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The effects of wind.



Malaria

* One of the most important human diseases
throughout the tropical and sub-tropical
regions of the world
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Malaria

* One of the most important human diseases
throughout the tropical and sub-tropical
regions of the world

* More than 300 million acute ilinesses each
yea r New Malarna Casesin Zambia
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Repeated episodes of fever rd
Pregnancy complications

Impairs development

Weakness

Anemia

Death.




Endemic areas

* 90% of malaria deaths in sub-Saharan Africa




Endemic areas

* 90% of malaria deaths in sub-Saharan Africa
* Mostly among young children

PERCENTAGE OF MALARIA CASES/TOTALIP <5

—r—
—

'———4’/

% otmalara cases fotal <S5

1963 1983 1990 1991 19% 199 19 1996 199 1997 199

Admissions to St. Kitzo-Matany hospital, Uganda




Endemic areas

* 90% of malaria deaths in sub-Saharan Africa

* Mostly among young children

« Even when it PERCENTAGE OF MALARIA CASES/ TOTAL IP <
doesn’t kill, acute
Illness can
devastate
economies in the
developing world

et
A

Q—'—/

% otmaBria cases o3l <S5

1963 1983 1990 1991 19% 199 19 1996 199 1997 199

Admissions to St. Kitzo-Matany hospital, Uganda




Endemic areas

90% of malaria deaths in sub-Saharan Africa
Mostly among young children

Even when it PERCEITAGE OF NALARIR CRSES/TOTAL 1P <=5
doesn’t kill, acute
Illness can
devastate
economies in the
developing world — , ,
Admissions to St. Kitzo-Matany hospital, Uganda

Impact of malaria has been estimated to
cost Africa $US12 billion every year.
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Control

Malaria control primarily consists of
» chemoprophylaxis

— drugs, vaccines, eftc
* vector control

— Insecticides, larvacides, etc

— aim Is to reduce vector
population density and
survival.




Indoor Residual Spraying

* Malaria vectors are endophilic, restlng |n3|de

houses after feeding




Indoor Residual Spraying

* Malaria vectors are endophilic, restlng |n3|de
houses after feeding .

* Indoor Residual Spraying
(IRS) involves spraying
houses or dwellings on A
the inside and under eaves
on the outside




Indoor Residual Spraying

* Malaria vectors are endophilic, restlng |n3|de
houses after feeding .

* Indoor Residual Spraying
(IRS) involves spraying
houses or dwellings on A
the inside and under eaves
on the outside

* Kills mosquitos after they've
fed L




Indoor Residual Spraying

* Malaria vectors are endophilic, restlng |n3|de
houses after feeding .

Indoor Residual Spraying

(IRS) involves spraying

houses or dwellings on A
the inside and under eaves 2 _.;_“
on the outside >3
Kills mosquitos after they've |

fed L)

Duration of effective action
IS 2-6 months.




Effectiveness of IRS

 When implemented well, it can be effective




Effectiveness of IRS

 When implemented well, it can be effective

* |RS has been responsible for suppression of
at least one vector of malaria transmission,
An. funestus




Effectiveness of IRS

 When implemented well, it can be effective

* |RS has been responsible for suppression of
at least one vector of malaria transmission,
An. funestus

Indoor residual
spraying is a
powerful method of
malaria control, but is
limited to the physical
location of structures.
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Limitations of a spraying program

» Careful delineation of spray areas and
populations is necessary to determine the
scale of impact for each intervention

IRS cannot be used in areas devoid of
structures

— eg forests, swamps

Spatial heterogeneity is thus important ®
— eg landspace

— urban/rural population densities

— distribution of structures.
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Crucial questions

Can we alter
What are the
effects of How do the our control

. results depend strategies to
sgl??f)élrr;gr\tln on the accm.?nt for
regularity of asymmetric

spraying? phenomena
such as wind?

geographic
areas?
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Impulsive differential equations

* Assume spraying is

Instantaneous 1
* That s, the delay in '
mosquito reduction is Uy

assumed to be
negligible
 This results In a

system of impulsive
differential equations.

time (months)

fotal mosquito population

time (months)
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Impulsive effect

» According to impulsive theory, we can
describe the nature of the impulse at time r,,

via the difference equation

y(ry) —y(ry)

s

Difference Depends on the
equation time of impulse
and the state
iImmediately
beforehand.
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Impulsive DEs

e Solutions are
continuous for
t=r,

» Solutions undergo
an instantaneous
change in state
when t=r,.

r,=impulse time




Putting it together

* The model thus consists of a system of
ODEs (humans), together with PDEs and
difference equations (mosquitos).

