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Constituent	
  Quark	
  Models	
  (CQM)

Murray	
  Gell-­Mann

• The	
  strongly	
  interacting	
  particles	
  (hadrons)	
  have	
  in	
  
their	
  internal	
  structure	
  the	
  so-­‐called	
  fundamental	
  
particles:	
  quarks.	
  

• The	
  hadrons	
  are	
  formed	
  either	
  from	
  three	
  quarks	
  
(baryons):	
  

!

!

!

• or	
  quark-­‐antiquark	
  pairs	
  (mesons):	
  

!

• Only	
  color-­‐singlet	
  states	
  are	
  observed	
  in	
  nature.

George	
  Zweig

u u

d

proton

d

u

d

neutron

u u

pion

_

Introduction

4



/36

II	
  Workshop	
  on	
  Perspectives	
  in	
  Nonperturbative	
  QCD	
  
EXOTIC	
  STATES	
  IN	
  CHARMONIUM	
  SPECTROSCOPY

q q

q

baryon

meson

q q
_

Hadrons	
  in	
  CQM

Introduction

5

Can	
  we	
  go	
  beyond	
  these	
  structures?



/36

II	
  Workshop	
  on	
  Perspectives	
  in	
  Nonperturbative	
  QCD	
  
EXOTIC	
  STATES	
  IN	
  CHARMONIUM	
  SPECTROSCOPY

q q

q

baryon

meson

q q
_

Hadrons	
  in	
  CQM

.

6

Exotic	
  Hadrons	
  
in	
  QCD

glueballs

q q

hybrids

_

q q

q

pentaquarks

q q
_

tetraquarks

q q
_

q q
_

molecules

q q
_

q q
_



/36

II	
  Workshop	
  on	
  Perspectives	
  in	
  Nonperturbative	
  QCD	
  
EXOTIC	
  STATES	
  IN	
  CHARMONIUM	
  SPECTROSCOPY

Where	
  we	
  could	
  Yind	
  evidences	
  for	
  these	
  
new	
  hadronic	
  structures	
  in	
  nature?

7



/36

II	
  Workshop	
  on	
  Perspectives	
  in	
  Nonperturbative	
  QCD	
  
EXOTIC	
  STATES	
  IN	
  CHARMONIUM	
  SPECTROSCOPY

Charmonium	
  Spectroscopy

Where	
  we	
  could	
  Yind	
  evidences	
  for	
  these	
  
new	
  hadronic	
  structures	
  in	
  nature?

8



/36

II	
  Workshop	
  on	
  Perspectives	
  in	
  Nonperturbative	
  QCD	
  
EXOTIC	
  STATES	
  IN	
  CHARMONIUM	
  SPECTROSCOPY

3000

3200

3400

3600

3800

4000

4200

4400

4600

4800

1-­‐-­‐
ψ(1S)

ψ(2S)
ψ(3770)

ψ(4040)
ψ(4160)

ψ(4415)

�0
c0

�c0

0++

MeV
c c

_

Charmonium	
  Spectroscopy

9
1++

�c1

Experimental	
  data



/36

II	
  Workshop	
  on	
  Perspectives	
  in	
  Nonperturbative	
  QCD	
  
EXOTIC	
  STATES	
  IN	
  CHARMONIUM	
  SPECTROSCOPY

3000

3200

3400

3600

3800

4000

4200

4400

4600

4800

1-­‐-­‐
ψ(1S)

ψ(2S)
ψ(3770)

ψ(4040)
ψ(4160)

ψ(4415)

�0
c0

�c0

0++

MeV

Charmonium	
  Spectroscopy

10
1++

�c1

Experimental	
  dataPHYSICAL REVIEW D VOLUME 32, NUMBER 1 1 JULY 1985

Mesons in a relativized quark model with chromodynamics

Stephen Godfrey and Nathan Isgur
Department of Physics, Uniuersity of Toronto, Toronto, M5S 1A 7 Canada
(Received 12 December 1983; revised manuscript received 10 May 1985)

We show that mesons —from the m to the Y—can be described in a unified quark model with
chromodynamics; The key ingredient of the model is a universal one-gluon-exchange-plus-linear-
confinement potential motivated by QCD, but it is crucial to the success of the description to take
into account relativistic effects. The spectroscopic results of the model are supported by an exten-
sive analysis of strong, electromagnetic, and weak meson couplings.

I. INTRODUCTION

TABLE I. The importance of confinement in QQ.

m~ Typical
(GreV) cx,

ao——( 3 o.,m~) ' Approximate % of 2S-1S
(fm) from confinement

1.5
5
25
50
100

0.34
0.21
0.16
0.14
0.12

0.58
0.28
0.07
0.04
0.02

50
35
20
15
10

The discovery and exploration of the charmonium sys-
tem and the parallel development of quantum chromo-
dynamics (QCD) hive revolutionized hadron physics. It
is becoming clear that heavy-quark systems can be well
described by nonrelativistic potential models and that
many of their properties reflect the dynamics expected
from QCD. '
However, until confinement is better understood it is

urilikely that we will be able to rigorously compare quar-
konia with the predictions of QCD. This is illustrated in
Table I which shows the fraction of the 2S-1S splitting
which arises from confinement in a typical "Coulomb-
plus-linear" fit to heavy quarkonia: clearly the properties
of the confinement potential will continue to play an im-
portant role in the foreseeable future. Therefore, to study
these systems we must for the present rely on models
which are a mixture of "true" QCD and phenomenologi-
cal treatments of confinement which are motivated by
QCD: we call such models "soft QCD" to remind our-
selves both of their rigor and their region of applicability.
Despite this appellation, and notwithstanding the many

possible criticisms, such models have been successfully ap-
plied to the charmonium ( cc ) and more recently b
quarkonium ( bb ) families, so that the value of such a
picture is now widely accepted. Moreover, the success of
soft QCD in these sectors at least raises the question of
where, as the quark mass is decreased, such models be-
come useless. Even though it seems certain that they will
become inaccurate if small masses are involved, one might
hope that the dynamics of light quarks can be at least

qualitatively understood on the basis of these same
models.
In this paper we present the results of a study of light

and heavy mesons in soft QCD. We have found that all
mesons—from the pion to the upsilon "an be described in
a unified framework We .substantiate this conclusion by
first calculating meson spectra and then performing an
extensive analysis of meson couplings. Section II de-
scribes the model, while Secs. III and IV deal with spec-
troscopy and decays, respectively. In Sec. V we discuss
our results. Some conclusions and comments are given in
the final section.
Since most of the elements of our model have appeared

in one form or another elsewhere, some general comments
on its relationship to earlier work in this area seem to us
to be mandatory; we will make more specific comments in
the appropriate sections below. Almost all quark poten-
tial models are based on some variant of the Coulomb-
plus-linear potential expected from QCD and ours turned
out to be no exception (we tried and rejected several alter-
natives). Many models have also included some form of
the running coupling constant of QCD, but we know of
no other work in which the effects of a, (Q ) have been
treated in such a consistent and complete manner as is the
case here. Relativistic effects have also often been dis-
cussed, but their treatment has normally been a somewhat
patchwork affair. Here we have attempted to identify all
possible types of relativistic effects, including smearing,
nonlocality, and momentum-dependent effective poten-
tials, and to then treat them for all mesons in a unified
and physically motivated way. We are not satisfied with
our relativization of the quark model, but we believe it to
be a step forward. Aside from such fundamental differ-
ences in the framework of our model (we have mentioned
the most important new features, but there are others), we
believe the work presented here is also distinguishable
from earlier work by its breadth of application. We have
not only compared the results of our unified model to all
known mesons simultaneously, but we have also made
predictions for hundreds of the as-yet-unseen low-lying
excitations of the various meson flavor sectors. As ex-
plained in the text, our calculations were not only exten-
sive, but they were also accurately done: we did not rely
on dubious perturbative treatments of various terms in the
Hamiltonian. Once in possession of predictions for meson

32
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FIG. 1: The π+π−J/ψ invariant mass spectrum in the range
3.8−5.0 GeV/c2 and (inset) over a wider range that includes
the ψ(2S). The points with error bars represent the selected
data and the shaded histogram represents the scaled data
from neighboring e+e− and µ+µ− mass regions (see text).
The solid curve shows the result of the single-resonance fit
described in the text; the dashed curve represents the back-
ground component.

single-resonance fits to the π+π−J/ψ mass spectrum for
e+e− and µ+µ− modes separately, which yield 49±16
and 76±13 signal events, respectively. Fits give 76±18
events for the original 124 fb−1 data set and 56±13 events
for the next, independent 109 fb−1 data set. Fitting sam-
ples with and without reconstructed ISR photons gives
30±11 and 96±15 events, respectively. We find consis-
tent values for the Y (4260) and the ψ(2S) when deter-
mining the fraction of the total signal found in each of
these subsets.

Several additional systematic checks have been per-
formed. Each selection criterion has been tightened (loos-
ened) and the decrease (increase) in the signal yield is
consistent with that for the ψ(2S) data. Events selected
when the selection criteria are reversed, individually or
in pairs, are studied; in no case is there a significant dip
in the signal-mass region that might indicate a bias in
the selection procedure.

