A mathematical model for the
eradication of Guinea worm
dise‘_ase

Robert Smith?

Department of Mathematics and Faculty of Medicine

The University of Ottawa

1

[II1



Outline

 Biology/epidemiology of Guinea worm
disease



Outline

 Biology/epidemiology of Guinea worm
disease

« Mathematical model



Outline

 Biology/epidemiology of Guinea worm
disease

 Mathematical model
» Impulsive differential equations



Outline

Biology/epidemiology of Guinea worm
disease

Mathematical model
Impulsive differential equations

Thresholds for theoretical control of the
disease



Outline

Biology/epidemiology of Guinea worm
disease

Mathematical model
Impulsive differential equations

Thresholds for theoretical control of the
disease

Evaluation of practical control methods



Outline

Biology/epidemiology of Guinea worm
disease

Mathematical model
Impulsive differential equations

Thresholds for theoretical control of the
disease

Evaluation of practical control methods
Implications.



Background

* Guinea worm disease is
one of humanity’s oldest
scourges




Background

* Guinea worm disease is
one of humanity’s oldest
scourges

e |tis mentioned In the bible
and afflicted Egyptian
mummies




Background

* Guinea worm disease is
one of humanity’s oldest
scourges

e |tis mentioned In the bible
and afflicted Egyptian
mummies

* Europeans first saw the
disease on the Guinea
coast of West Africa in the
17th century.
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Infection

It is a parasite that lives in the drinking water

Carried by water fleas which are ingested by
humans

Stomach acid dissolves the flea, leaving the
parasite free to penetrate
the body cavity

The parasite travels to
the extremities, usually
the foot

It resides here for about
d yea I, The Guinea Worm
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Transmission

* When ready to burst,
the worm causes a
burning and itching
sensation

* The host places the
infected limb in water

* At this point, the
worm ejects
hundreds of
thousands of larvae,
restarting the cycle.
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The worm

The worm can grow up to a metre in length

Can be removed by physically pulling the
worm out, wrapped around a stick

Only 1-2cm can be removed per day
This takes up to two months.
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Burden of infection

The medical symbol of @
the Staff of Asclepius is ‘ -
based upon the stick used

to extract guinea worms in
ancient times

The disease doesn't kill, but is
extremely disabling, especially
during the agricultural season

There is no vaccine or curative drug
Individuals do not develop immunity.
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Geography

* During the 19th and 20th centuries, the
disease was found in
— southern Asia
— the middle east
— North, East and West e .

Africa

* |In the 1950s, there were an
estimated 50 million cases...

» ...nhowever, today it is almost
eradicated.
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Eradication program

* However, since 1986, concerted eradication
programs have been underway

» Largely due to efforts of former preS|dent
Jimmy Carter .w

* Organisations:
— The Carter Center

— National Guinea worm
eradication programs

— Centers for Disease Control
— UNICEF
— World Health Organization.
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On the brink of eradication

« 1989: 892,000 cases, widespread countries
* 1996: 96,000 cases, 13 countries
(none in Asia)

o« 2013: <150 cases, 4 countries
— South Sudan
— Ethiopia
— Mali
— Chad

* |f eradicated, it will be the first parasitic
disease and also the first to be eradicated

using behaviour changes alone.
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Prevention

Drinking water from underground sources

Infected individuals can be educated about
not submerging wounds in drinking water

Cloth filters that fit over pots and pans can
be distributed to villages

Nomadic people have received personal-use
cloths fitted over pipes, worn around the
neck

Chemical larvacides can be added to
stagnant water supplies.
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Continuous treatment

However, continuous water
treatment is neither
desirable nor feasible

There are environmental
and toxicity issues

Also limited supplies of
resources

Thus, we consider
chlorination at discrete
times.
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Impulsive Differential Equations

Assume chlorination is instantaneous

That is, the time required for the larvicide to be
applied and reach its maximum is assumed to
be negligible

Impulsive differential equations are a useful

formulation for systems that undergo rapid
changes in their state

The approximation is reasonable when the time
between impulses is large compared to the
duration of the rapid change.



Putting it together

* The model thus consists of a system of
ODEs (humans) together with an ODE and a
difference equation (parasite).
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Equations

 The mathematical model is
S' =11 — BSW — uS + kI t £ty
E' = 3SW — aF — uFE
I'=aF — kI — ul
W' =~I — uwW
AW = —rW

e {x Is the chlorination time

* Chlorination may occur at
regular intervals or not.

