homogeneous Space




Turing instabilities:

if;= F(u,v)+ D, V-u
?t/=G(u,v)+ D Vv

uniform states can become unstable if
D /D, s above some threshold.



Dissipative structures

* Nonlinear theory (Segel and Levin)
* Multiple scale expansion
* Successive approximations

* Stable non-uniform patterns can emerge

Meinhardt



Do such mechanisms underlie
spatial patterns in ecology?

arts.monash.edu.au/ges/staff/ddunkeriey



ankton are patchy on almos
every scale

disc.sci.gsic.nasa.gov



Could Turing apply to planktonic
patchiness?

* Phytoplankton as “activators”
* Zooplankton as “inhibitors”

* Both Levin and Segel, and Okubo,
independently proposed this

56



Turing mechanism didn’ t work

Zooplankton are more patchily
distributed

58°39.9N/00°21.0E TO 59°15.3N/00°20.7&

Mackas et
al 57




Zooplankton don’ t move randomly,
but aggregate

www2.le.ac.uik



Other approaches to movement

» Long-distance spatial contact process
» Correlated random walk

http://privatewww.essex.ac.uk/~ecodling/



Other approaches to movement

 Anomalous diffusion
— Variance increases as a power of time

A

superdiffusion
(rfye 1, al

MSD {r{(x))

norm. diffusion
|f). X D!

subdiffusion
e v, a<l

>

timer

www.wikipedia.org



Eur. Phys. J. Special Topics 157, 157-166 (2008)
(© EDP Sciences, Springer-Verlag 2008 THE EUROPEAN

DOL: 10.1140/epjst /¢2008-00638-6 PHYSICAL JOURNAL
SPECIAL TOPICS

Superdiffusion and encounter rates in diluted,
low dimensional worlds

F. Bartumeus'?, P. Ferndndez?, M.G.E. da Luz?, J. Catalan*, R.V. Solé¢®, and S.A. Levin'



Does Levy search optimize?

Optimizing the success of random searches : Article : Nature http://www.nature.com/nature/journal/v401/n6756/full/401911...

Letters to Nature

Nature 401, 911-914 (28 October 1999) | doi:10.1038/44831; Received 10 May 1999; Accepted
12 August 1999

Optimizing the success of random searches

G. M. Viswanathanl23_ Sergey V. Buldyrev3, Shiomo Havinl2, M. G. E. da Luz E. P.

RaposoZ and H. Eugene Stanley1



Levy walks are just one of a variety of
more sophisticated strategies

Levy walk
Gradient tracking
Learning
Collective behavior

Christina
Agapakis
Scientific

American | ©°
October 17,
2011



Keller-Segel Model

Random cell Directed cell
movement movement
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Chemical Chcmlcal
diffusion degradation
by cells

J. Sherratt



Lagrangian-Eulerian connections }U.

* Begin from microscopic (Lagrangian) rules
mi=F+ F+ F+F '

Random Directed Grouping  Arayal







What is the relationship between an
individual agent




...and how it responds to its
neighbors and local environment




...and the macroscopic properties of ensembles of such agents?




Flierl, Grunbaum, Levin, Olson 1999

Lagrangian/Eulerian transformation

1. Start from individual-based model, in
which positions or velocities change
according to specific rules.



Lagrangian/Eulerian transformation

1. Start from individual-based model, in
which positions or velocities change
according to specific rules.

2. Write population descriptions in terms of
spatial/velocity density.



Spatial/velocity density

n (X,V,t+5t)=
f dx'dv' &y (x—x"—V'or;x',v', t)

* By (v=v —aor;x',v,t)n (xX',V', 1)

P = probability particle at x’, velocity v', time t
has random jump 6x = x-x"-v’0t, etc.



Lagrangian/Eulerian transformation

1.

Start from individual-based model, in
which positions or velocities change
according to specific rules.

Write population descriptions in terms of
spatial/velocity density.

To close system, assume something like
Poisson distribution locally.



