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Phenotypic vs. genotypic models

“The phenotypic gambit is to examine the
evolutionary basis of a character as if the very
simplest genetic system controlled it: as if there
were a haploid locus at which each distinct
strategy was represented by a distinct allele, as if
the payoff rule gave the number of offspring for
each allele, and as if enough mutation occurred to
allow each strategy the chance to invade.”

A. Grafen, in Krebs & Davies 1984



Phenotypic vs. genotypic models

Phenotypic gambit in simpler words
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Remove issues linked to genetic architecture
Remove issues linked to ploidy and dominance
No constraint on available mutations

. Perfect inheritance



Phenotypic vs. genotypic models

Phenotypic gambit in simpler words

—
[}

Remove issues linked to genetic architecture
Remove issues linked to ploidy and dominance
No constraint on available mutations

oW

. Perfect inheritance

If a model based on these (simplistic) assumptions
explains some patterns, then we need not invoke
genetic architecture, ploidy, mutation, etc. effects



Phenotypic vs. genotypic models

When to question phenotypic models? examples
1. The studied trait is linked to the mating system

2. The studied trait affects meiosis, recombination,
etc.

3. The studied trait affects the dynamics of
deleterious allele fixation



GAME THEORY



Game theory

Assumptions
v common rules for a given game
v’ players = rational

Definitions
v’ strategy = set of a priori decisions
v' payoff = measure of player’s success

Goal of the game: maximize expected payoff



Game theory

Classic games: prisoner’s dilemma
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Game theory

Classic games: prisoner’s dilemma

Payoff matrix
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Game theory

Classic games: prisoner’s dilemma

Payoff matrix
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Game theory

Classic games: hawks vs. doves
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Game theory

Classic games: hawks vs. doves

Payoff matrix

W —




Game theory

Classic games: hawks vs. doves

Payoff matrix
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Game theory

Yellow males: no
territory,
sneakers

Orange males:
large territories,
harems

Blue males: small-sized easily
defended territories, one
female

Sinervo & Lively 1996



Game theory

Sinervo & Lively 1996



Game theory

Evolutionary stability
A strategy = evolutionarily stable strategy (ESS) iff
not beatable by other strategies

Vy#X, W, <W,

In practice: diagonal element higher than all other
elements of the same column in the payoff matrix



Game theory

Classic games: prisoner’s dilemma

Payoff matrix
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Game theory

Classic games: hawks vs. doves

Payoff matrix

W —

If v > ¢, hawks are ESS
Else, no ESS



Game theory

Mixed strategies = combine different strategies
with probabilities

Bishop-Cannings theorem

A mixed strategy is ESS implies that all its
component strategies have the same payoff against
the mixed strategy



evolutionary time
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ADAPTIVE DYNAMICS

Geritz et al. 1998 Evol. Ecol.



Adaptive dynamics

An extension of game theory to continuous trait
values (# discrete in GT)

Assumptions:

v clonal reproduction

v’ rare mutations

v mutations of small effect

v’ resident at demographic equilibrium
v’ initially scarce mutant



Adaptive dynamics recipe

Interference competition

1. From a demographic model ~ betweentraits zandy
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Dieckmann & Doebeli 1999



Adaptive dynamics recipe

1. From a demographic model

/1 . IC(Z, y)n(z,t)dz\
K(y)

on

~ wt)=m(yt)
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2. Find invasion criterion
Mutant trait Resident trait

\ / 10n ( C(z,y)K(z)j

W(Y)Z) — __(Y)t) =TI
, . not
Rare mutant fitness

Assume y does not exist in the whole
population



Adaptive dynamics recipe

2. Find invasion criterion

w(y,z) = l@(y,t) — ,—(1_ C(Z,Y)K(Z)]

n ot

3. Look at the pairwise invasibility plot (PIP)

/ Mutant invades

Mutant trait

Mutant does not invade

Resident trait



Adaptive dynamics recipe

3. Look at the pairwise invasibility plot (PIP)

§ /
05 / +
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Resident trait Resident trait

Mutant trait
Mutant trait

4. Compute the selection gradient
5. Find singular strategies (where the gradient vanishes)
6. Assess stability properties



Adaptive dynamics recipe

4. Compute the selection gradient

w(y,z) =w(z,2)+(y—z)0,w(z,2)