S=susceptibles 11=birth rate P=transmissability
u=background death rate E=exposed I=infectious
W=parasite-infested water «=recovery rate
a=incubation period y=parasite birth rate
uw=parasite death rate r=chlorine effectiveness
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The system without impulses

* Two equilibria: disease free and endemic

AN

1 o
(—,0,0,0) and (S, E, I, W)
14

* The former always exists
* The latter only exists for some parameters.

S=susceptibles I11=birth rate
u=background death rate
E=exposed I=infectious
W=parasite-infested water
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The basic reproductive ratio

ITav g
plo+ p) (K + p)pw
» We can prove the following:

— When Ro<1, the disease-free equilibrium is the
only equilibrium and is stable

— When Ro>1, the disease-free equilibrium is
unstable; the endemic equilibrium exists and is
stable

 Thus, Ro is our eradication threshold.

Ry =

I1=birth rate B=transmissability u=background
death rate k=recovery rate o=incubation period
y=parasite birth rate pw=parasite death rate
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Effect of interventions

» Education discourages
infected individuals from
putting infected limbs in
the drinking water

Ry =

lHa~vyps

plo =+ p) (K £ p)

» This decreases y and hence Ro
* Filtration decreases 3 and hence Ro
* (Continuous) chlorination increases uw and

hence decreases Ro.

I1=birth rate B=transmissability nu=background death rate
K=recovery rate a=incubation period y=parasite birth
rate uw=parasite death rate Ro=basic reproductive ratio
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The system with impulses

* |If we have maximum growth of larvae, then
ally

u(k + p
* The endpoints of the impulsive system
satisfy the recurrence relation

W' =

ally
ppw (K + )

Wi(t,i1) = W (e Hw Bk —tn) 4

1 — e_MW(tk+1—tk)] .

II=birth rate u=background death rate
K=recovery rate o=incubation period
y=parasite birth rate pw=parasite
death rate tx=chlorination time
W=parasite-infected water

parasite pop.

time (months)
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An explicit solution

» Solving the recurrence relation for the

endpoints of the impulsive system yields an

explicit solution:
ally

- ppw (K
_I_ .« o o _I_ (1 - T)e_,U'W(t’n_tn—l) _I_ 1

—(1— T)n—2e—uw(tn—t1) —(1—

Wy

) [(1 o T)n—le—uw(tn—tl) 4 (1 o T)n—le—,uw(tn—tg)

e e — e_NW(tn_tnl)] )

II=birth rate u=background death rate
K=recovery rate a=incubation period
y=parasite birth rate nw=parasite death rate
W=parasite-infected water tx=chlorination
time r=chlorination effectiveness
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Fixed chlorination

 |If chlorination occurs at fixed intervals, then
th-th-1=1 IS constant

* Thus, the endpoints approach
, _ ally 1 —e HWT
e g () [1 - (1- r>e—W}
* To keep this below a desired threshold W*,
we require

1 [aﬂv — (1 = m)W*ppw (k + u)] |

T < —In
fw olly — W ppw (k5 + )

I1=birth rate u=background death rate x=recovery rate o=incubation
period vy=parasite birth rate nw=parasite death rate tx=chlorination
time W=parasite-infected water r=chlorination effectiveness




Non-fixed chlorination

* Regular chlorination may be difficult due to
limited resources and infrastructure




Non-fixed chlorination

* Regular chlorination may be difficult due to
limited resources and infrastructure

* |n particular, if chlorination is not fixed, the
entire history of chlorination would need to
be known

)
.
- t
‘ - - 4 ]
:




Non-fixed chlorination

* Regular chlorination may be difficult due to
limited resources and infrastructure

* |n particular, if chlorination is not fixed, the
entire history of chlorination would need to
be known

+ This is highly unlikely.
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Limited knowledge

» Assume that only the two previous
chlorination events are known

« Specifically,
e MW (tn=tk) ~ () for k > 2

* To keep the parasite below the threshold W*,
we thus require

1 2 — r?
pw [ 1—r(l—r)erwin-2 — (2 —r)etwin-t — W*puw (k + p)/(ally)

