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Lecture outline

1. Kin selection & group selection
2. Fitness in metapopulations

3. (Case study: the evolution of dispersal
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Kin selection

Overall effect = relatedness x benefit to helped - cost to helper
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Relatedness

In a population, relatedness depends on:
" immigration rate
= population size

Also called “identity by descent” (i.e. whether two
alleles at the same locus, carried by two random
individuals, come from the same ancestor)

e.g. discrete-time model with constant N individuals and

migration m
r=1/|N=(N=1)(1-m)’ |
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Group selection

“The reputation of group selection comes not from
mathematical models, nor from deliberate
discussion of group selection, but from a certain
naivety practised by laymen and many biologists
alike in their day-to-day thinking about the
adaptedness of animals to their environments.

(... ) adaptations arise only by natural selection, and
natural selection does not normally promote
adaptations for the good of any unit larger than
the organism.”

A. Grafen, in Krebs & Davies 1984




Problems with group selection

* Groups do not carry genes, individuals do

* “for the benefit of the group” = very Panglossian
way of thinking about evolution

* Even with group benefits, separation of time
scales might advantage groups containing
genotypes impeding the creation of new groups



Further reading on group selection
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72 likke Hanski

FIGURE 1 Map of Aland islands in southwestern Finland, showing the locations of the habitat
patches (dry meadows) suitable for the Glanvilie fritillary Melitaea cinxia {dots). Patches that were
occupied in late summer 1993 are shown by black dots. The size of the grid is 100 km? {modified
from Hanski er al., 1995a).

FITNESS IN METAPOPULATIONS



Spatially structured fitness?

Main issue:

How to compute fitness when...
— interactions occur at a small scale (patch)
— individuals disperse among patches
— patches harbor finite populations



Spatially structured fitness?

Main issue:

How to compute fitness when...
— interactions occur at a small scale (patch)
— individuals disperse among patches

< patches harbor finite populations >

Otherwise, simple models
would do the trick

Crux of the problem!



Spatially structured fitness?

Main issue:

How to compute fitness when...
— interactions occur at a small scale (patch)
— individuals disperse among patches

< patches harbor finite populations >

\

what is typical scarcity in this
context?

Specific issue:



How can this issue be solved?

Inclusive fitness & Direct fitness

Both methods allow for the computation of selection

gradients

C;\j(v ~ Ga\i/V Cov[x,y]+ %—\Q/COV[X,Z]

when W is the ‘individual fitness’ of focal (genotype X,
phenotype y) with patch mates having average phenotype
Z

Cov(x,z)/Cov(x,y) = relatedness among patch mates

Hamilton (1964) J Theor Biol. ; Taylor & Frank (1996) J Theor Biol



How can this issue be solved?

Inclusive fitness & Direct fitness

Both methods allow for the computation of selection

gradients

C;\;V ~ aa\;v Cov[x,y] —l-aa—\Q/COV[X,Z]

when W is the ‘individual fitness’ of focal (genotype X,
phenotype y) with patch mates having average phenotype

Z . :
finite populations = non-zero relatedness

[Cov(x,z)/Cov(x,y) = relatedness among patch mates ]

Hamilton (1964) J Theor Biol. ; Taylor & Frank (1996) J Theor Biol



How can this issue be solved?

Inclusive fitness & Direct fitness

BUT these methods could not sort out evolutionary
stability
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Inclusive fitness & Direct fitness

BUT these methods could not sort out evolutionary
stability

mutant trait resident trait

xy,z)~w(z z)+ y z)@ w(z,z)+— (y z) 0, w(z Z)

mutant fltness
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BUT these methods could not sort out evolutionary
stability

mutant trait resident trait

xy,z)~w(z z)+ y z)@ w(z, z)+ (y z) 0, w(z Z)

Y
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How can this issue be solved?

Inclusive fitness & Direct fitness

BUT these methods could not sort out evolutionary
stability

mutant trait resident trait

xy,z)~w(z z)+(y - z)@ w(z, z)+ ( )2 (?y’yw(z,z)J

Y Y
mutant fltness selection gradient ESS criterion
= what happens first = what happens next
when 0 w(z,z)=0 0, ,w(z,z) < 0 means ESS

means no type can beat z

d|ow(z,z)|<o0
Z[ W( )] convergence ay yW(Z:Z) > 0 means branching




How can this issue be solved?

Inclusive fitness & Direct fitness

BUT these methods could not sort out evolutionary
stability

NO INFORMATION!

mutant trait resident trait

\y,z%w(z 2)+(y-2)0,z2)+ (s~

Y

mutant fltness selection gradient

= what happens first

when 0 w(z,z)=0

means at z

no type can
d, [5yW(Z,Z)] <0 convergence

0, ,W(z,z) >0 means branchin




How can this issue be solved?

R,, method

Principle: account for demographic variability
among patches through state vectors

Chesson (1984) Z. Wahrschein. Verwand. Gebiete ; Metz & Gyllenberg (2001) Proc R Soc



How can this issue be solved?

R,, method

Principle: account for demographic variability
among patches through state vectors

Poo
dP ,

patch state dynamics — = G(P).P with P=| "
dt '

Pko

Chesson (1984) Z. Wahrschein. Verwand. Gebiete ; Metz & Gyllenberg (2001) Proc R Soc



How can this issue be solved?

R,, method

Principle: account for demographic variability
among patches through state vectors

Poo
dP .
patch state dynamics — = G(P).P il p| Po
dt
emigrant Pro
production
Rm 1-G™ )Y is a fitness criterion

/ R_>1 invades!

R <1 fails to
invade

inverse (transitions)
= typical times in each initial pop.
state state
Chesson (1984) Z. Wahrschein. Verwand. Gebiete ; Metz & Gyllenberg (2001) Proc R Soc



How can this issue be solved?