Life Cycle of the Malarial Parasite
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The model

mosquito
death

infection rate
of mosquitos

loss of immunity

disease
death acquired immunity

background death

immune

mosquito
birth

susceptible mosquitos

diffusion of
mosquitos.




The differential equations

* At non-spraying times, the PDEs are




The differential equations

* At non-spraying times, the PDEs are

St =17 —6BpSN +hl+0R— upS

I, = BRbSN—hI — ol — (pup + )1

Ri=al —0R— upR
M, = A — p,,M — B,,MI + DAM t £ty
Ny = —pum N + B, M T + DAN t # tg

S=Susceptible humans
I=Infected humans
R=Recovered humans
M=Susceptible mosq.
N=Infected mosq.

n, A=birth rates D=diffusion

W, uH=death rates
B, Bu=transmissibility
ugs=malaria death rate

h=recovery rate a=immunity
rate 6=loss of immunity




The differential equations

* At non-spraying times, the PDEs are

Si =1 — B,SN + hI + R — upS
I, = BRbSN—hI — ol — (pup + )1
Ri=al —0R— upR
My = A — pM — B, M T + DAM
Ny = —pup N + B, MI + DAN
* Boundary conditions:

t £t
t £t

S=Susceptible humans
I=Infected humans
R=Recovered humans
M=Susceptible mosq.
N=Infected mosq.

n, A=birth rates D=diffusion

W, uH=death rates
B, Bu=transmissibility
ugs=malaria death rate

h=recovery rate a=immunity
rate 6=loss of immunity




The differential equations

* At non-spraying times, the PDEs are

Si =1 — B,SN + hI + R — upS
I, = BRbSN—hI — ol — (pup + )1
Ri=al —0R— upR
My = A — pM — B, M T + DAM
Ny = —pup N + B, MI + DAN
* Boundary conditions:

oM

dp

(tapO) —

ON

dp

(t,p0) =0 on 9B(0, po)

t £t
t £t

S=Susceptible humans
I=Infected humans
R=Recovered humans
M=Susceptible mosq.
N=Infected mosq.

n, A=birth rates D=diffusion

W, uH=death rates
B, Bu=transmissibility
ugs=malaria death rate

h=recovery rate a=immunity
rate 6=loss of immunity




The differential equations

* At non-spraying times, the PDEs are

St =17 —6BpSN +hl+0R— upS
I, = BRbSN—hI — ol — (pup + )1
Ri=al —0R— upR
My =A— M — 3,,MI + DAM
Ny = —pup N + B, MI + DAN

* Boundary conditions:

oM ON

5, (t:p0) = 5 -(t:p0) =0 on DB(0, po)

(B is a disc with radius po).

t £t
t £t

S=Susceptible humans
I=Infected humans
R=Recovered humans
M=Susceptible mosq.
N=Infected mosq.

n, A=birth rates D=diffusion

W, uH=death rates
B, Bu=transmissibility
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h=recovery rate a=immunity
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Spraying impulse

At spraying times fx, the impulsive effect is
Mt =(1—-r)M"~ t =ty
Nt =(1-r)N~ t =ty

* Here, ris the effectiveness of the insecticide.

M=Susceptible mosq.
N=Infected mosq.
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Analysis of the impulsive system

* |f we define the total mosquito population by
U=M+N
then we have the partial differential equation
U, =A— UV + DAV in B(0, pg)

with boundary condition

ow .
a_p(tvp()) =0 1In aB(Oap())

and impulsive effect
O = (1—-7r)0".

A=mosq. birth rate
u=mosq. death rate
r=spraying effectiveness
D=diffusion B=disc
po=radius
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U(t, p) = L, exp(—imt) + Y enexp((—pim — | 2
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where Jo, J1 and J2 are Bessel functions,
satisfying

2 z?