Closure and continuum equation

0 0
— n(X,V,)= vn(x,v,t
S 10vaD== _ [yn(av,9

? [an(xv,D]
v,

L J°
2 9V, dV;

[)/ If n(XiVJt)



If closures are good, these
approximations work well

Flierl et al., JTB 1999

Otherwise, equation-free methods (Kevrekidis)



But real aggregations are
heterogeneous assemblages of
individuals



Claudo Carere
StarFLAG EU FP6 project




Couzin, Krause, Franks, Levin

www.nature.com/nature

‘ ~ Leadership

- ‘prehisto:y N

Adding flesh \

~ tothe bOnes \

Ozone .

depletlonb AT :
Whose methyls . =5 \ e
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Reanalysing

= the genome

Genes work

bothways

numbers

lain Couzin/BBC

* Utilize simulations to explore these issues
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So the direction chosen by informed individuals must
reconcile these tendencies.
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Unregistered Screen Recorder Gold
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Unregistered Screen Recorder Gold
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Unregistered Screen Recorder Gold
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Animal groups may be led by a
small number of individuals

accuracy
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proportion of informed individuals p

From Couzin et al., 2005



Metronome Synchronization

N=5

Rate=208+/-2
Initial Phase: Rand
09 Oct 2005

Serial V1322




Competing preferences

Difference in preference
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Competition and consensus







Urige|Uzll niurnoars of leziedars
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Couzin, I.D., Krause, J., Franks, N.R. and Levin,
S.A. (2005) Effective leadership and decision-
making in animal groups on the move. Nature
434, 513-516




Leonard, Couzin, Levin, etc.

Kuramoto model

(9] = Sin(§1—9j)+k§:sin(9l—9j) 17=1,...,Nq
l]:\[l
9j = sin(ég—éj)—l—kZSin(@l—@j) 7=N1+1,...,N1 + N>
N [=1
0; = k)Y sin(6;—06;) j=Ni+No+1,...,N
[=1

Gradient system, so all solutions go to equilibrium



[ he complex order parameter

0

r measures the level of synchrony in the group,
1 gives the average direction of the group.




We write the dynamics for ¥1, 1o, 13 the aver-
age heading of respectively n1,mn> and ns3.

ubj__ze

‘]lenj j:17273

?'“jeubj -+ Zlﬁ] — Z z@le 7 =1,2,3.

J len;

During the second time scale
Everyone in cluster
wj has same heading

1

0) Courtesy, Ben Nabet




10 leaders 20 followers K=1

1.5

0.5

O
(9]
T

-1.5F

g %)

2 DD
Nabet, Leonard, et al.



We get for the second time scale

Y1 = sin(01 —y¥1) + ENasin(yo — 1) + kN3 sin(¢3 — 1)
Yo = sin(fy — o) + kN1sin(y1 — o) + kN3 sin(y3 — 1)
Y3 = kNjsin(y1 —¥3) + kNpsin(yo — ¢3)

Courtesy, Ben Nabet
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Preliminary conclusions

* Nalve individuals are crucial to consensus
* Non-spatial models miss key detall
* Multi-scale analyses also essential



Uninformed population can improve decision
making of groups in motion

Naomi E. Leonard *, Tian Shen * , Benjamin Nabet T, Luca Scardovi ¥, lain D. Couzin ¢, and Simon A. Levin ®

*Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA,*RoyaI Bank of Canada, New York, NY, USA,iDepartment of Electrical

Engineering and Information Technology, Technical University of Munich, Munich, Germany, and $Department of Ecology and Evolutionary Biology, Princeton University,

Princeton, NJ, USA

Submitted to Proceedings of the National Academy of Sciences of the United States of America

It has been shown using a computational agent-based model that
a group of animals moving together can make a collective decision
on direction of motion, even if there is a conflict between the direc-
tional preferences of two small subgroups of “informed” individuals
and the remaining “uninformed” individuals have no directional pref-
erence [1]. The model requires no explicit signaling nor identifica-
tion of informed individuals; individuals merely adjust their steering
in response to socially acquired information on relative motion of
neighbors. We present a continuous-time version of the model, and,
using stability analysis and model reduction by time-scale separation,
we prove a necessary and sufficient condition for stable convergence
to a collective decision in this model. The stability of the decision,
which corresponds to most of the group moving in one of two alter-
native preferred directions, depends explicitly on the magnitude of
the difference in preferred directions; for a difference above a thresh-
old the decision is stable and below that same threshold the decision
is unstable. Given qualitative agreement with the results of the sim-
ulation study of [1], we proceed to explore analytically the subtle but
important role of the uninformed individuals in the continuous-time
model. We derive the sensitivity of the collective decision making
to the size of the uninformed population, showing that the region
of attraction for the decision increases with increasing numbers of
uninformed individuals.

collective decision making | dynamics | social interactions

Explaining the ability of animals that move together in a
group to make collective decisions requires an understanding
of the mechanisms of information transfer in spatially evolv-
ing distributions of individuals with limited sensing capability
[2, 3] [references]. In groups such as fish schools and large in-
sect swarms, it is likely that individuals can only sense the
relative motion of near neighbors and may not have the ca-

the group can make a collective decision: with two informed
subgroups of equal population (one subgroup per preference
alternative), a collective decision to move in one of the two
preferred directions is made with high probability as long as
the magnitude of the preference conflict, i.e., the difference in
preferred directions, is sufficiently large. For small conflict,
the group follows the average of the two preferred directions.
Further, simulations in [6] show evidence that increasing the
population size of uninformed individuals lowers the thresh-
old on magnitude of conflict, making it “easier” for a collective
decision to be made.