I1=birth rate u=background death rate x=recovery rate o=incubation

period y=parasite birth rate uw=parasite death rate tx=chlorination
time W=parasite-infected water r=chlorination effectiveness
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Comparison

 When r=1, fixed and non-fixed chlorination
are equivalent

* There exists ro such that non-fixed
chlorination will only be successful for ro<r<1

» Conversely, fixed chlorination is successful
for all values of r

 Thus, chlorination, whether fixed or non-
fixed, can theoretically control the disease

(but not eradicate it).

r=chlorination effectiveness
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Latin Hypercube Sampling

» We explored the sensitivity of Ro to
parameter variations using

— Latin Hypercube Sampling
— Partial Rank Correlation Coefficients

 Latin Hypercube Sampling
— samples parameters from a random grid

— resamples, but not from the same row or
column

(a bit like tic tac toe)
— runs 1,000 simulations.
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Partial Rank Correlation Coefficients

 Partial Rank Correlation Coefficients
(PRCCs)

— test individual parameters while holding all other
parameters at median values

— rank parameters by the amount of effect on the
outcome

« PRCCs > 0 will increase Ro when they are
iIncreased

« PRCCs < 0 will decrease Ro when they are
iIncreased.

Ro=basic reproductive ratio
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Most important parameters

* The three parameters with the most impact
on Rop are

— the parasite death rate

— transmissabillity

— the parasite birth rate
 These are also the three that we have the

most control over, via |

— chlorination

— filtration

— education.

Ro=basic reproductive ratio
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Variation of control parameters

 The same three parameters have the
greatest impact

(as expected)

» However, increasing uw (eg via continuous
chlorination) is unlikely to
lead to eradication

» Conversely, sufficiently
decreasing v (via education)
s likely to bring Ro below 1.

y=parasite birth rate pw=parasite
death rate Ro=basic reproductive ratio
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Eradication threshold

* For Ro=1, we can plot the
threshold surface for our
three control parameters

(representing education,
filtration and chlorination)

* We fixed all other
parameters at median
values.

Ro=basic reproductive ratio
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Effect of control parameters

* The outcome is significantly dependent on
changes iny

* Even if uw were increased tenfold, it is still
unlikely to lead to eradication

* 3 would have to be reduced to extremely low
levels.

B=transmissability
y=parasite birth rate
uw=parasite death rate
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Long-term dynamics

Annual chlorination alone has little effect on
the disease

The population quickly returns to high levels
following chlorination

Reducing the parasite birth rate by 99% (eg
via education) can lead to eradication

The entire population becomes uninfected.
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Eradication criteria

* There are three criteria for eradication:
— biological and technical feasibility
— costs and benefits
— socletal and political considerations

« Guinea worm disease satisfies all three.
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Comparison with smallpox

The only human disease to be eradicated
(thanks to a successful vaccine)

A critical control tool was photographic
recognition cards

Non-biomedical interventions were
as important as biomedical ones

Barriers included
— cultural traditions

— religious beliefs
— lack of societal support.
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Other attempts at eradication

In the 20th century, four diseases were

targeted:

— malaria

— yellow fever

— yaws (a tropical infection of the skin, bones and
joints)

— smallpox

Only one of these was successful

In 2011, we eradicated rinderpest (a cow
disease, from which quarantine was invented)

This brought our total up to two.
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Why they failed

Malaria failed due to lack of follow-through
— especially due to “Silent Spring”

Yellow fever failed when animal reservoirs
were discovered

Yaws was reduced by 95%, but in the
1960s, the campaign shifted from targeted
eradication to surveillance and control

The strategy failed

However, ongoing efforts mean India was
recently declared yaws-free.
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Summary

We can derive optimal times for chlorination,
whether fixed or non-fixed, to keep the parasite
at low levels...

...but chlorination is unlikely to lead to eradication

Education — persuading people not to put
infected limbs in the drinking water — is the best
way to eradicate Guinea worm disease

Of course, a combination of education,
chlorination and filtration is most desirable

Efforts should be focussed on reaching remote
communities.
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Conclusion

We stand at the brink of eradicating one of
humanity’s ancient scourges

Without a vaccine or drugs, behaviour
changes alone will likely lead to eradication
of the first parasitic disease

This may reshape our understanding of what
It takes to eradicate a disease

By mustering both scientific and cultural
resources, we can successfully defeat one
of the oldest diseases in human history.
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