1—?4—2242 — ...
(@) = — Ty

Jo(z) =Jy — 2J1(2).
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» |If spraying occurs at fixed times t, then

~_ A Jre(opm) —r(l =)™ exp(—pmmt)
Y [1 1 — (1 _ 7“) eXP(—MmT)

m_,um

— (1 =pr)m ! exp(—,ummT)] + (1 —7r)"Wy(0) exp(—phymmT)

— (1 — r)m_l exp(—tmmT) Z bn.0

n=0

+ (1= 7)™ exp(—pmm) Y bpgexp(— |2

n=1
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Spraying everywhere, nonfixed times

» Since 0<r<1, (1-r)™ is small for large m

 We thus have

B A
m+1 < M_ [1 - eXp(_Mm(tm+1 - tm))]

+ (1 — T)Mim 11— rexp(—pm(tm — tm-1))]

X exp(—pm (tm+1 — tm))
=

* Hence we can bound the maximum number
of mosquitos per cycle by a desired
threshold.
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e Second recommendation:

* Solving for tm+1, we have
[ 2 —p — Lim

e ]
r(1 —r)exp(—pm (tm — tm_1))

the time at which spraying reduces the
number of mosquitos to less than ¥




The "next best” spraying time

e Second recommendation:
* Solving for tm+1, we have

1 0y Yiim

i fom [1 +7(1 = 1) exp(—pm (tm — tm—l))]

the time at which spraying reduces the
number of mosquitos to less than ¥

* Note that, to find such a time, we need to
know the previous two spraying times.
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Spraying
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Fixed spraying in an interior disc

Spraying
* Let 0<poo<po
» Assume spraying is only No spraying
applied in the disc B(0,000)

 |f t and D are sufficiently
small, then the effect of diffusion is negligible

 We then have

_ A r exp(—fimT)

U = 11—

(i1 /) i 1—(1—7)exp(—pmT
A

T —X 00,00]\P)-
. I p]()

) X[0,p00] ('0)
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times, in order to keep the number of
mosquitoes below the threshold W, the
minimum spraying period should satisfy

%4

1 A — W

7T=——In S

Hm _A+Mmqj<7a_ 1))_
» For non-fixed spraying, we have

t t 1 | 2—71— %
m = tm — —
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Third recommendation

* When spraying in an interior disc at fixed
times, in order to keep the number of
mosquitoes below the threshold W, the
minimum spraying period should satisfy

- 1 A ,um\if
T=——1In

Hm A T Km (T R 1))
» For non-fixed spraying, we have

1 2—7“—\11“7”

tmt1 = tm — — In A
o pm | 1471 —= ) exp(—pm(tm — tm—1))

* These differ from the previous threshold in
the term W.
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Comparison with spraying everywhere

* The new threshold sa’gisfies

2 2 T
o ~ A
U = (ﬂ) U — <ﬂ> _ 1| =
£00 P00 HUm

* This is a decreasing function of (po/P00)?

with a maximum of ¥ when po=p000

» The threshold has thus decreased from ¥,
so T must be lower

* Thus, spatial considerations force us to
spray more frequently if regular spraying
occurs only inside an interior disc.




(one week)

ISC

S

INg in a

i i i i i

o o o o o o
© 0 < (eo] V] —

"}99M BUo0 Jaye seoynbsow Jo JequinN

Spray




Spraying in a disc (one week)

\l
o
/

()]
o
/

[é)]
o
/

N
o
/

W
o
/

N
o
/

—
o
/

x
©
o
E
o
c
]
S
[

=
©
(2]
o
e}

=
3
o
(%]
o
S

o«
o
—
o

o
S
=]

P4

o
y

 Initially there are more mosquitos in the centre




Spraying in a disc (one week)
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 Initially there are more mosquitos in the centre
+ Diffusion is now included.