Simulations of the kind reported in [1] are highly sugges-
tive, but because they contain so many degrees of freedom, it
is difficult to identify the influences of particular mechanisms.
In this paper we present an approximation to the individual-
based model [1] that allows deeper analysis into the micro-
scopic reasons for the observed macroscopic behaviors and a
broader exploration of parameter space. The model we pro-
pose and study is represented by a system of ordinary differ-
ential equations. As in the formulation of [5], each agent is
modelled as a particle moving in the plane at constant speed
with steering rate dependent on inter-particle measurements
and, for informed individuals, on a preferred direction. In [5]
two time-scales, observed in the simulations of [1], are for-
mally proved for the system of equations; in the fast time-
scale, alignment is established within each subgroup of agents
with the same preference (or lack of preference), while in the
slow time-scale, the reduced-order model describes the aver-
age motion of each of the two informed subgroups and the
uninformed subgroup.

In [5] assumptions are made that simplify the analysis.



Coupled oscillator approximation
Leonard et. al, PNAS

In subgroup 1, represent as

dé,; s
d_tJ = sin(6, — 0;(t)) -

in subgroup 2 as

do; L=
d_tJ = sin(f2 — 6,(t)) -

[1]

[2]



Coupled oscillator approximation
Leonard et. al, PNAS

In subgroup 1, represent as

do;

— = sin(01 — 0; (1) + = Eaﬂ(t) sin(6:(¢) — 05 (1)),
in subgroup 2 as

do; Ki

d_t = sin(f2 — 0;(t)) + N ;a.}l(t) sin(0:(t) — 05(1)),

and in subgroup 3 as

dt = Zaﬂ )sin(0;(t) — 6;(t)) .

where coupling coefficients respond dynamically

[3]



Conclusions from analysis

* Multiple scales

* Coupled oscillator models explain a great
deal

» Explicit spatial models are needed

* Unopinionated individuals are crucial to
consensus, and enhance the success of the
majority viewpoint



LAY

) ©

Fig. 1. Coupling in manifolds Mg (Left) and Mgos (Right) among sub-
groups 1, 2, and 3 as indicated by arrows.



Slow time scale

¥y _ sin(0; — ¥ (t))+% (A12Nosin(Wa (1) — W1 (2))

dt
+ A13N3sin(W5 () — ¥ (2)))

T2~ sin(0-¥2(1)) + 5 (AnNisin(¥ (1)~ W (1)

+ A N3sin(W3 (1) — W2 (2)))

d¥Y; K :
d—t3 — ﬁl (A13Nsin(Wq (t) — ¥5(¢)) [6]

L A5 Nosin(W (1) — W5 (1))).

Aij=0 orl



Table 1. Possible combinations of stable (S) and unstable (U)
manifolds given N; > 2N,

Mo1 M0 Moo Moo Moo1 Moo Mo11 Mi14

cCCCCC
CCCCC
ST Lunnun
S Lnnun
ST Lunnun

U
U
S
S
S

C wn CwC

U
U
U
U
S

Subscripts refer to A;,, A3, Ays



Lecture outline

Statistical mechanics of ecological
communities

Critical transitions

Collective phenomena and collective motion

— Emergence and pattern formation

Conflict and collective action



What is the value of information?

Searching on Resource Landscapes

Resource, p

kﬁ(&%@m =T

Position, x Grunbaum

How does selection shape the trade-off between
tracking resources and tracking other individuals?



Questions

* How many leaders?
* How many followers?



Questions

How many leaders?
How many followers?

