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Populations

Population will be a primitive concept for us.

I It concerns groups of living organisms (plants, animals,
micro-organisms..) which are composed of individuals with a similar
dynamical behavior.

I We postulate that every living organism has arisen from another one,
omne vivum ex vivo, to use the formulation of G.E.
Hutchinson.Therefore populations reproduce.

I Note: we will study populations and not the individuals.

Populations change in size, they grow or decrease due to birth, death,
migration.

This school is about understanding the dynamical behavior of populations (how the
change in size, how they use space) by means of mathematical formulations.
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The basic framework

We want to study laws that govern population changes in space and time

We begin by restricting our study to how populations change in time. We call these
changes dynamical. Our basic framework is

Primo: a population is described by its number of individuals ( in some cases, however, by
the biomass).

I We will first study unstructured populations, but let us not forget that structured
populations may also be important. Here "structure"means classes of age, size,
sex,...

Secondo : we need to describe the time variation of the population. We will use
derivatives to do so. Alternatively, we could also work with stochastic processes or
discrete-time formulations...

Terzo : we need to know what causes these time variations. Which biological processes.
Then we have to translate in mathematical language how these biological processes affect
the time-changes of the population.
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Simple Models I: Malthus

Figura : Thomas Malthus, circa 1830
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Simple Models I: Malthus

The simplest law
The simplest law governing the time variation of the size of a
population

dN(t)

dt
= rN(t)

where N(t) is the number os individuals in the population and r is the
intrincsic growth rate of the population, sometimes called the
Malthusian parameter.
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Exponential Growth

The solution

The solution to the Malthusian equation is just:

N(t) = N0e
rt

This equation predicts exponential growth.
Obviously impossible!

Back-of-the-Envelope calculation

How long would take to cover the whole earth with a thin film of E. coli?

Roberto A. Kraenkel (IFT-UNESP) III SSSMB São Paulo, Feb 2014 6 / 32



Exponential Growth

The solution
The solution to the Malthusian equation is just:

N(t) = N0e
rt

This equation predicts exponential growth.
Obviously impossible!

Back-of-the-Envelope calculation

How long would take to cover the whole earth with a thin film of E. coli?

Roberto A. Kraenkel (IFT-UNESP) III SSSMB São Paulo, Feb 2014 6 / 32



Exponential Growth

The solution
The solution to the Malthusian equation is just:

N(t) = N0e
rt

This equation predicts exponential growth.
Obviously impossible!

Back-of-the-Envelope calculation

How long would take to cover the whole earth with a thin film of E. coli?

Roberto A. Kraenkel (IFT-UNESP) III SSSMB São Paulo, Feb 2014 6 / 32



Exponential Growth

The solution
The solution to the Malthusian equation is just:

N(t) = N0e
rt

This equation predicts exponential growth.

Obviously impossible!

Back-of-the-Envelope calculation

How long would take to cover the whole earth with a thin film of E. coli?

Roberto A. Kraenkel (IFT-UNESP) III SSSMB São Paulo, Feb 2014 6 / 32



Exponential Growth

The solution
The solution to the Malthusian equation is just:

N(t) = N0e
rt

This equation predicts exponential growth.
Obviously impossible!

Back-of-the-Envelope calculation

How long would take to cover the whole earth with a thin film of E. coli?

Roberto A. Kraenkel (IFT-UNESP) III SSSMB São Paulo, Feb 2014 6 / 32



Exponential Growth

The solution
The solution to the Malthusian equation is just:

N(t) = N0e
rt

This equation predicts exponential growth.
Obviously impossible!

Back-of-the-Envelope calculation

How long would take to cover the whole earth with a thin film of E. coli?

Roberto A. Kraenkel (IFT-UNESP) III SSSMB São Paulo, Feb 2014 6 / 32



Exponential Growth

Although exponential growth is, stricto sensu, impossible, we can have
phases of exponential growth. These are usually the initial phases of
growth, when the population is unchecked.

In other words, when the population becomes too large something
must happen, so that the growth rate is depleted.
Before going into this, some examples:
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Examples

Figura : The population of USA . Until 1920, the growth is well approximated by an
exponential.
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Examples

Figura : The population of Jamaica, between 1860 e 195l.
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Examples

Figura : (Escherichia coli) on a Petri dish
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Simple Models II: the logistic equation

We will further postulate that there is an upper limit for the number of
beings that can occupy a finite portion of space.
The simplest way to introduce this mathematically is to modify the
Malthusian equation :

dN

dt
= rN(1− N/K)

The term −N2/K is always negative ( we assume K > 0),⇒ it
contributes negatively to dN

dt
⇒ it tends to slow down growth.

For N/K � 1, we may take 1− N/K ∼ 1 and we revover the Malthusian
equation.
This equation is called the logistic equation, or Verhulst’s.
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Logistic equation

Figura : Pierre-François Verhust, first introduced the logistic em 1838: “’Notice sur la loi que
la population pursuit dans son accroissement”. On the right side, , Raymond Pearl, who
"rediscovered"Verhust’s work.
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Solution of the logistic equation

It is easy to solve this equation dN
dt

= rN(1− N/K).

Just take dt = dN/(rN(1− n/K)), integrate both sides and and get:

N(t) =
N0Ke

rt

[K + N0(ert − 1)]

Here is a plot of the solution, for different values of N0:
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Figura : Temporal evolution of a population described by solution of the logistic equation.
Each curve corresponds to a different initial condition. For all initial conditions , t →∞, we
have N → K
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In other words...

