L4. Animal movement

. L1. Approaches to ecological modelling

. L2. Model parameterization and validation

. L3. Stochastic models of population dynamics (math)
. L4. Animal movement (math + stat)

. L5. Quantitative population genetics (math + stat)

. L6. Community ecology (stat)



Movement plays a central role in ecology

All organisms move!

Understanding movement is central to all questions in spatial ecology,
because movement is the process which brings the spatial aspect to
population dynamics.

Applications, such as monitoring, managing, and conserving
populations, often require an understanding of movement.

Habitats are fragmenting — can the organisms move between the
fragments?

Climate is changing — can the organisms move to the areas where
climate will be suitable in the future?



Examples of movement data (1/4):

Mark-recapture data on butterfly movements
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Ovaskainen, Luoto, lkonen, Rekola, Meyke and Kuussaari 2008. An empirical test of a diffusion model:
predicting clouded apollo movements in a novel environment. American Naturalist 171, 610-619.



Examples of movement data (2/4):

GPS data on waolf, bear, lynx, moose, forest reindeer, ...
Movements by GPS collared wolves (2002-2008)

67N | — male \ —e— alku
— female —— loppu

66 N

65N -

64 N

63 N

62 N

™ &

60 N

23 E 25E 27 E 29E 31E 33E

S. Ronkainen

Gurarie, Suutarinen, Kojola and Ovaskainen. 2011. Summer movements, predation and habitat use of wolves in
human modified boreal forests. Oecologia 165, 891-903.



Examples of movement data (3/4):

Harmonic radar data on butterfly movements

y coordinate (m)
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Ovaskainen, Smith, Osborne, Reynolds, Carreck, Martin, Niitepdld and Hanski 2008. Tracking butterfly movements
with harmonic radar reveals an effect of population age on movement distance. PNAS 105, 19090-19095.



Examples of movement data (4/4):
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How do organisms move in a heterogeneous landsca




What is the movement rate of a butterfy?

Spatial mark-recapture
data depend on
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Bayesian state-space approach

Observation model
describing when and
where we searched for
butterflies, and how good
we were in finding them

Process model
describing how
butterflies move in a
heterogeneous space
during the lifetime




Animal movements in homogeneous space:
random walks and their diffusion approximations
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What is the right movement model?

Diffusion, correlated random walk, stochastic differential equation

models, Lévy flights, individual based simulation models...

Model A: Correlated random
walk in discrete time

Model B: Correlated random
walk in continuous time

Model C: The Ornstein-
Uhlenbeck model for velocity

=1
< “\5?:21
EI* SR
| | | | 1
=10 -5 0 o 10
T=2 A t=4 )
A" __;_-d_ - .

) e Pl e
g ‘ PV
lx‘-ﬂ e T H""\-,\‘ X '}-ﬁ_'z.,?//

o = h_ d
g Y




How much do the model specific details matter?

Often not very much!

Gurarie, E. and Ovaskainen, O. 2011.
Characteristic spatial and temporal scales
unify models of animal movement. American
Naturalist 178, 113-123
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Characteristic scales of movement determine
model behavior at small and large time scales

At long time scales, a broad range of movement models lead to diffusion:

< z(t) —z(0) P>= 4Dt

At short time scales, movement behaviour can be characterized
by the velocity autocorrelation function:

<V(t+At)-v(t) >
< v(t) P>

C, (At) = ~ exXp(—At/7)

Characteristic spatial and temporal scales of movement (a, z-) Withg = 2«/ Dz, are
sufficient for describing many essential aspects of movement, such as encounter rates.