Since the single-resonance fit probability is low we con-
sider the possibility that the observed signal is due to two
interfering resonances. Two-resonance fits with an inter-
ference term find one resonance mass close to the mass
from the single-resonance fit, but with a width as low
as 50 MeV/c2, plus a second narrow resonance around
4.33 GeV/c2. However, the fit probabilities are not sig-
nificantly improved by two-resonance hypotheses. The
size of our sample does not allow a statistically signifi-
cant discrimination; we can neither exclude nor establish
a multi-resonance hypothesis.

The dipion invariant mass distribution for the Y (4260)
is shown in Fig. 3. Each point represents the yield of a
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FIG. 2: The distribution of m2
Rec. The points represent the

data events passing all selection criteria except that on m2
Rec

and having a π+π−J/ψ mass near 4260 MeV/c2, minus the
scaled distribution from neighboring π+π−J/ψ mass regions
(see text). The solid histogram represents ISR Y Monte Carlo
events, and the dotted histogram represents the ISR ψ(2S)
data events.
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FIG. 3: The dipion mass distribution for Y (4260) →

π+π−J/ψ data is shown as points with error bars. The his-
togram shows the distribution for Monte Carlo events where
Y (4260) → π+π−J/ψ is generated according to an S-wave
phase space model.

single-resonance fit to the π+π−J/ψ mass distribution for
that π+π− mass bin.

No enhancement has been observed in the cross section
for e+e− → hadrons [11] at energies corresponding to
the Y (4260). We compute the cross section for e+e− →
π+π−J/ψ production at 4.25 GeV, corresponding to the
highest bin in our data, to be about 50 pb. The inclusive
hadronic cross section at

√
s = 4.25 GeV is 14.2 nb [11].

The ratio, approximately 0.34%, is smaller than the 4%
experimental uncertainty for the hadronic cross section,
so this mode would not have been visible. However, if
the branching fraction of Y (4260) to π+π−J/ψ is very
small, decays to other hadronic modes like DD would
have been observable. This indicates that the branching
fraction to π+π−J/ψ must be large compared to that for
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Figure 1.3: Evidence for observation of Y (4140) state by Belle collaboration [24]. One of the
lines (blue) represents the expected background composed of mesons K (MKK ≃ 1.0GeV),
while the other line with a peak (red) is the fit to events observed.

and BaBar Collaborations near the J/ψ ω threshold [27, 28]. They concluded that the

Y (4140) is probably a D∗
sD̄

∗
s molecular state with JPC = 0++ or 2++. In Ref.[29], the

authors have interpreted the Y (4140) as an exotic hybrid charmonium with JPC = 1−+.

There are many other works about the possible theoretical interpretations for the

Y (4140) state and a more complete discussion can be found in the Refs.[30, 31, 32, 33,

34, 35].

In the present work [30], the QCDSR approach is used to study if the two-point

correlator function based on a D∗
sD̄

∗
s molecular current, with JPC = 0++, can describes

the new observed resonance structure Y (4140).

1.1.3 Y(3930)

Another interesting state is the so-called Y (3930). The signal of this state has a

significance of 8.1σ and was observed in the decay channel B → Y (3930) K by Belle

collaboration [27] and was confirmed by BaBar collaboration [28]. The experimental mass

and full width are given by [36]: M
Y (3930)

= (3917.5± 2.7)MeV and Γ = (27± 10)MeV.

BaBar Collaboration PRD77, 111101 (2008),

)
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B0 → XK0 B+ → XK+

B0 → XK0

B+ → XK+
= 0.41 ± 0.24 ± 0.05

molecular model ∼ 0.1, tetraquark model ∼ 1

m(X)B+ = (3871.4±0.6)MeV, m(X)B0 = (3868.7±1.6)MeV

∆m = (2.7 ± 1.6)MeV
–p.11/34

5

provide uniform coverage of the the entire mJ/ψω range.
The generated events are subjected to the reconstruction
and selection procedures applied to the data. For B+

(B0) decay it is found that the efficiency increases (de-
creases) gradually from ∼ 6% (∼ 5%) close to mJ/ψω

threshold to ∼ 7% (∼ 4%) for mJ/ψω∼ 4.8 GeV/c2.
Comparison of generated and reconstructed mJ/ψω val-
ues within each reconstructed mJ/ψω mass interval en-
ables the measurement of the mJ/ψω dependence of the
mass resolution. From a single-Gaussian fit to each dis-
tribution, the rms deviation is found to degrade gradually
from 6.5 MeV/c2 at mJ/ψω∼3.84 GeV/c2, to 9 MeV/c2

at mJ/ψω∼4.8 GeV/c2.
The mJ/ψω distributions for B+ → J/ψωK+ and

B0 → J/ψωK0 decay, after efficiency correction in each
mass interval, are shown in Fig. 2(a) and Fig. 2(b), re-
spectively. For the latter, corrections for K0

L production
and K0

S → π0π0 decay have been incorporated. The
mJ/ψω range from 3.8425 to 3.9925 GeV/c2 is divided
into 10 MeV/c2 intervals, while beyond this 50 MeV/c2

intervals are used. The same choice of intervals was used
in Ref. [23], where the first two were inaccessible, and
the third was only partly accessible, because of the value
of the lower limit on m3π. Clear enhancements are ob-
served in the vicinity of the X and Y mesons in the B+

distribution, and similar effects are present in the B0 dis-
tribution, with lower statistical significance.
The function used to fit the distributions of Fig. 2

is a sum of three components. The X meson compo-
nent is a Gaussian resolution function with fixed rms
deviation σ = 6.7 MeV/c2 obtained from MC simula-
tion; the intrinsic width of the X meson (estimated to be
<∼ 3 MeV [28]) is ignored. The Y -meson intensity con-
tribution is represented by a relativistic S-wave Breit-
Wigner (BW) function [23]. The nonresonant contri-
bution is described empirically by a Gaussian function
multiplied by mJ/ψω. The Y -meson and nonresonant in-
tensity contributions are multiplied by the phase space
factor p× q, where p is the K momentum in the B rest
frame, and q is the J/ψ momentum in the rest frame of
the J/ψ3π system. A simultaneous χ2 fit to the distribu-
tions of Figs. 2(a) and 2(b) is carried out, in which only
the normalization parameters of the three contributions
are allowed to differ between Fig. 2(a) and Fig. 2(b).
The fit describes the data well (χ2/NDF = 54.7/51,
NDF=number of degrees of freedom), as shown by the
solid curves in Fig. 2. The dashed and dotted curves
show the X- and Y -meson contributions, respectively,
while the dot-dashed curves represent the nonresonant
distribution.
For the X meson, the fitted mass is 3873.0+1.8

−1.6(stat)±
1.3(syst) MeV/c2, while the mass and width values for
the Y meson are 3919.1+3.8

−3.4(stat)±2.0(syst) MeV/c2 and
31+10

−8 (stat)±5(syst) MeV, respectively. These results are
consistent with earlier BABAR measurements [6, 23].
From the fits of Fig. 2, we obtain product branch-
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FIG. 2: The corrected mJ/ψω distribution for (a) B+, (b) B0

decays; (c)(inset) shows the low-mass region of (a) in detail.
The curves indicate the results of the fit.

ing fraction measurements for B0,+ → XK0,+, X →
J/ψω. The resulting B+ and B0 product branching frac-
tion values are [0.6 ± 0.2(stat) ± 0.1(syst)] × 10−5, and
[0.6± 0.3(stat)± 0.1(syst)]× 10−5, respectively.

Similarly, we obtain updated values for B(B+ →
Y K+)×B(Y → J/ψω) = [3.0+0.7

−0.6(stat)
+0.5
−0.3(syst)]×10−5,

B(B0 → Y K0) × B(Y → J/ψω) = [2.1 ± 0.9(stat) ±
0.3(syst)] × 10−5, and for the total (i.e. the sum of
theX- meson, Y -meson, and nonresonant, contributions)
B(B+ → J/ψωK+) = [3.2 ± 0.1(stat)+0.6

−0.3(syst)] × 10−4

and B(B0 → J/ψωK0) = [2.3 ± 0.3(stat) ± 0.3(syst)] ×
10−4. These values are consistent with those of Ref. [23],
and supersede them.

We define RX , RY , and RNR as the ratios of the B0 to
B+ branching fractions to the final states XK, Y K, and
nonresonant J/ψωK, and extract these ratios from a si-
multaneous fit to the data, with the fit function adjusted
to explicitly contain these parameters. This yields RX =
1.0+0.8

−0.6(stat)
+0.1
−0.2(syst), RY = 0.7+0.4

−0.3(stat) ± 0.1(syst),
and RNR = 0.7 ± 0.1(stat) ± 0.1(syst). The values of
RY and RNR are consistent with those in Ref. [23]. The
statistical uncertainty on RNR has been reduced signif-
icantly with respect to Ref. [23] as a result of the in-
creased luminosity, improvements in event reconstruction
efficiency, and the use of much larger MC samples in the
measurement of the selection efficiency as a function of
mJ/ψω, especially for mJ/ψω> 4 GeV/c2.

