Imprints of structure formation history on dark matter halo profiles

Irène Balmès

IFUSP

February 21st 2014

Cosmology miniworkshop – ICTP

Collaborators: Jean-Michel Alimi, Vincent Bouillot, Pier Stefano Corasaniti, Yann Rasera, Vincent Reverdy
Dark matter halos

Result of the growth of initial perturbations influenced by gravity and expansion.

Traced by observable galaxies, lensing effect, X-ray gas...
A universal profile?

Navarro, Frenk and White profile

Phenomenological density profile from the simulations

\[
\rho(r) = \frac{\rho_s}{\frac{r}{r_s}(1 + \frac{r}{r_s})^2}
\]

concentration: \(c = \frac{r_{200}}{r_s} \)

Navarro, Frenk & White, 1997
Concentration-mass relationship

Linked to the mass-accretion history of the halo.
1. **Dark Energy Universe Simulations**

2. **Agreement to the NFW Profile**

3. **Sparsity: An Alternative Parameter**

4. **Conclusion**
DEUS
NFW profile
Sparsity
Conclusion
Ideal set-up to study imprints of cosmology on non-linear structure formation, and in particular on halo profiles.

see www.deus-consortium.org,
http://www.deus-consortium.org/deuvo/
Cosmological models

Realistic models

- Calibrated on WMAP5 (3,1) and the UNION dataset
- ΛCDM: \(\Omega_\Lambda = 0 \)
- SUCDM: \(w \approx -0.94 + 0.19(1 - a) \)
- RPCDM: \(w \approx -0.87 + 0.08(1 - a) \)

Toy models

- Study of the influence of one single parameter
- SCDM: \(\Omega_\Lambda = 0 \)
- LΛCDM: \(\Omega_\Lambda = 0.9 \)
- LRPCDM: equation of state \(w \)
Halo Finder

Spherical Overdensity

Halo: sphere of mean density $\Delta \times \rho_m$

$\Delta = 200$

imposed spherical geometry

From SOD: $M_{200}, r_{200}, \{r_i, \rho_i, \sigma_i\}$
PROFILE FITTING

Fitting procedure: c, $\chi^2 = \left(\sum_{i=1}^{n} \frac{(\rho_i^{\text{NFW}} - \rho_i)^2}{2\sigma_i^2} \right) / n$
PROFILE FITTING

Fitting procedure: \(c, \chi^2 = \frac{\sum_{i=1}^{n} (\rho_i^{NFW} - \rho_i)^2 / 2\sigma_i^2)}{n} \)
Numerical effect on χ^2

Renormalization: $\tilde{\chi}^2 = \chi^2 \sqrt{\frac{n_{\text{min}}}{n_{\text{part}}}}$

$\tilde{\chi}^2$ independent of the resolution
In cosmological models with no dark energy, halos are more in agreement with the NFW profile.
HALO GROUPS

Halos fitted to within 1σ: 68%
Halos fitted to within 2σ: 95%
Halos ill-fitted: 5%
Concentration as a function of mass

In ill-fitted halos, c has no physical meaning.
Sparsity

\[S_\Delta = \frac{M_{200}}{M_\Delta} \]

- no fitting required
- probes the outer parts of the halo

\[\Delta = 200 \\
600 \\
1200 \]
SPARSITY AS A FUNCTION OF MASS

The sparsity is not influenced by the profile agreement with NFW.
near mass independence \Rightarrow Consistency relation between s_{Δ} and the mass functions

$$\int_{M_1}^{M_2} \frac{1}{M_\Delta} \frac{dn}{d \ln M_\Delta} d \ln M_\Delta = s_{\Delta} \int_{s_\Delta M_1}^{s_\Delta M_2} \frac{1}{M_{200}} \frac{dn}{d \ln M_{200}} d \ln M_{200}$$

solid: $z = 0$

dotted: $z = 1$
VARATIONS WITH THE COSMOLOGY
The higher $D_+ (\sigma_8)$, the lower s_Δ
Observational data

22 clusters with measured M_{112} and M_{500} (projected) masses (Local Cluster Substructure Survey)

Okabe et al., 2010
PROOF-OF-CONCEPT

CONCLUSION

- comparison with observations
 investigate possible biases
- 2D sparsity
 projected mass, as measured by weak lensing
- higher masses
 DEUS Full Universe Run
- investigation of the relationship with the mass function