Gurarie, E. and Ovaskainen, O. 2011. Characteristic spatial and temporal
scales unify models of animal movement. American Naturalist 178, 113-123



Matching models in terms of the characteristic scales

Key parameters: ((7 y T )
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Model B: Correlated random walk in continuous time
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From random walk to diffusion
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Patlak 1953:
At long time scales, correlated random walk

can be approximated by diffusion

Let v=v(X,y;t) be the probability that the individual is at
location (x,y) at time t. Then v evolves as

Y
— = DAV — v
Diffusion coefficient mortality
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The choice of model complexity depends on
the data and on the question

(o,7) D=2

y coordinate (m)

x coordinate (m)



Animal movement in heterogeneous space
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Edge-mediated behavior (habitat selection at edges)

expected direction
for the next move

<
ACNY)

tendency to
move toward
habitat patch

tendency to continue in the
direction already moving
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Schultz, C. B., and E. E. Crone. 2001. Edge-mediated dispersal
behavior in a prairie butterfly. Ecology 82, 1879-1892.



http://www.esajournals.org/na101/home/literatum/publisher/esa/journals/content/ecol/2001/00129658-82.7/0012-9658(2001)082[1879:emdbia]2.0.co;2/production/images/large/i0012-9658-82-7-1879-f03.jpeg

bias b(x)

Edge-mediated behaviour pushes the individual
towards the preferred habitat
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Ovaskainen, O. and Cornell, S. J. 2003. Biased movement at a boundary and conditional
occupancy times for diffusion processes. Journal of Applied Probability 40, 557-580.



Model simplification by a scaling limit

1-dimensional approximation of the 2-dimensional model

Matching condition:
discontinuous probability
density, continuous flux
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Observation model: also searching
but not finding gives information

The capture probability p is the probability of observing an
individual given that it actually is at the site

Site somewhere else
Probability that an individual is X
in a site before the search 1-X
x(1-p) 1-X

Probability that an individual is in
the site after the site is searched 1— px 1-— PX
for (without finding the individual)

Ovaskainen, O. 2004. Habitat-specific movement parameters estimated using
mark—recapture data and a diffusion model. Ecology 85, 242-257.



Model fitting with Bayesian inference

movement model:
diffusion, habitat
selection, mortality

observation model:
capture probability

Technical details on computation of likelihood and MCMC sampling:

Ovaskainen, O. 2004. Habitat-specific movement parameters estimated using mark—recapture data and a diffusion
model. Ecology 85, 242-257.

Ovaskainen, O., Rekola, H., Meyke, E. and Arjas, E 2008. Bayesian methods for analyzing movements in
heterogeneous landscapes from mark-recapture data. Ecology 89, 542-554.

Ovaskainen, O. 2008. Analytical and numerical tools for diffusion based movement models. Theoretical Population
Biology 73, 198-211.



Solving the diffusion model numerically
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Simulating the time-evolution of the probability density

location of a
site that Is
searched for

Initial location



Example of biological inference

Females move faster than males outside the breeding habitat
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Ovaskainen, O. et al. 2008. An empirical test of a diffusion model: predicting clouded
apollo movements in a novel environment. American Naturalist 171, 610-619.



Example of model prediction

What is the probability that the butterfly ever visits this meadow?

1.0

0.1

0.01

0.001

Theorem. The hitting
probability satisfies

L'p(x)=0
with boundary condition B

Ovaskainen & Cornell 2003
(Journal of Applied Probability)




Landscape A
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Ovaskainen, O., Luoto, M., Ikonen, I., Rekola, H., Meyke, E. and Kuussaari, M. 2008. An empirical test of a diffusion

model: predicting clouded apollo movements in a novel environment. American Naturalist 171, 610-619.
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A movement corridor was cut
through the forest
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What kind of a corridor would increase movements?

Movement probability p, Movement probability p,
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in diffusion models:
hypothetical movements in a mountainous landscape
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Ovaskainen and Crone 2010. Modeling animal movement with diffusion. In "Spatial Ecology" (S. Cantrell, C.

Cosner, S. Ruan, eds). Chapman and Hall/CRC Mathematical & Computational Biology)



L4: take home messages

Advances in tracking technology have lead to a massive increase in the amount
and quality of movement data.

Much of the movement data acquired for small organisms are still indirect in the
sense that they do not include entire tracks. With such data, it is important to
account for the observation method when parameterizing movement models.

Diffusion-advection-reaction models provide a simple but flexible family of
movement models. They can be adjusted to account e.g. for environmental
heterogeneity (in space or time), edge-mediated behavior, home-range
behavior, or many other biologically relevant features.

Movement models can be integrated into models of demographic, genetic and
evolutionary dynamics. Bringing different kinds of information together can help
to get a more full picture.