H_J ~
Fitness of a rare mutant Selection gradient




Adaptive dynamics recipe

4. Compute the selection gradient
w(y,z) =w(z,2)+(y—2z)0,w(z,2)

W()fiz) -w(z,2) W(X:Z) -w(z,2)

gradient< o gradient >0
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Adaptive dynamics recipe

4. Compute the selection gradient

w(y,z) =w(z,2)+(y—z)0,w(z,2)

5. Find singular strategies

Equilibrium 0, w(z,z)=0



Adaptive dynamics recipe

4. Compute the selection gradient

w(y,z) =w(z,2)+(y—z)0,w(z,2)
5. Find singular strategies
Equilibrium 0, w(z,z)=0

6. Assess stability properties

Convergence stable?  d, [6yw(z,z)} <0



Adaptive dynamics recipe

6. Assess stability properties

Convergence stable?  d, [8yw(z,z)} <0

?yw(z,z) ?yw(z,z)

d, [8yw(z,z)] >0

direction of selection direction of selection z




Adaptive dynamics recipe

6. Assess stability properties

Evolutionarily stable?

w(y,z) *w(z,z)+(y—2z)0,w(z,2) +%(y ~z) éiy,yw(z, 2)

Y

/)

Hessian [/ second-order
derivative =
What happens next, once
equilibrium is reached



Adaptive dynamics recipe

6. Assess stability properties 5 w(zz)<o -ess

Evolutionarily stable? d,,W(z,z)>0 =branching

1 2
w(y,2) ~ W(z,z)+(y—z)8yw(z,z)+;(y—z) éiy,yw(z, 2) )

Hessian [/ second-order
derivative =
What happens next, once
equilibrium is reached



Adaptive dynamics recipe

6. Assess stability properties 5 w(zz)<o -ess

Evolutionarily stable? d,,W(z,z)>0 =branching

W()fiz) -w(z,2) W(XIZ) -w(z,2)

ESS

y' branching




Adaptive dynamics

0, ,W(z,2)
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QUANTITATIVE GENETICS



Quantitative genetics

In adaptive dynamics

Speed of trait evolution o selection gradient



Quantitative genetics

In adaptive dynamics
Speed of trait evolution@election gradient

What is the proportionality factor?
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Quantitative genetics

dn.
o
dt

dt Z ’ZFH —rn



Quantitative genetics
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Quantitative genetics

dn.
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Quantitative genetics
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Quantitative genetics

Price equation (in continuous time)
dz

— =Cov|r,z]

dt



Quantitative genetics

Price equation (in continuous time)

dz

—=Cov|r,Z
Take r as trait (Fisher’s fundamental theorem)
dr
— =Var|r]

dt



Quantitative genetics

Approximation by the selection gradient

%zg.Var z]
dat oz - -~ ~

Genetic variance in trait values

H_/
Selection gradient



Quantitative genetics
The effect of environmental noise
Expressed phenotype of individual j from strain j: x;

Genotypic effect: z,

Environmental effect: e; (Gaussian noise)



Quantitative genetics

The effect of environmental noise

Xii If 4i } €ji
observed determines trait dynamics

Expressed phenotype of individual j from strain j: x;

Genotypic effect: z,

Environmental effect: e; (Gaussian noise)



Quantitative genetics

The breeder’s equation

X=Z+¢e
5_ Cov(z, x) . — G,
Var(x) P

With uncorrelated environmental noise



Quantitative genetics

The breeder’s equation

X=Z+¢€
5 _ Cov(z, x) y G,
Var(x) P
With uncorrelated environmental noise
R=h’S sip. =
= X — X, e

h :EZ S =Cov(w,x)



Quantitative genetics

Two main ideas from quantitative genetics (often
mixed up):

» Response to selection depends on genetic
variance (Price equation)

» What is selected is genotype; what is observed is

phenotype, thus the emergence of h? in response
to selection



Pros & cons

Cons

Game theory

Adaptive dynamics

Quantitative
genetics

= handles dynamics of
multiple strategies
= simple and testable

= explicit env. feedback
= criterion for branching

= deals with the
distribution of trait values
= readily testable
predictions

" no strategy dynamics due
to mutation
= no explicit env. feedback

= no standing variance

= poorly modeled mutation
= over-interpretation of
branching

=what to do about the
evolution of trait moments
of order > 17

= no env. feedback at all



Thank you for your attention!
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