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Kin selection 

Overall effect = relatedness × benefit to helped – cost to helper 
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Relatedness 

In a population, relatedness depends on: 

 immigration rate 

 population size 

Also called “identity by descent” (i.e. whether two 
alleles at the same locus, carried by two random 
individuals, come from the same ancestor) 

 

e.g. discrete-time model with constant N individuals and 
migration m 
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Group selection 

“The reputation of group selection comes not from 
mathematical models, nor from deliberate 
discussion of group selection, but from a certain 
naivety practised by laymen and many biologists 
alike in their day-to-day thinking about the 
adaptedness of animals to their environments. 

(…) adaptations arise only by natural selection, and 
natural selection does not normally promote 
adaptations for the good of any unit larger than 
the organism.”   

    A. Grafen, in Krebs & Davies 1984 

 



Problems with group selection 

• Groups do not carry genes, individuals do 

 

• “for the benefit of the group” = very Panglossian 
way of thinking about evolution 

 

• Even with group benefits, separation of time 
scales might advantage groups containing 
genotypes impeding the creation of new groups 



Further reading on group selection 

Simon et al. 2013 Evolution 
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FITNESS IN METAPOPULATIONS 



Spatially structured fitness? 

Main issue: 

How to compute fitness when… 

– interactions occur at a small scale (patch) 

– individuals disperse among patches 

– patches harbor finite populations 



Spatially structured fitness? 

Main issue: 

How to compute fitness when… 

– interactions occur at a small scale (patch) 

– individuals disperse among patches 

– patches harbor finite populations 

Crux of the problem! 

Otherwise, simple models 
would do the trick 



Spatially structured fitness? 

Main issue: 

How to compute fitness when… 

– interactions occur at a small scale (patch) 

– individuals disperse among patches 

– patches harbor finite populations 

Specific issue: 

what is typical scarcity in this 
context? 



How can this issue be solved? 

Inclusive fitness & Direct fitness 

Both methods allow for the computation of selection 
gradients 

 

 

when W is the ‘individual fitness’ of focal (genotype x, 
phenotype y) with patch mates having average phenotype 
z 

 

Cov(x,z)/Cov(x,y) = relatedness among patch mates 
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Hamilton (1964) J Theor Biol. ; Taylor & Frank (1996) J Theor Biol 
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when W is the ‘individual fitness’ of focal (genotype x, 
phenotype y) with patch mates having average phenotype 
z 

 

Cov(x,z)/Cov(x,y) = relatedness among patch mates 
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d W W
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Hamilton (1964) J Theor Biol. ; Taylor & Frank (1996) J Theor Biol 

finite populations = non-zero relatedness 



How can this issue be solved? 

Inclusive fitness & Direct fitness 

BUT these methods could not sort out evolutionary 
stability 
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How can this issue be solved? 
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How can this issue be solved? 

Inclusive fitness & Direct fitness 

BUT these methods could not sort out evolutionary 
stability 
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no type can beat z 

means branching 

ESS criterion 

= what happens next 
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How can this issue be solved? 

Rm method 

Principle: account for demographic variability 
among patches through state vectors 

Chesson (1984) Z. Wahrschein. Verwand. Gebiete ; Metz & Gyllenberg (2001) Proc R Soc 
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How can this issue be solved? 

Rm method 

Principle: account for demographic variability 
among patches through state vectors 
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Two separate proofs that the Rm is an instability 
criterion 

 

 

 

 
Massol et al. (2009) 

TPB Chesson (1984) ZWtG 

discrete time continuous time 



How can this issue be solved? 

Rm method 

Principle: account for demographic variability 
among patches through state vectors 

 

Benefit: we get a “true” metapopulation fitness 
function Rm(y,z) 

→ convergence and evolutionary stability can be solved 
using the same tool 



How can this issue be solved?  

Rm and the inclusive fitness can be reconciled… 

 

 

 

 

 

 

Selection gradient with Rm = inclusive fitness 

(discrete-time, haploid, non-overlapping generations) 
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Individual “fitness” 



How can this issue be solved?  

… and “inclusive fitness” can even get beyond the 
selection gradient! 
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Spatially structured fitness 

Extensions / similar methods in spatially realistic 
models 



THE EVOLUTION OF DISPERSAL 



What is dispersal? 

Dispersal =  

 Any movement of individuals or propagules 
contributing to gene flow 

 Reproducing away from birth place 

 

 



What is dispersal? 

Dispersal =  

 Any movement of individuals or propagules 
contributing to gene flow 

 Reproducing away from birth place 

 

 (zool.) movement between succesive breeding 
sites 

  (bota.) movement of seeds or pollen 

 



Motivations 

• On ecological grounds 

– Coexistence of species mediated by environmental  
heterogeneity and dispersal 

– Biology of invasive species 

– Persistence in a metapopulation depends on dispersal 



Motivations 

• On ecological grounds 

– Coexistence of species mediated by environmental  
heterogeneity and dispersal 

– Biology of invasive species 

– Persistence in a metapopulation depends on dispersal 

• On evolutionary grounds 

– Local adaptation evolves in response to dispersal level 

– Speciation depends on dispersal 

– Dispersal can co-evolve with other traits 



Dispersal variability in natura 
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Selective pressures 

Pros Cons 

Cost of dispersal 
Environmental 

variability 

Environmental 
heterogeneity 

Kin competition 

Avoid inbreeding 

Oscillating / chaotic 
population dynamics 



A metapopulation model 

Heterogeneous pop. sizes 
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Births and Deaths 
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Heterogeneous pop. sizes 

Births and Deaths 
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Methods 

• Model analysis 

– Metapopulation fitness criterion (Rm, Metz & 
Gyllenberg 1992) 

– Adaptive dynamics assumptions (Hofbauer & Sigmund 
1990) 

• Confirmed with simulations 

• Supplementary simulations: what if replacement 
is not immediate? (answer: nothing changes 
much) 

 



Results: singular strategies 
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Results: evolutionary outcome 
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Results: predict polymorphism 

Interpretation: 
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Results: what do data say? 

Understanding what nature says 

 

 

 

 

When cmax > 1, we’re sure that our mechanism can 
create dispersal polymorphism 
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Results: what do data say? 

Data set # patches γ2 γ3 cmax prediction 

Ponds (Guadeloupe) 274 1.7 4.5 1.5 disruptive 

Population in big cities (China) 664 1.5 6.7 3.2 disruptive 

Dry meadows (Åland islands, Finland) 4,109 7.3 11.1 13.5 disruptive 

Tuamotu archipelago (French 
Polynesia) 118 10.7 8.1 4.7 disruptive 

Forest patches (Pennsylvania, USA) 252 44.7 12.0 -8.7 stabilising 

Svalbard islands (Norway) 11 4.5 2.7 -2.7 stabilising 

Coral reefs (Northern Florida Keys, 
USA) 1,034 1.3 3.8 1.0 disruptive 
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Conclusions 

1. Steady state of dispersal = balance between direct cost, 
environmental heterogeneity and kin competition 

2. Skewed population size distribution   
 → disruptive selection on dispersal 

3. Skewed distributions of proxies for pop. size are 
common in nature 

4. Simplified criterion cmax > 1 = test to validate the 
plausibility of our hypothesis 

5. Few large and many small populations           
= recipe for a better conservation of types that do and 
do not disperse 

 



Thank you for your attention! 
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