R,, method

Principle: account for demographic variability
among patches through state vectors

Two separate proofs that the R is an instability

criterion
discrete time continuous time
Persistence of a Markovian Population
in a Patchy Environment The metapopulation fitness criterion: Proof and perspectives

Francois Massol *>%* Vincent Calcagno 9, Julien Massol ©
Peter L. Chesson*

Massol et al. (2009)
Chesson (1984) ZWtG TPB



How can this issue be solved?

R,, method

Benefit: we get a “true” metapopulation fitness
function R, (y,z)

— convergence and evolutionary stability can be solved
using the same tool



How can this issue be solved?

R,, and the inclusive fitness can be reconciled...

relatedness
OR. . 1] .( 0. /6 :
Tt (ST Jrd S]]
\ Individual “fitness”

Selection gradient with R, = inclusive fitness

probability of being an
immigrant

(discrete-time, haploid, non-overlapping generations)

Ajar (2003) BMC EvolBiol



How can this issue be solved?

... and “inclusive fitness” can even get beyond the
selection gradient!

(0
K
(a

; [ O
+4N (N—1)7Z1F(FK(a—y[7ri

probability that three different individuals
from the same patch descend from the same

immigrant
o r.
- DWJ) (

: [}'V\/}.]j—l—FlE(
Jot

2

[ 0 r.
Kic - Z[IW;])

y

{m

y

Ajar (2003) BMC EvolBiol



Spatially structured fitness

Extensions /[ similar methods in spatially realistic
models

SIAM J. APPLIED DYNAMICAL SYSTEMS (C) 2012 Saciety for Industrial and Applied Mathematics
Vol. 11, No. 2, pp. 567-506

Rp Analysis of a Spatiotemporal Model for a Stream Population*

H. W. Mckenzie!, Y. Jinf, J. Jacobsen?, and M. A. Lewis}
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Pattern solutions of the Klausmeier model for
banded vegetation in semi-arid environments I1:
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What is dispersal?
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What is dispersal?
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Motivations

* On ecological grounds

— Coexistence of species mediated by environmental
heterogeneity and dispersal

— Biology of invasive species
— Persistence in a metapopulation depends on dispersal



Motivations

* On ecological grounds

— Coexistence of species mediated by environmental
heterogeneity and dispersal

— Biology of invasive species
— Persistence in a metapopulation depends on dispersal

* On evolutionary grounds
— Local adaptation evolves in response to dispersal level

— Speciation depends on dispersal
— Dispersal can co-evolve with other traits



Dispersal variability in natura
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Selective pressures

Pros cons

Avoid inbreeding

Kin competition

Oscillating [ chaotic
population dynamics Environmental

heterogeneity

Environmental
variability Cost of dispersal

N g




A metapopulation model
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Heterogeneous pop. sizes



A metapopulation model

Dispersed
propagules

Heterogeneous pop. sizes



A metapopulation model
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A metapopulation model
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Births and Deaths

Cost of dispersal (¢)
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Births and Deaths

Cost of dispersal (¢)

Dispersed
Immediate propagules
replacement
(lottery)
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Methods

* Model analysis

— Metapopulation fitness criterion (R, Metz &
Gyllenberg 1992)

— Adaptive dynamics assumptions (Hofbauer & Sigmund
1990)
* Confirmed with simulations
* Supplementary simulations: what if replacement

is not immediate? (answer: nothing changes
much)



Results: singular strategies
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Skewness of population sizes

Results: evolutionary outcome

i

g disruptive
&

5

i

e £SS)
= LessS disperse' (

1 2 3 4 5Y2

Squared coefficient of variation of pop. sizes



frequency (K)

Results: predict polymorphism

Interpretation:
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Results: what do data say?

Understanding what nature says

(7527 ) 2"

1+ 7,

When ¢, > 1, we’re sure that our mechanism can
create dispersal polymorphism
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Results: what do data say?

Data set # patches Y, Ys C..x Prediction
Ponds (Guadeloupe) 274 1.7 4.5 1.5  disruptive
Population in big cities (China) 664 1.5 6.7 3.2 disruptive
Dry meadows (Aland islands, Finland) 4,109 7.3 1.4 13.5 disruptive
Tuamotu archipelago (French

Polynesia) 118 10.7 8.1 4.7  disruptive
Forest patches (Pennsylvania, USA) 252 44.7 12.0 -8.7  stabilising
Svalbard islands (Norway) 11 4.5 2.7 -2.7  stabilising

Coral reefs (Northern Florida Keys,
USA) 1,034 1.3 3.8 1.0  disruptive



Results: what do data say?

Data set # patches Y, Ys prediction

Ponds (Guadeloupe) 274 1.7 4.5 . disruptive
Population in big cities (China) 664 1.5 6.7 . disruptive

Dry meadows (Aland islands, Finland) 4,109 7.3 11.1 .5 disruptive

Tuamotu archipelago (French
Polynesia) 118 10.7 8.1 . disruptive

Forest patches (Pennsylvania, USA) 252 44.7 12.0 . stabilising

Svalbard islands (Norway) 11 4.5 2.7 . stabilising

Coral reefs (Northern Florida Keys,
USA) 1,034 1.3 3.8 . disruptive




Conclusions

Steady state of dispersal = balance between direct cost,
environmental heterogeneity and kin competition

Skewed population size distribution
— disruptive selection on dispersal

Skewed distributions of proxies for pop. size are
common in nature

Simplified criterion c ., > 1 = test to validate the
plausibility of our hypothesis

Few large and many small populations
= recipe for a better conservation of types that do and
do not disperse



Thank you for your attention!
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