Group optimality
Game-theoretic solutions

Lessons for cooperation in public goods
situations



Distributed, communicating
robots

Naomi

Leonard;
Photo, David Benet

Naomi Leonard
109



Vishwesha Guttal' and lain D. Couzin'

BENAS

Social interactions, information use, and the
evolution of collective migration

Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544
Edited* by Simon A. Levin, Princeton University, Princeton, NJ, and approved July 19, 2010 (received for review May 17, 2010)

Migration of organisms (or cells) is typically an adaptive response to Here, we develop an individual-based, spatially explicit evolu-
spatiotemporal variation in resources that requires individuals to  tionary mode!l of organismal movement and social interactions and
detect and respond to long-range and noisy environmental gra-

dients. Manv araanisms. fram wildeheest ta hacteria. miarate en  dencitiee and met-henafit drmictiree that renrecent diveres fen-

use this to investigate migratory strategies under a wide range of

Specialization and evolutionary branching
within migratory populations

Colin J. Torney', Simon A. Levin, and lain D. Couzin

Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544

Contributed by Simon A. Levin, September 28, 2010 (sent for review April 30, 2010)

Understanding the mechanisms that drive specialization and spe-
ciation within initially homogeneous populations is a fundamental
challenge for evolutionary theory. It is an issue of relevance forsig-
nificant open questions in biology concerning the generation and
maintenance of biodiversity, the origins of reciprocal cooperation,
and the efficient division of labor in social or colonial organisms.

PN A

In a recent study (13) this process was examined using an
individual based model governed by localized rules of attraction,
alignment etc., with differing degrees of independence and soci-
ality. This work showed that, under certain conditions, specialized
groups of leaders form. The challenge in understanding and
classifying models of this type lies in identifying an appropriate

Leadership, collective motion and the evolution of migratory strategies

Vishwesha Guttal® and lain D. Couzin®*

Department of Ecology and Evolutionary Biology; Princeton University; Princeton, NJ USA




Guttal et al.
Simple model: wide range of dynamics

Brownian swarms Collective Migration

Migratofry
: Benefits per

A Density=1.0 idivudal
1

S
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I\

Random walking
individuals

>

Gradient detection ability wWg

Thanks to lain Couzin



Evolutionary branching: leaders and
followers
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* Small fraction of population evolve to be leaders (large w, but small w,)
* the rest naively follow others (small w; large w,)

Guttal and Couzin, PNAS, 2010 Thanks to lain Couzin



Torney, Levin and Couzin

Evolving specialized leadership roles

 Assume reproductive fithess is dependent on following a
defined migration route

 The route is not known a priori but shown by environmental
cues

 Detecting these cues is
costly (e.g. lost foraging
time, reduced predator &
vigilance, energetic costs
of exploration)

 Naive following of others
Is a low cost alternative
strategy

Specialization and evolutionary branching within migratory populations
Colin Torney, Simon A. Levin & lain D. Couzin ﬂ




Evolving specialized leadership roles

 Model fluctuating environmental sighal as a stochastic
process

* |ndividual heading 6 follows mean reverting process,
where 6=0 is the optimum migration direction

A0, = —x40dt + odW,

/ \

_ _ Noise term,
Level of investment in representing
detecting the fluctuations or errors in
environmental cue detection

* Level of investment X4 Is costly but following others is
free



Natural selection

* Select for highest average migration speed,
minus a cost function



Evolution:
In absence of social information,
fitness is

F =exp(-0° /4x,)

Mean Velocity



Quantifying the social information

* Follow Kuramoto's approach for coupled oscillators to reduce
population orientations to 2 dimensional order parameter

Average

N
1 i0 /w i0 i 4" heading
— e = p(@)e”df = re
N ; —m \

Degree of ordering, r =0
complete disorder, r = 1
completely aligned

* |eads to coarse grained representation of social interactions

d0; = —x5(0 — ¥)dt + /(1 — r)dWs
? \

Level of Turns toward mean Noise is decreasing function
sociality population heading of degree of ordering



Add these together

do, =(x,db, +xd0)/(x, + x)



Adaptive dynamics and branching

Evolutionary change determined
by differential fitness of mutant in
the resident population

‘SI(Z/) = }?(Z/aai)-_ }7(35:£)
Population moves toward convergence

stable solution (CSS)

But if CSS not an evolutionary stable
solution (ESS) branching will occur -

O°F (y,z")

> 0
é)yQ y=x*

Branching and specialized sub-
populations of leaders and followers
emerge if CSS is less than critical
value (red line)
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Conclusions

Collective phenomena and emergence
characterize systems, from microbial
communities to the biosphere

A fundamental challenge is to scale from
microscopic to macroscopic

Consensus formation is a challenge in all
systems

Methods from mathematics and physics can
inform and be inspired.