In Ref. [6], it was found that B(B+ → XK+)×B(X →
J/ψπ+π−) = [8.5 ± 1.5(stat) ± 0.7(syst)] × 10−6 and
B(B0 → XK0)×B(X → J/ψπ+π−) = [3.5± 1.9(stat)±

M = 3871.68± 0.17 MeV
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Y(4140)

1.1. CHARMONIUM EXOTIC STATES 7

Figure 1.3: Evidence for observation of Y (4140) state by Belle collaboration [24]. One of the
lines (blue) represents the expected background composed of mesons K (MKK ≃ 1.0GeV),
while the other line with a peak (red) is the fit to events observed.

and BaBar Collaborations near the J/ψ ω threshold [27, 28]. They concluded that the

Y (4140) is probably a D∗
sD̄

∗
s molecular state with JPC = 0++ or 2++. In Ref.[29], the

authors have interpreted the Y (4140) as an exotic hybrid charmonium with JPC = 1−+.

There are many other works about the possible theoretical interpretations for the

Y (4140) state and a more complete discussion can be found in the Refs.[30, 31, 32, 33,

34, 35].

In the present work [30], the QCDSR approach is used to study if the two-point

correlator function based on a D∗
sD̄

∗
s molecular current, with JPC = 0++, can describes

the new observed resonance structure Y (4140).

1.1.3 Y(3930)

Another interesting state is the so-called Y (3930). The signal of this state has a

significance of 8.1σ and was observed in the decay channel B → Y (3930) K by Belle

collaboration [27] and was confirmed by BaBar collaboration [28]. The experimental mass

and full width are given by [36]: M
Y (3930)

= (3917.5± 2.7)MeV and Γ = (27± 10)MeV.

Projeto Y (4260)
(Versão 4.0)

R.M. Albuquerque
Instituto de F́ısica, Universidade de São Paulo

M = 4361± 13 MeV (1)

Γ = 74± 18MeV (2)

JPC = (1−−) (3)

Y → J/ψ φ (4)

A. Corrente

Vamos tentar utilizar uma corrente mista [cc̄-molécula] para tentarmos explicar tanto a massa quanto
a largura do estado Y (3930). Essa corrente é definida por:

j = a cos θ j(2) + sin θ j(4) (5)

onde:

j(2) = c̄kck (6)

j(4) = (q̄iγµci) (c̄jγ
µqj) . (7)

Note que a constante a deve possuir a dimensão do condensado de quarks.

B. Função de Correlação

Π(q) = i

∫

d4x eiq·x⟨0| T [j(x)j†(0)] |0⟩

= i

∫

d4x eiq·x
{

a2 cos2 θ Π22(x) + sin2 θ Π44(x) + a sin θ cos θ
[

Π24(x) +Π42(x)
]

}

. (8)

As funções Π22(x) e Π44(x) são respectivamente as funções de correlação do méson χc0 e do estado
molecular D∗D∗ (0++), que já foram calculadas em trabalhos anteriores. Assim, devemos calcular as
demais contribuições: Π24(x) e Π42(x) .

Π24(x) = ⟨0| T [j(2)(x)j(4)†(0)] |0⟩

= −Tr

[

Sq
ji(0) γµ Sc

ik(−x)Sc
kj(x) γ

µ

]

(9)

Π42(x) = ⟨0| T [j(4)(x)j(2)†(0)] |0⟩

= −Tr

[

Sq
ji(0) γµ Sc

ik(x)S
c
kj(−x) γµ

]

(10)

Uma escolha conveniente para o parâmetro a é dada por:

a = ⟨q̄q⟩ , (11)
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j = a cos θ j(2) + sin θ j(4) (5)

onde:

j(2) = c̄kck (6)

j(4) = (q̄iγµci) (c̄jγ
µqj) . (7)
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]

}

. (8)

As funções Π22(x) e Π44(x) são respectivamente as funções de correlação do méson χc0 e do estado
molecular D∗D∗ (0++), que já foram calculadas em trabalhos anteriores. Assim, devemos calcular as
demais contribuições: Π24(x) e Π42(x) .

Π24(x) = ⟨0| T [j(2)(x)j(4)†(0)] |0⟩

= −Tr

[

Sq
ji(0) γµ Sc

ik(−x)Sc
kj(x) γ

µ

]

(9)
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= −Tr

[
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ji(0) γµ Sc

ik(x)S
c
kj(−x) γµ

]

(10)

Uma escolha conveniente para o parâmetro a é dada por:

a = ⟨q̄q⟩ , (11)

• In	
  2009,	
  CDF	
  collaboration	
  announces	
  the	
  Qirst	
  
observation	
  of	
  this	
  possible	
  exotic	
  state.
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X(4350)1.1. CHARMONIUM EXOTIC STATES 9
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Figure 1.4: J/ψ φ invariant mass distribution [25].

was (4.42 ± 0.10)GeV, also consistent with the X(4350) mass, but with not consistent

quantum numbers. A molecular state with a vector and a scalar Ds mesons with positive

charge conjugation can be constructed using the combination D∗+
s D̄∗−

s0 − D̄∗−
s D∗+

s0 .

There is already some interpretations for this state, as indicated by Ref.[41], where it

was interpreted as an excited P-wave charmonium state Ξ′′
c2. In Ref.[42], it was interpreted

as a mixed charmonium D∗
sD̄

∗
s state.

In the present work [43], the QCDSR approach is used to study if the two-point

correlator function based on a D∗
sD̄

∗
s0 molecular current, with JPC = 1−+, can describes

the resonance structure X(4350), as suggested by Belle collaboration.

1.1.5 Yb(10890)

In the bottom sector, the Belle collaboration announced the first observation of the

decay channels [44]:

e+e− → Υ(1S)π+π− , Υ(2S)π+π− , Υ(3S)π+π− , Υ(1S)K+K− .

Projeto Y (4260)
(Versão 4.0)

R.M. Albuquerque
Instituto de F́ısica, Universidade de São Paulo

M = 4361± 13 MeV (1)

Γ = 74± 18MeV (2)

JPC = ??+ (3)

Y → J/ψ φ (4)

A. Corrente

Vamos tentar utilizar uma corrente mista [cc̄-molécula] para tentarmos explicar tanto a massa quanto
a largura do estado Y (3930). Essa corrente é definida por:

j = a cos θ j(2) + sin θ j(4) (5)

onde:

j(2) = c̄kck (6)

j(4) = (q̄iγµci) (c̄jγ
µqj) . (7)

Note que a constante a deve possuir a dimensão do condensado de quarks.

B. Função de Correlação

Π(q) = i

∫

d4x eiq·x⟨0| T [j(x)j†(0)] |0⟩

= i

∫

d4x eiq·x
{

a2 cos2 θ Π22(x) + sin2 θ Π44(x) + a sin θ cos θ
[

Π24(x) +Π42(x)
]

}

. (8)

As funções Π22(x) e Π44(x) são respectivamente as funções de correlação do méson χc0 e do estado
molecular D∗D∗ (0++), que já foram calculadas em trabalhos anteriores. Assim, devemos calcular as
demais contribuições: Π24(x) e Π42(x) .

Π24(x) = ⟨0| T [j(2)(x)j(4)†(0)] |0⟩

= −Tr

[

Sq
ji(0) γµ Sc

ik(−x)Sc
kj(x) γ

µ

]

(9)

Π42(x) = ⟨0| T [j(4)(x)j(2)†(0)] |0⟩

= −Tr

[

Sq
ji(0) γµ Sc

ik(x)S
c
kj(−x) γµ

]

(10)

Uma escolha conveniente para o parâmetro a é dada por:

a = ⟨q̄q⟩ , (11)

Y(4140)

• In	
  2009,	
  CDF	
  collaboration	
  announced	
  the	
  Qirst	
  
observation	
  of	
  this	
  possible	
  exotic	
  state.	
  

• Afterwards,	
  Belle	
  collab.	
  searched	
  for	
  this	
  state	
  
in	
  two	
  photons	
  collision	
  and	
  found	
  no	
  evidence	
  
of	
  the	
  Y(4140)	
  signal. �� ! J/ �
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Y(4140)
a width of 32.3 MeV [2] does not a↵ect the X(4140) yield. Reflections of K� reso-
nances [23, 24] and possible broad J/ � resonances can also contribute near and under
the narrow X(4140) resonance. To explore the sensitivity of our results to the assumed
background shape, we also fit the data in the 1020 � 1400 MeV range with a quadratic
function multiplied by the e�ciency-corrected three-body phase-space factor (Fbkg

2

) to
impose the kinematic threshold. The preferred value of the X(4140) yield is 0.6 events
with a positive error of 7.1 events. This fit is shown in Fig. 3(b).
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Figure 3: Distribution of the mass di↵erence M(J/ �) � M(J/ ) for the B+ ! J/ �K+ in
the B+ (±2.5�) and � (±15 MeV) mass windows. Fit of X(4140) signal on top of a smooth
background is superimposed (solid red line). The dashed blue (dotted blue) line on top illustrates
the expected X(4140) (X(4274)) signal yield from the CDF measurement [2]. The top and
bottom plots di↵er by the background function (dashed black line) used in the fit: (a) an

e�ciency-corrected three-body phase-space (Fbkg

1

); (b) a quadratic function multiplied by the

e�ciency-corrected three-body phase-space factor (Fbkg

2

). The fit ranges are 1030–1400 and
1020–1400 MeV, respectively.