The equation
dN

dt
= rN(1− N/K)

has two fixed points:
I N = 0
I N = K ,

the first being unstable and the second stable
Or still: K is an attractor.
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More on the logistic equation

The quadratic term (rN2/K ) in the logistic equation

dN

dt
= rN(1− N/K),

models the internal competition in a population for vital resources as:

I Space,
I Food .

This is called intra-specific competition
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Logistic equation

Water lilies on a pond, compete for space:
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Logistic equation

Trees in the Amazonian forest compete for light:
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Logistic equation

But in semi-arid regions, competition is for water
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Logistic equation

Here is a plot of the Tasmanian sheep population
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Nomenclature

The constant K that appears in the logistic equation

dN

dt
= rN(1− N/K)

is usually known by carrying capacity.
The carrying capacity is "phenomenological parameter"that depends
on the particular environment, on the species and all circumstances
affecting population maintenance.
As we already saw, the population takes the value K for large times.
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Glory and Misery of the logistic equation

Glory

It’s simple and its solvable.

It allows us to introduce the concept of carrying capacity.

It’s a good approximation in several cases.

Misery

It’s too simple

It does not model more complex biological facts

So, why should I like the logistic equation?
It’s a kind of minimal model whereupon we can build more sophisticated ones.
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Generalizations

To go beyond the logistic, but still in the context of single species
dynamics, we consider:

dN(t)

dt
= F(N)

where F is a given function of N.
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Examples

spruce budworm model ( see Murray)

F(N) = rN(1− N/K )− BN2

(A2 + N2)

Allee effect ( see Edelstein-Keshet)

F(N) = −aN + bN2 − cN3

Gompertz growth in tumors ( see Kot)

F(N) = −κN lnN/K
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Generalizations

Usually, to study these equations, we do not solve the differential
equation.
We rather perform a qualitative analysis:

I We look for fixed points, N∗, given by F(N∗) = 0.
I Once N∗ have been determined, we study their stability.
I Try out with any of the previous equations.....

By these means we get a qualitative view of the dynamics.
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Comments I

Scales
The Malthusian equation introduced a parameter, r ,

which has
dimensions of time−1.

I In other words, r−1 defines a time scale.
The logistic brought in one more parameter: K .

I K defines a scale for population size.

Scales, like these ones or still others ( space scales, ...) are important.
We should always remember that ours models are valid on certain
scales.
Let’s see an example.
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Comments: Human population

Figura : Europe’s population between 1000 e 1700
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Comments: Human population

Figura : Earth population between 500 and 2000
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Comments: Human population

Figura : Earth population between 500 and 2000 , highlighting the effects of
bubonic plague .
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Comments: Human population

Figura : Estimated Earth’s population between -4000 e 2000

Roberto A. Kraenkel (IFT-UNESP) III SSSMB São Paulo, Feb 2014 22 / 32



Comments: Human population

As we look at the Human population at different space and time
scales, we see different traits...
Every mathematical model has limited validity.
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Comments II

What about interactions?
Until now we considered populations of different species as
independent.

However, it a fact that species make part of large interaction
networks...

I Different animals compete for resources
I Some species are prey on others

Thus:“populations are in fact inter-dependent..”.
The networks involved can be quite complex.
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Trophic network, Arctic region
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Comments II

What are the single species good for?
Certain species have their dynamics effectively uncoupled from the
others.

The population level is determined by limiting factors, but these
factors are not directly affected by the population.
Decoupling can also occur when there many couplings!

I Say, species (A) consumes (preys on) many others.
I It’s coupling with each of the prey species will be "weak".
I Changes in the prey species do not affect strongly species (A).
I If, further, (A) is not the unique prey of some predator, than, it may be

well described by a sinlge species dynamics.
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others.The population level is determined by limiting factors, but these
factors are not directly affected by the population.
Decoupling can also occur when there many couplings!
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Comments II: example

Figura : Simplified trophic network in the Arctic
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Comments II: example

Figura : The wolf preys on many species, but its is itself a prey of a specialist
predator. The coupling with human population can be strong.
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Comments II: example

Figura : The gyrfalcon depends essentially on the the artic hare.
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Comments II: example

Figura : The Arctic hare is a generalist that is prey to other generalists. Single
species models may apply.
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Discrete time models

In the models considered so far, time is continuous..

Quite natural!

We this suppose that birth and death, increase or decrease of populations occurs
all the time.

That’s not true for all species.

Certain species have well defines generations.often regulated by the seasons of the
year.

Certain plants, or insects.. There is no point to speak about continuous time. We
rather say "in year one population was N1, in year two, N2, and so on.

So, it is natural to consider:

Nt+1 = αNt︸ ︷︷ ︸
Equivalent to the Malthusian equation

or Nt+1 = F(Nt)
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Time delay

Our basic model
dN

dt
= F(N(t))

assumes that the rate of change of N at time t depends only on N at time t.

We say that the model is local in time.

However, the rate of change of the population might not respond instantaneously to
variations in the population size .

For instance, a part of the population might not be mature for reproduction.

So, we are sometimes led to consider model like :

dN

dt
= F(N(t − τ ))

They are called non-local in time.

Usually, complicated .
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Just try to solve:

dN

dt
= −

π

2T
N(t − T )

Good look.
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More....

Many other aspects have not been discussed

Interacting species
The spatial distribution of the population....
We will study them in the coming lectures.
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Online Resources

http://www.ictp-saifr.org/mathbio3
http://ecologia.ib.usp.br/ssmb/

Thank you for your attention
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