(three weeks)
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Spraying in a disc (average)
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Number of infected humans
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Number of infected humans
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« Solid curve = no spraying, Stars = weekly spraying in a disc
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« Solid curve = no spraying, Stars = weekly spraying in a disc
* The latter is an upper bound on the number of malaria cases




Number of infected humans

I \
0 20 40

Solid curve = no spraying, Stars = weekly spraying in a disc
The latter is an upper bound on the number of malaria cases

(the stars represent the number of infected humans
immediately before spraying is applied).
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* We now add in asymmetric advection:

My=A— upyM+v- VM — B MI + DAM t £t
N, = —ppN+v - VN + B,MI + DAN t £ 1
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Wind impact

* We now add in asymmetric advection:

My=A— upyM+v- VM — B MI + DAM t £t
N, = —ppN+v - VN + B,MI + DAN t £ 1

/

 This has solution

A @) ©.@) A
U(t,p,0) = -~ + ago exp(—pmt) + > exp((—pm — ( . )2D)t)

m=0n=1

Z,
X Jm ( 2 (p+ vlt)> (G cOSM(O 4 Vo1) + by SN MO + V1))
Lo

where anm and bnm are determined using
trigonometric identities.




Wind impact, no spraying (1 week)

Number of mosquitoes after one week. Max: 69.109

Min: 31.491




Wind impact, no spraying (3 weeks)

Number of mosquitoes after three weeks. Max: 25.832
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Min: 21.685



Wind impact, no spraying (5 weeks)

Number of mosquitoes after five weeks. Max: 20.727
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Min: 20.266
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Spraying inside a disc, with wind

* Thus the wind blows the mosquitos into the
back corner

 Symmetry is lost

* To reduce the population in an interior area
B(0,000), we have to spray in B(-vt,000)

(v is the wind speed)

* This assumes the spray itself is not
advected, which may not be the case

 However, If it is, then the previous results
apply.




Spraying in a disc, with wind (2 weeks)

Number of mosquitoes after two weeks. Max: 23.991




Spraying in a disc, with wind (3 weeks)

Number of mosquitoes after three weeks. Max: 21.211

13
Min: 12.948




Spraying in a disc, with wind (4 weeks)

Number of mosquitoes after four weeks. Max: 20.417

13
Min: 12.9




Spraying in a disc, with wind (5 weeks)

Number of mosquitoes after five weeks. Max: 20.139

13
Min: 12.891
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Crucial question #1

What are the
effects of
spraying in
different
geographic
areas?

 |f we have symmetry, then
spraying inside a disc can control
mosquitos inside that disc

* However, the spraying interval is
shorter than spraying for the
entire region.
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Crucial question #2

How do the
results depend
on the
regularity of
spraying?

We derived formulas for the
optimal period when spraying is
fixed and occurs either in a disc
or in the entire region

We also derived formulas for the
“next best” spraying in the case
that spraying is not fixed.

t t ! |
m+1 — lm — — 111
Hm

__\i’:“_m
27“A

14+7(1—r)exp(—ptm(Em — tm-1))
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such as wind?
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Crucial question #3

Can we alter * When advection is included, we

our control could derive solutions for the
strategies to

account for nonsymmetric case

tri . INg i
e If spraying is not affected by

such as wind? wind, then we can spray within
a translated disc to control
mosquitos in our

desired region. o\
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Results

We used classical methods to solve
nonimpulsive PDEs

We then applied impulsive conditions and
examined the case of constant initial conditions

Spraying in a heterogeneous landscape has to
be applied more frequently, whether fixed or not

We could also solve the case of advection

The effects of wind result in a translation in the
desired region of spray.
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Generalisation

* The outcome does not depend on the form
of the infection dynamics in humans

* These results can be extended to any model

where the total mosquito population satisfies

]
oV _ A — 1, U + DAY in B(0, po) t # ti

ot
oV

8—p(t7p0) =0

U =(1—r)¥"

Y=total mosq. population
A=mosq. birth rate
u=mosq. death rate
r=spraying effectiveness
tk=spraying times
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Limitations

* We only considered radial symmetry
— this is an idealised version of heterogeneity

* We assumed spraying occurs instantly

— however, impulsive differential equations are a
reasonable approximation, even for quite large
delays, unless spraying is occurring very
frequently

* We also ignored the effect of wind upon the
spray itself

— this may change the outcome if the wind affects
mosquitos and spray at different rates.
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Conclusion

To the best of our knowledge, this is the first
PDE model for malaria

Spatial effects are quantifiable, at least
under idealised circumstances

Spatially heterogeneous environments result
In an increase in the spraying aaa® =
frequency, but malaria control @ & ¢

Is still achievable | PN

However, note that our results
do not predict eradication.
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