A similar fit was performed to simulated B

+ ! X(4140)K+ data to estimate

5

• In	
  2009,	
  CDF	
  collaboration	
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  the	
  Qirst	
  
observation	
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  this	
  possible	
  exotic	
  state.	
  

• Afterwards,	
  Belle	
  collab.	
  searched	
  for	
  this	
  state	
  
in	
  two	
  photons	
  collision	
  and	
  found	
  no	
  evidence	
  
of	
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  Y(4140)	
  signal.	
  

• In	
  2012,	
  LHCb	
  collab.	
  announced	
  new	
  searches	
  
for	
  the	
  Y(4140)	
  state	
  which	
  disfavored	
  the	
  
experimental	
  data	
  obtained	
  by	
  CDF.	
    
The	
  Y(4140)	
  could	
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  longer	
  exists.
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Figure 3: The number of B+ ! J/yfK+ candidates as a function of Dm = m(µ+µ�K+K�)�
m(µ+µ�). The solid curve is the global unbinned maximum-likelihood fit of the data, and the
dotted curve is the background contribution assuming three-body PS. The band is the ±1s un-
certainty range for the background obtained from the global fit. The dashed and dash-dotted
curves are background curves obtained from two different event-mixing procedures, as de-
scribed in the text, and normalized to the number of three-body PS background events. The
short dashed curve is the 1D fit to the data.

The J/y and f vector meson decays are simulated using their known angular distributions. The
measured efficiency is fairly uniform, varying by less than 25% over the entire allowed three-
body PS. Assuming a uniform PS distribution, the efficiency for each Dm bin is taken to be the
average of the efficiencies over the full kinematically allowed m(fK+) range. To estimate the
systematic uncertainty in the efficiency caused by its dependence on the unknown quantum
numbers of the structures, and hence on their unknown decay angular distributions, the effi-
ciency is evaluated under the assumption of both a cos2 q and sin2 q dependence, where q is
the helicity angle, defined as the angle in the J/yf rest frame between the direction of the boost
from the laboratory frame and the J/y direction. Since the efficiency tends to be lower towards
the edge of the Dalitz plot, the cos2 q dependence gives a lower average efficiency than the
default efficiency, while the sin2 q dependence gives a slightly higher average efficiency. This
variation (10%) is taken as the systematic uncertainty in the efficiency from our lack of knowl-
edge of the quantum numbers of the structures and the effects of interference with possible
two-body resonances.
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FIG. 6: (color online) Invariant mass distributions of B+ →
J/ψφK+ candidates in two selected intervals of M(J/ψφ).
Superimposed are the fits of a Gaussian signal (solid blue
lines) with a second-order Chebyshev polynomial background
(dashed red lines), with the signal and background shape pa-
rameters constrained to the results of the fit in Fig. 1, and
allowing for the signal yield to vary.

onant component, ∆χ2 = 14.7 for 3 degrees of free-
dom, is 3.1 standard deviations. The fitted mass of
this state is 4159.0 ± 4.3 (stat) MeV and the width is
19.9 ± 12.6 (stat) MeV. We identify this structure with
X(4140) and we find that the quasi-two body decay
B+ → X(4140)K+ constitutes (21 ± 8 (stat))% of the
B+ → J/ψφK+ decay rate. The data also support the
presence of a structure around 4300 MeV, however they
do not allow a stable fit with an unconstrained width.
When a second resonance is allowed by setting the nat-
ural width to 30 MeV, consistent with the CDF data,
the fit as shown in Fig. 7(c) returns 47± 20 events at an
invariant mass of 4328.5± 12.0 MeV.

The X(4140) mass and width measurements and the
relative branching fraction are subject to systematic un-
certainties associated with the precision of the B+ mass
measurement, with the J/ψφmass resolution in the vicin-
ity of X(4140), and with the variation of the reconstruc-
tion efficiency with M(J/ψφ). To estimate these uncer-
tainties, we perform alternative fits applying more re-
strictive event selection criteria, using a different bin size,
and fitting the net mass distribution of J/ψφ pairs com-
ing from B+ decay obtained by subtracting the prop-
erly normalized background from the sideband region.
In addition, we consider the following variations of the
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FIG. 7: (color online) The B+ → J/ψφK+ signal yield per
30 MeV resulting from fits in 17 M(J/ψφ) bins defined in
the text, corrected for acceptance. Note that the second and
third bins have widths of 15 MeV, and the points are nor-
malized to the counts per 30 MeV as the rest of the bins.
(a) Fit allowing for no J/ψφ resonance and assuming a three-
body phase-space (PHSP) [1]; (b) allowing for a Breit-Wigner
X(4140) signal with an unconstrained mass and width and
with a resolution of 4 MeV; (c) allowing for two Breit-Wigner
resonances where the natural width of the second is set to
30 MeV. The resonance contributions, the three-body phase-
space contribution, and the total fit are also shown.

B+ mass fits in M(J/ψφ) intervals: We vary the B+

mean mass by its uncertainty of ±3 MeV, vary the B+

mass resolution by its uncertainty of ±1 MeV, vary back-
ground parameters within their uncertainties and use a
third-order Chebyshev polynomial in the fit to the back-
ground.

In the nominal fits of the signal yield as a func-
tion of M(J/ψφ), we use the J/ψφ mass resolution
of 4 MeV as obtained in simulations. For decay pro-

• In	
  2009,	
  CDF	
  collaboration	
  announced	
  the	
  Qirst	
  
observation	
  of	
  this	
  possible	
  exotic	
  state.	
  

• Afterwards,	
  Belle	
  collab.	
  searched	
  for	
  this	
  state	
  
in	
  two	
  photons	
  collision	
  and	
  found	
  no	
  evidence	
  
of	
  the	
  Y(4140)	
  signal.	
  

• In	
  2012,	
  LHCb	
  collab.	
  announced	
  new	
  searches	
  
for	
  the	
  Y(4140)	
  state	
  which	
  disfavored	
  the	
  
experimental	
  data	
  obtained	
  by	
  CDF.	
    
The	
  Y(4140)	
  could	
  no	
  longer	
  exists.	
  

• However,	
  new	
  2013	
  experimental	
  Qindings	
  from	
  
CMS	
  and	
  D0	
  support	
  the	
  CDF	
  data	
  and	
  
consequently	
  the	
  existence	
  of	
  the	
  Y(4140)	
  
signal.	
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Figure 3: The number of B+ ! J/yfK+ candidates as a function of Dm = m(µ+µ�K+K�)�
m(µ+µ�). The solid curve is the global unbinned maximum-likelihood fit of the data, and the
dotted curve is the background contribution assuming three-body PS. The band is the ±1s un-
certainty range for the background obtained from the global fit. The dashed and dash-dotted
curves are background curves obtained from two different event-mixing procedures, as de-
scribed in the text, and normalized to the number of three-body PS background events. The
short dashed curve is the 1D fit to the data.

The J/y and f vector meson decays are simulated using their known angular distributions. The
measured efficiency is fairly uniform, varying by less than 25% over the entire allowed three-
body PS. Assuming a uniform PS distribution, the efficiency for each Dm bin is taken to be the
average of the efficiencies over the full kinematically allowed m(fK+) range. To estimate the
systematic uncertainty in the efficiency caused by its dependence on the unknown quantum
numbers of the structures, and hence on their unknown decay angular distributions, the effi-
ciency is evaluated under the assumption of both a cos2 q and sin2 q dependence, where q is
the helicity angle, defined as the angle in the J/yf rest frame between the direction of the boost
from the laboratory frame and the J/y direction. Since the efficiency tends to be lower towards
the edge of the Dalitz plot, the cos2 q dependence gives a lower average efficiency than the
default efficiency, while the sin2 q dependence gives a slightly higher average efficiency. This
variation (10%) is taken as the systematic uncertainty in the efficiency from our lack of knowl-
edge of the quantum numbers of the structures and the effects of interference with possible
two-body resonances.

• In	
  2009,	
  CDF	
  collaboration	
  announced	
  the	
  Qirst	
  
observation	
  of	
  this	
  possible	
  exotic	
  state.	
  

• Afterwards,	
  Belle	
  collab.	
  searched	
  for	
  this	
  state	
  
in	
  two	
  photons	
  collision	
  and	
  found	
  no	
  evidence	
  
of	
  the	
  Y(4140)	
  signal.	
  

• In	
  2012,	
  LHCb	
  collab.	
  announced	
  new	
  searches	
  
for	
  the	
  Y(4140)	
  state	
  which	
  disfavored	
  the	
  
experimental	
  data	
  obtained	
  by	
  CDF.	
    
The	
  Y(4140)	
  could	
  no	
  longer	
  exists.	
  

• However,	
  new	
  2013	
  experimental	
  Qindings	
  from	
  
CMS	
  and	
  D0	
  support	
  the	
  CDF	
  data	
  and	
  
consequently	
  the	
  existence	
  of	
  the	
  Y(4140)	
  
signal.	
  	
  

• Future	
  experimental	
  data	
  can	
  clarify	
  this	
  
intriguing	
  discrepancy	
  between	
  the	
  LHCb	
  and	
  
CMS	
  data.

a width of 32.3 MeV [2] does not a↵ect the X(4140) yield. Reflections of K� reso-
nances [23, 24] and possible broad J/ � resonances can also contribute near and under
the narrow X(4140) resonance. To explore the sensitivity of our results to the assumed
background shape, we also fit the data in the 1020 � 1400 MeV range with a quadratic
function multiplied by the e�ciency-corrected three-body phase-space factor (Fbkg

2

) to
impose the kinematic threshold. The preferred value of the X(4140) yield is 0.6 events
with a positive error of 7.1 events. This fit is shown in Fig. 3(b).
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Figure 3: Distribution of the mass di↵erence M(J/ �) � M(J/ ) for the B+ ! J/ �K+ in
the B+ (±2.5�) and � (±15 MeV) mass windows. Fit of X(4140) signal on top of a smooth
background is superimposed (solid red line). The dashed blue (dotted blue) line on top illustrates
the expected X(4140) (X(4274)) signal yield from the CDF measurement [2]. The top and
bottom plots di↵er by the background function (dashed black line) used in the fit: (a) an

e�ciency-corrected three-body phase-space (Fbkg

1

); (b) a quadratic function multiplied by the

e�ciency-corrected three-body phase-space factor (Fbkg

2

). The fit ranges are 1030–1400 and
1020–1400 MeV, respectively.

A similar fit was performed to simulated B

+ ! X(4140)K+ data to estimate

5
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Among	
  the	
  possible	
  exotic	
  structures	
  which	
  one	
  could	
  
better	
  explain	
  the	
  experimental	
  data?

Admixture	
  of	
  	
  
Charmonium	
  and	
  Four-­quark	
  states
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B0 → XK0 B+ → XK+

B0 → XK0

B+ → XK+
= 0.41 ± 0.24 ± 0.05

molecular model ∼ 0.1, tetraquark model ∼ 1

m(X)B+ = (3871.4±0.6)MeV, m(X)B0 = (3868.7±1.6)MeV

∆m = (2.7 ± 1.6)MeV
–p.11/34
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Y(3940)
5

provide uniform coverage of the the entire mJ/ψω range.
The generated events are subjected to the reconstruction
and selection procedures applied to the data. For B+

(B0) decay it is found that the efficiency increases (de-
creases) gradually from ∼ 6% (∼ 5%) close to mJ/ψω

threshold to ∼ 7% (∼ 4%) for mJ/ψω∼ 4.8 GeV/c2.
Comparison of generated and reconstructed mJ/ψω val-
ues within each reconstructed mJ/ψω mass interval en-
ables the measurement of the mJ/ψω dependence of the
mass resolution. From a single-Gaussian fit to each dis-
tribution, the rms deviation is found to degrade gradually
from 6.5 MeV/c2 at mJ/ψω∼3.84 GeV/c2, to 9 MeV/c2

at mJ/ψω∼4.8 GeV/c2.
The mJ/ψω distributions for B+ → J/ψωK+ and

B0 → J/ψωK0 decay, after efficiency correction in each
mass interval, are shown in Fig. 2(a) and Fig. 2(b), re-
spectively. For the latter, corrections for K0

L production
and K0

S → π0π0 decay have been incorporated. The
mJ/ψω range from 3.8425 to 3.9925 GeV/c2 is divided
into 10 MeV/c2 intervals, while beyond this 50 MeV/c2

intervals are used. The same choice of intervals was used
in Ref. [23], where the first two were inaccessible, and
the third was only partly accessible, because of the value
of the lower limit on m3π. Clear enhancements are ob-
served in the vicinity of the X and Y mesons in the B+

distribution, and similar effects are present in the B0 dis-
tribution, with lower statistical significance.
The function used to fit the distributions of Fig. 2

is a sum of three components. The X meson compo-
nent is a Gaussian resolution function with fixed rms
deviation σ = 6.7 MeV/c2 obtained from MC simula-
tion; the intrinsic width of the X meson (estimated to be
<∼ 3 MeV [28]) is ignored. The Y -meson intensity con-
tribution is represented by a relativistic S-wave Breit-
Wigner (BW) function [23]. The nonresonant contri-
bution is described empirically by a Gaussian function
multiplied by mJ/ψω. The Y -meson and nonresonant in-
tensity contributions are multiplied by the phase space
factor p× q, where p is the K momentum in the B rest
frame, and q is the J/ψ momentum in the rest frame of
the J/ψ3π system. A simultaneous χ2 fit to the distribu-
tions of Figs. 2(a) and 2(b) is carried out, in which only
the normalization parameters of the three contributions
are allowed to differ between Fig. 2(a) and Fig. 2(b).
The fit describes the data well (χ2/NDF = 54.7/51,
NDF=number of degrees of freedom), as shown by the
solid curves in Fig. 2. The dashed and dotted curves
show the X- and Y -meson contributions, respectively,
while the dot-dashed curves represent the nonresonant
distribution.
For the X meson, the fitted mass is 3873.0+1.8

−1.6(stat)±
1.3(syst) MeV/c2, while the mass and width values for
the Y meson are 3919.1+3.8

−3.4(stat)±2.0(syst) MeV/c2 and
31+10

−8 (stat)±5(syst) MeV, respectively. These results are
consistent with earlier BABAR measurements [6, 23].
From the fits of Fig. 2, we obtain product branch-
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FIG. 2: The corrected mJ/ψω distribution for (a) B+, (b) B0

decays; (c)(inset) shows the low-mass region of (a) in detail.
The curves indicate the results of the fit.

ing fraction measurements for B0,+ → XK0,+, X →
J/ψω. The resulting B+ and B0 product branching frac-
tion values are [0.6 ± 0.2(stat) ± 0.1(syst)] × 10−5, and
[0.6± 0.3(stat)± 0.1(syst)]× 10−5, respectively.

Similarly, we obtain updated values for B(B+ →
Y K+)×B(Y → J/ψω) = [3.0+0.7

−0.6(stat)
+0.5
−0.3(syst)]×10−5,

B(B0 → Y K0) × B(Y → J/ψω) = [2.1 ± 0.9(stat) ±
0.3(syst)] × 10−5, and for the total (i.e. the sum of
theX- meson, Y -meson, and nonresonant, contributions)
B(B+ → J/ψωK+) = [3.2 ± 0.1(stat)+0.6

−0.3(syst)] × 10−4

and B(B0 → J/ψωK0) = [2.3 ± 0.3(stat) ± 0.3(syst)] ×
10−4. These values are consistent with those of Ref. [23],
and supersede them.

We define RX , RY , and RNR as the ratios of the B0 to
B+ branching fractions to the final states XK, Y K, and
nonresonant J/ψωK, and extract these ratios from a si-
multaneous fit to the data, with the fit function adjusted
to explicitly contain these parameters. This yields RX =
1.0+0.8

−0.6(stat)
+0.1
−0.2(syst), RY = 0.7+0.4

−0.3(stat) ± 0.1(syst),
and RNR = 0.7 ± 0.1(stat) ± 0.1(syst). The values of
RY and RNR are consistent with those in Ref. [23]. The
statistical uncertainty on RNR has been reduced signif-
icantly with respect to Ref. [23] as a result of the in-
creased luminosity, improvements in event reconstruction
efficiency, and the use of much larger MC samples in the
measurement of the selection efficiency as a function of
mJ/ψω, especially for mJ/ψω> 4 GeV/c2.

In Ref. [6], it was found that B(B+ → XK+)×B(X →
J/ψπ+π−) = [8.5 ± 1.5(stat) ± 0.7(syst)] × 10−6 and
B(B0 → XK0)×B(X → J/ψπ+π−) = [3.5± 1.9(stat)±
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Y(4140)
1.1. CHARMONIUM EXOTIC STATES 7

Figure 1.3: Evidence for observation of Y (4140) state by Belle collaboration [24]. One of the
lines (blue) represents the expected background composed of mesons K (MKK ≃ 1.0GeV),
while the other line with a peak (red) is the fit to events observed.

and BaBar Collaborations near the J/ψ ω threshold [27, 28]. They concluded that the

Y (4140) is probably a D∗
sD̄

∗
s molecular state with JPC = 0++ or 2++. In Ref.[29], the

authors have interpreted the Y (4140) as an exotic hybrid charmonium with JPC = 1−+.

There are many other works about the possible theoretical interpretations for the

Y (4140) state and a more complete discussion can be found in the Refs.[30, 31, 32, 33,

34, 35].

In the present work [30], the QCDSR approach is used to study if the two-point

correlator function based on a D∗
sD̄

∗
s molecular current, with JPC = 0++, can describes

the new observed resonance structure Y (4140).

1.1.3 Y(3930)

Another interesting state is the so-called Y (3930). The signal of this state has a

significance of 8.1σ and was observed in the decay channel B → Y (3930) K by Belle

collaboration [27] and was confirmed by BaBar collaboration [28]. The experimental mass

and full width are given by [36]: M
Y (3930)

= (3917.5± 2.7)MeV and Γ = (27± 10)MeV.

100%
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FIG. 1: The π+π−J/ψ invariant mass spectrum in the range
3.8−5.0 GeV/c2 and (inset) over a wider range that includes
the ψ(2S). The points with error bars represent the selected
data and the shaded histogram represents the scaled data
from neighboring e+e− and µ+µ− mass regions (see text).
The solid curve shows the result of the single-resonance fit
described in the text; the dashed curve represents the back-
ground component.

single-resonance fits to the π+π−J/ψ mass spectrum for
e+e− and µ+µ− modes separately, which yield 49±16
and 76±13 signal events, respectively. Fits give 76±18
events for the original 124 fb−1 data set and 56±13 events
for the next, independent 109 fb−1 data set. Fitting sam-
ples with and without reconstructed ISR photons gives
30±11 and 96±15 events, respectively. We find consis-
tent values for the Y (4260) and the ψ(2S) when deter-
mining the fraction of the total signal found in each of
these subsets.

Several additional systematic checks have been per-
formed. Each selection criterion has been tightened (loos-
ened) and the decrease (increase) in the signal yield is
consistent with that for the ψ(2S) data. Events selected
when the selection criteria are reversed, individually or
in pairs, are studied; in no case is there a significant dip
in the signal-mass region that might indicate a bias in
the selection procedure.

Since the single-resonance fit probability is low we con-
sider the possibility that the observed signal is due to two
interfering resonances. Two-resonance fits with an inter-
ference term find one resonance mass close to the mass
from the single-resonance fit, but with a width as low
as 50 MeV/c2, plus a second narrow resonance around
4.33 GeV/c2. However, the fit probabilities are not sig-
nificantly improved by two-resonance hypotheses. The
size of our sample does not allow a statistically signifi-
cant discrimination; we can neither exclude nor establish
a multi-resonance hypothesis.

The dipion invariant mass distribution for the Y (4260)
is shown in Fig. 3. Each point represents the yield of a
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FIG. 2: The distribution of m2
Rec. The points represent the

data events passing all selection criteria except that on m2
Rec

and having a π+π−J/ψ mass near 4260 MeV/c2, minus the
scaled distribution from neighboring π+π−J/ψ mass regions
(see text). The solid histogram represents ISR Y Monte Carlo
events, and the dotted histogram represents the ISR ψ(2S)
data events.
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FIG. 3: The dipion mass distribution for Y (4260) →

π+π−J/ψ data is shown as points with error bars. The his-
togram shows the distribution for Monte Carlo events where
Y (4260) → π+π−J/ψ is generated according to an S-wave
phase space model.

single-resonance fit to the π+π−J/ψ mass distribution for
that π+π− mass bin.

No enhancement has been observed in the cross section
for e+e− → hadrons [11] at energies corresponding to
the Y (4260). We compute the cross section for e+e− →
π+π−J/ψ production at 4.25 GeV, corresponding to the
highest bin in our data, to be about 50 pb. The inclusive
hadronic cross section at

√
s = 4.25 GeV is 14.2 nb [11].

The ratio, approximately 0.34%, is smaller than the 4%
experimental uncertainty for the hadronic cross section,
so this mode would not have been visible. However, if
the branching fraction of Y (4260) to π+π−J/ψ is very
small, decays to other hadronic modes like DD would
have been observable. This indicates that the branching
fraction to π+π−J/ψ must be large compared to that for
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Four-­quark	
  neutral	
  states	
  

could	
  provide	
  explanations	
  for	
  …	
  
• the	
  new	
  states	
  observed	
  in	
  the	
  charmonium	
  spectra	
  
• the	
  dominant	
  decays	
  into	
  
• in	
  some	
  cases,	
  the	
  absence	
  of	
  open-­‐charm	
  decay	
  channels	
  
• charmonia	
  decays	
  with	
  a	
  strong	
  isospin	
  violation,	
  e.g.

J/ + (⇡, ⇢,!, ...)

B
⇥
X(3872) ! J/ ⇡+⇡�⇡0

⇤

B [X(3872) ! J/ ⇡+⇡�]
⇠ 1
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Four-­quark	
  charged	
  states	
  

However,	
  evidence	
  of	
  an	
  exotic	
  particle	
  can	
  be	
  established	
  
unambiguously	
  by	
  detection	
  of	
  the	
  so-­‐called
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Z(4430)+
distribution from ∆E sidebands (|∆E ± 0.070| < 0.034 GeV). Here a strong enhancement
is evident near M(πψ′) ∼4.43 GeV.
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FIG. 2: The M(π+ψ′) distribution for events in the Mbc-∆E signal region and with the K∗ veto

applied. The shaded histogram show the scaled results from the ∆E sideband. The solid curves
show the results of the fit described in the text.

We perform a binned maximum-likelihood fit to the M(πψ′) invariant mass distribution
using a relativistic S-wave Breit-Wigner (BW) function to model the peak plus a smooth
phase-space-like function fcont(M), where fcont(M) = Ncontq∗(Q1/2 + A1Q3/2 + A2Q5/2).
Here q∗ is the momentum of the π+ in the πψ′ rest frame and Q = Mmax − M , where
Mmax = 4.78 GeV is the maximum M(πψ′) value possible for B → Kπψ′ decay. The
normalization Ncont and two shape parameters A1 and A2 are free parameters in the fit.
This form for fcont(M) is chosen because it mimics two-body phase-space behavior at the
lower and upper mass boundaries. (Since the M(πψ′) distribution for the non-peaking B-
decay events and the ∆E sideband events have a similar shape, we represent them both
with a single function.)

The results of the fit, shown as smooth curves in Fig. 2, are tabulated in Table I. The
fit quality is χ2 = 80.2 for 94 degrees of freedom. The significance of the peak, determined
from the change in log likelihood when the signal and its associated degrees of freedom are
removed from the fit, is 6.5σ.

TABLE I: Results of the fit shown in Fig. 2.

Nsig Ncont BW Mass (GeV) Γ (GeV)

121 ± 30 766 ± 39 4.433 ± 0.004 0.045+0.018
−0.013

6
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histogram) and only one 1+ (dashed-line green histogram) Z� resonances. Individual Z� terms
(blue points) are shown for the fit with two Z� resonances.
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Once	
  established	
  the	
  existence	
  of	
  new	
  
states	
  in	
  charmonium	
  spectroscopy,	
  

how	
  can	
  we	
  study	
  them?
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A systema :ic study is made of the non-perturbative effects in quantum chromodyna- 
mics. The basic object is the two-point functions of various currents. At large Euclidean 
momenta q the non-perturbative contributions induce a series in 0a2/q 2) where ~t is some 
typical hadronic mass. The terms of this series are shown to be of two distinct types. The 
first few of them are connected with vacuum fluctuations of large size, and can be con- 
sistently accounted for within the Wilson operator expansion. On the other hand, in 
high orders small-size fluctuations show up and the high-order terms do not reduce 
(generally speaking) to the vacuum-to-vacuum matrix elements of local operators. This 
signals the breakdown of the operator expansion. The corresponding critical dimension 
is found. We propose a Borel improvement of the power series. On one hand, it makes 
the two-point functions less sensitive to high-order terms, and on the other hand, it 
transforms the standard dispersion/epresentation into a certain integral representation 
with exponential weight functions. As a result we obtain a set of the sum rules for the 
observable spectral densities which correlate the resonance properties to a few vacuum- 
to-vacuum matrix elements. As the last bid to specify the sum rules we estimate the 
matrix elements involved and elaborate several techniques for this purpose. 

1. Introduction 

Q u a n t u m  c h r o m o d y n a m i c s  is wide ly  bel ieved nowadays  to be a t rue t h e o r y  o f  
s t rong in te rac t ions .  Because o f  the  ce leb ra ted  a s y m p t o t i c  f r eedom of  QCD [1] ,  it 
is especial ly s imple w h e n  appl ied to the  so-called h a r d  processes.  Indeed,  at  shor t  
d is tances  the  effect ive  coupl ing  c o n s t a n t  o f  the quark-g luon  in t e rac t ion  % b e c o m e s  
small  and  the  i n t e r ac t i on  can  be t r ea t ed  pe r tu rba t ive ly .  The s implic i ty  o f  the  t heo ry  
seems to be in accord  wi th  the  e x p e r i m e n t a l  observa t ions  such as an ( a p p r o x i m a t e )  
scaling in deep inelast ic  scat ter ing.  

On  the  o t h e r  h a n d ,  any  comprehens ive  t h e o r y  mus t  include large-dis tance dyna-  
mics as well. In par t icu lar  qua rk  i n t e r ac t i on  wi th in  h a d r o n s  is s t rong by  def in i t ion ,  
since it  b inds  quarks  in to  unseparab le  pairs.  A t  p resen t  there  is n o  quan t i t a t i ve  
f r a m e w o r k  wi th in  QCD to deal wi th  this  s t rong in t e r ac t i on  and  such a f u n d a m e n t a l  

* Permanent address: Institute for Nuclear Physics, Novosibirsk 90, USSR. 

385 

Nuclear Physics B147 (1979) 385-447 
© North-Holland Publishing Company 

QCD AN D  R E S O N A N C E  PHYSICS.  T H E O R E T I C A L  F O U N D A T I O N S  

M.A. SHIFMAN,  A.I. V A I N S H T E I N  * and  V.I. Z A K H A R O V  
Institute of  Theoretical and Experimental Physics, Moscow, 117259, USSR 

Received 24 July 1978 

A systema :ic study is made of the non-perturbative effects in quantum chromodyna- 
mics. The basic object is the two-point functions of various currents. At large Euclidean 
momenta q the non-perturbative contributions induce a series in 0a2/q 2) where ~t is some 
typical hadronic mass. The terms of this series are shown to be of two distinct types. The 
first few of them are connected with vacuum fluctuations of large size, and can be con- 
sistently accounted for within the Wilson operator expansion. On the other hand, in 
high orders small-size fluctuations show up and the high-order terms do not reduce 
(generally speaking) to the vacuum-to-vacuum matrix elements of local operators. This 
signals the breakdown of the operator expansion. The corresponding critical dimension 
is found. We propose a Borel improvement of the power series. On one hand, it makes 
the two-point functions less sensitive to high-order terms, and on the other hand, it 
transforms the standard dispersion/epresentation into a certain integral representation 
with exponential weight functions. As a result we obtain a set of the sum rules for the 
observable spectral densities which correlate the resonance properties to a few vacuum- 
to-vacuum matrix elements. As the last bid to specify the sum rules we estimate the 
matrix elements involved and elaborate several techniques for this purpose. 

1. Introduction 

Q u a n t u m  c h r o m o d y n a m i c s  is wide ly  bel ieved nowadays  to be a t rue t h e o r y  o f  
s t rong in te rac t ions .  Because o f  the  ce leb ra ted  a s y m p t o t i c  f r eedom of  QCD [1] ,  it 
is especial ly s imple w h e n  appl ied to the  so-called h a r d  processes.  Indeed,  at  shor t  
d is tances  the  effect ive  coupl ing  c o n s t a n t  o f  the quark-g luon  in t e rac t ion  % b e c o m e s  
small  and  the  i n t e r ac t i on  can  be t r ea t ed  pe r tu rba t ive ly .  The s implic i ty  o f  the  t heo ry  
seems to be in accord  wi th  the  e x p e r i m e n t a l  observa t ions  such as an ( a p p r o x i m a t e )  
scaling in deep inelast ic  scat ter ing.  

On  the  o t h e r  h a n d ,  any  comprehens ive  t h e o r y  mus t  include large-dis tance dyna-  
mics as well. In par t icu lar  qua rk  i n t e r ac t i on  wi th in  h a d r o n s  is s t rong by  def in i t ion ,  
since it  b inds  quarks  in to  unseparab le  pairs.  A t  p resen t  there  is n o  quan t i t a t i ve  
f r a m e w o r k  wi th in  QCD to deal wi th  this  s t rong in t e r ac t i on  and  such a f u n d a m e n t a l  

* Permanent address: Institute for Nuclear Physics, Novosibirsk 90, USSR. 

385 

• more	
  than	
  4000	
  citations!	
  

• among	
  the	
  all-­‐time	
  top	
  cited	
  papers	
  in	
  HEP.
QCDSR



/36

II	
  Workshop	
  on	
  Perspectives	
  in	
  Nonperturbative	
  QCD	
  
EXOTIC	
  STATES	
  IN	
  CHARMONIUM	
  SPECTROSCOPY QCD	
  Sum	
  Rules

28

• Correlation	
  Functions	
  

!

!

• Principle	
  of	
  duality	
  quark-­hadron	
  

❖ The	
  fundamental	
  assumption	
  in	
  the	
  sum	
  rule	
  is	
  that	
  the	
  correlation	
  
function	
  can	
  be	
  evaluated	
  in	
  two	
  ways:	
  

❖ OPE	
  side:	
  quark	
  and	
  gluon	
  Qields,	
  Wilson	
  OPE,	
  condensates,	
  …	
  

❖ Phenomenological	
  side:	
  complete	
  set	
  of	
  intermediate	
  states,	
  hadronic	
  Qields	
  

❖ Thus,	
  the	
  hadronic	
  parameters	
  are	
  obtained	
  comparing	
  both	
  
descriptions	
  of	
  the	
  correlation	
  function.

⇧
µ⌫

(q) = i

Z
d

4
x e

iq·xh0|T [j
µ

(x)j†
⌫

(0)]|0i
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• Optimal	
  tuning	
  of	
  QCDSR	
  parameters	
  

❖ A	
  reliable	
  sum	
  rule	
  implies	
  that	
  we	
  can	
  establish	
  a	
  region	
  in	
  the	
  
Borel	
  parameter,	
  such	
  that	
  we	
  have:	
  

❖ Good	
  OPE	
  convergence	
  

❖ Pole	
  dominance	
  over	
  the	
    
continuum	
  contributions	
  

❖ Good	
  Borel	
  stability

2.6. EVALUATING THE MASS IN QCDSR 35

)(

!min !max

BOREL WINDOW

Stability 
Pole Dominance

OPE Convergence

High Energy
regime

Continuum 
Dominance

Low Energy
regime

OPE Divergence
MH

Figure 2.5: This figure shows the curve expected for the mass calculated using the QCDSR. By def-
inition, the Borel window is the region which contains τ -stability, pole dominance and a good OPE
convergence. The point that defines the beginning of the pole dominance fixes the lower limit of Borel
window, τmin. While the point, which one can no longer guarantee a good OPE convergence, fixes the
upper limit of Borel window, τmax. One estimates the hadron mass, MH , from a τ -stability region inside
the Borel window.

2.6.1 Borel Window

Pole Dominance

To extract the information on ground-state hadrons, it is crucial to work in a τ -stability

region, where the pole contribution is bigger than the continuum contribution. With that,

one tries to guarantee that the most part of the contribution in the mass equation (2.69)

comes directly from the ground-state. As previously discussed, the approximation for the

spectral density establishes that the continuum contributions vanishes below a certain

value, the continuum threshold tc. Therefore, defining the total contribution Πcont(τ) as:

Πtotal(τ) =

∞
∫

tq

ds ρOPE(s) e−sτ , (2.70)
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X(4260)	
  state
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• seen	
  in	
  the	
  ISR	
  process	
  with	
  Ecm	
  	
  
• decay	
  channel:	
  
• 	
  SigniQicance	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  
• 	
  PDG:	
  

!

!

!

• 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  decay	
  mode	
  is	
  unusual	
  
for	
  a	
  conventional	
  charmonium.
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FIG. 1: The π+π−J/ψ invariant mass spectrum in the range
3.8−5.0 GeV/c2 and (inset) over a wider range that includes
the ψ(2S). The points with error bars represent the selected
data and the shaded histogram represents the scaled data
from neighboring e+e− and µ+µ− mass regions (see text).
The solid curve shows the result of the single-resonance fit
described in the text; the dashed curve represents the back-
ground component.

single-resonance fits to the π+π−J/ψ mass spectrum for
e+e− and µ+µ− modes separately, which yield 49±16
and 76±13 signal events, respectively. Fits give 76±18
events for the original 124 fb−1 data set and 56±13 events
for the next, independent 109 fb−1 data set. Fitting sam-
ples with and without reconstructed ISR photons gives
30±11 and 96±15 events, respectively. We find consis-
tent values for the Y (4260) and the ψ(2S) when deter-
mining the fraction of the total signal found in each of
these subsets.

Several additional systematic checks have been per-
formed. Each selection criterion has been tightened (loos-
ened) and the decrease (increase) in the signal yield is
consistent with that for the ψ(2S) data. Events selected
when the selection criteria are reversed, individually or
in pairs, are studied; in no case is there a significant dip
in the signal-mass region that might indicate a bias in
the selection procedure.

Since the single-resonance fit probability is low we con-
sider the possibility that the observed signal is due to two
interfering resonances. Two-resonance fits with an inter-
ference term find one resonance mass close to the mass
from the single-resonance fit, but with a width as low
as 50 MeV/c2, plus a second narrow resonance around
4.33 GeV/c2. However, the fit probabilities are not sig-
nificantly improved by two-resonance hypotheses. The
size of our sample does not allow a statistically signifi-
cant discrimination; we can neither exclude nor establish
a multi-resonance hypothesis.

The dipion invariant mass distribution for the Y (4260)
is shown in Fig. 3. Each point represents the yield of a
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FIG. 2: The distribution of m2
Rec. The points represent the

data events passing all selection criteria except that on m2
Rec

and having a π+π−J/ψ mass near 4260 MeV/c2, minus the
scaled distribution from neighboring π+π−J/ψ mass regions
(see text). The solid histogram represents ISR Y Monte Carlo
events, and the dotted histogram represents the ISR ψ(2S)
data events.
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FIG. 3: The dipion mass distribution for Y (4260) →

π+π−J/ψ data is shown as points with error bars. The his-
togram shows the distribution for Monte Carlo events where
Y (4260) → π+π−J/ψ is generated according to an S-wave
phase space model.

single-resonance fit to the π+π−J/ψ mass distribution for
that π+π− mass bin.

No enhancement has been observed in the cross section
for e+e− → hadrons [11] at energies corresponding to
the Y (4260). We compute the cross section for e+e− →
π+π−J/ψ production at 4.25 GeV, corresponding to the
highest bin in our data, to be about 50 pb. The inclusive
hadronic cross section at

√
s = 4.25 GeV is 14.2 nb [11].

The ratio, approximately 0.34%, is smaller than the 4%
experimental uncertainty for the hadronic cross section,
so this mode would not have been visible. However, if
the branching fraction of Y (4260) to π+π−J/ψ is very
small, decays to other hadronic modes like DD would
have been observable. This indicates that the branching
fraction to π+π−J/ψ must be large compared to that for

PRL	
  95	
  (2005)	
  

X(4260)

also	
  conXirmed	
  by	
  
! CLEO	
  Collab,	
  PRD	
  74	
  (2006)	
  

!!!!
Belle	
  Collab,	
  PRL	
  99	
  (2007)
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Figure 1.1: The invariant-mass distribution of [9, 10]: a) J/ψ π+ π− and b) ψ(2S) π+ π−.

used the method of QCD Sum Rules (QCDSR), proposed in 1979 by M. Shifman, A.I.

Vainshtein and V.I. Zakharov [11, 12, 13], to study whether these new charmonium states

are compatible with an exotic structure.

1.1.1 Y(4260), Y(4360) e Y(4660)

In 2005 the experiments based on ISR processes, carried out by BaBar collaboration,

indicated a resonance peak around 4300MeV produced in the decay channel [14]:

e+ e− −→ γISR Y (4260) −→ γISR J/ψ π+ π− .

The full width measured for the intermediate state Y (4260) was approximately of 90MeV.

This state was confirmed also by the CLEO collaboration [15]. The proximity between

the Y (4260) mass and that for ψ(4153) state, led some authors to identify them as the

same particle. However, the hidden-charm decay channel and the total width observed

for Y (4260) are not in agreement with what expected by CQM predictions for the char-

monium resonances, which should decay into channels containing predominantly mesons

D and with a larger width than the 90MeV. One of the first proposals for the Y (4260)

state was made by Maiani et al [16], which establishes that this state could be described

Projeto Y (4260)
(Versão 4.0)

R.M. Albuquerque
Instituto de F́ısica, Universidade de São Paulo

M = 4263± 9 MeV (1)

Γ = 95± 14MeV (2)

JPC = (1−−) (3)

A. Corrente

Vamos tentar utilizar uma corrente mista [cc̄-molécula] para tentarmos explicar tanto a massa quanto
a largura do estado Y (3930). Essa corrente é definida por:

j = a cos θ j(2) + sin θ j(4) (4)

onde:

j(2) = c̄kck (5)

j(4) = (q̄iγµci) (c̄jγ
µqj) . (6)

Note que a constante a deve possuir a dimensão do condensado de quarks.

B. Função de Correlação

Π(q) = i

∫

d4x eiq·x⟨0| T [j(x)j†(0)] |0⟩

= i

∫

d4x eiq·x
{

a2 cos2 θ Π22(x) + sin2 θ Π44(x) + a sin θ cos θ
[

Π24(x) +Π42(x)
]

}

. (7)

As funções Π22(x) e Π44(x) são respectivamente as funções de correlação do méson χc0 e do estado
molecular D∗D∗ (0++), que já foram calculadas em trabalhos anteriores. Assim, devemos calcular as
demais contribuições: Π24(x) e Π42(x) .

Π24(x) = ⟨0| T [j(2)(x)j(4)†(0)] |0⟩

= −Tr

[

Sq
ji(0) γµ Sc

ik(−x)Sc
kj(x) γ

µ

]

(8)

Π42(x) = ⟨0| T [j(4)(x)j(2)†(0)] |0⟩

= −Tr

[

Sq
ji(0) γµ Sc

ik(x)S
c
kj(−x) γµ

]

(9)

Uma escolha conveniente para o parâmetro a é dada por:

a = ⟨q̄q⟩ , (10)

que resulta na seguinte expressão para a função de correlação total:

Π(q) = i

∫

d4x eiq·x
{

⟨q̄q⟩2 cos2 θ Π22(x) + sin2 θ Π44(x) + ⟨q̄q⟩ sin θ cos θ
[

Π24(x) +Π42(x)

]

}

.(11)

J/ ⇡⇡

p
s ⇠ 10.6 GeV

> 10�
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X(4260)!

❖ Tetraquark:	
  Maiani	
  et	
  al,	
  PRD	
  72.	
  Albuquerque	
  et	
  al	
  ,	
  NPA	
  815	
  

❖ Molecules:	
  

D1D,	
  D0D*	
  -­	
  Ding,	
  PRD	
  79	
  (2009)	
  

𝝌c1 ω :	
  Yuan,	
  Wang,	
  Mo,	
  PLB	
  634	
  (2006)	
  

𝝌c1 𝝆 :	
  Liu,	
  Zeng	
  &	
  Li,	
  PRD	
  72	
  (2005)	
  

J/𝜓	
  f0	
  :	
  Oset	
  et	
  al,	
  PRD	
  80.	
  	
  Albuquerque	
  et	
  al,	
  PRD	
  84	
  (2011)	
  

❖ Hybrids:	
  Zhu,	
  PLB	
  625	
  (2005)	
  

❖ 𝜓(4S):	
  Llanes-­‐Estrada,	
  PRD	
  72	
  (2005)	
  

❖ Charmonium-­Tetraquark:	
  Albuquerque	
  et	
  al,	
  PRD	
  86	
  (2012)
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jXµ = sin ✓ j4µ + a cos ✓ j µ

j4µ =
✏abc ✏decp

2

h �
qT
a C�5 cb

� �
q̄d �µ�5C c̄Te

�
+

�
qT
a C�5�µ cb

� �
q̄d �5C c̄Te

� i

j µ = c̄a�µca

⇧PH
µ⌫ =

�2
X

M2
X � q2

✓
gµ⌫ � qµq⌫

q2

◆
+ . . . ⇧OPE

µ⌫ = �gµ⌫

1Z

4m2
c

ds
⇢OPE(s)

s� q2

X(4260)	
  as	
  a	
  Mixed	
  Charmonium-­Tetraquark	
  state	
  
	
  R.M.	
  Albuquerque,	
  J.M.	
  Dias,	
  M.	
  Nielsen	
  &	
  C.M.	
  Zanetti,	
  PRD	
  88,	
  076001	
  (2013)

�
JPC = 1���
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X(4260)	
  as	
  a	
  Mixed	
  Charmonium-­Tetraquark	
  state	
  
	
  R.M.	
  Albuquerque,	
  J.M.	
  Dias,	
  M.	
  Nielsen	
  &	
  C.M.	
  Zanetti,	
  PRD	
  88,	
  076001	
  (2013)

where ScðxÞ and SqðxÞ are the charm- and light-quark
propagators, respectively. The next step is to write the
correlation function in terms of a dispersion relation, such
that

ΠOPEðq2Þ ¼
Z

∞

4m2
c

ds
ρOPEðsÞ
s − q2

; (12)

where ρOPEðsÞ is given by the imaginary part of the
correlation function: πρOPEðsÞ ¼ Im½ΠOPEðq2 ¼ sÞ%.
According to Eq. (9), the expression for the spectral
density is

ρOPEðsÞ ¼ 1

2
hq̄qi2cos2θρχc0ðsÞ þ sin2θρD'D' ðsÞ

−
hq̄qiffiffiffi

2
p sin θ cos θρmixðsÞ: (13)

One calculates the sum rule at leading order in αs in the
operators and considers the contributions from the con-
densates up to dimension eight in the OPE. The expressions
for the spectral density are given in Appendix A.
To improve the matching between the two sides of the

sum rule, one performs the Borel transform. After trans-
ferring the continuum contributions to the OPE side, the
sum rule for the scalar charmonium-molecule, considered
as a mixed scalar ðχc0Þ − ðD'D̄'Þ state, can be written as

λ2Ye
−M2

Y=M
2
B ¼

Z
s0

4m2
c

dse−s=M
2
BρOPEðsÞ: (14)

Therefore, one can estimate the ground state mass from the
following ratio,

R ¼

R s0
4m2

c
dsse−s=M

2
BρOPEðsÞ

R s0
4m2

c
dse−s=M

2
BρOPEðsÞ

; (15)

where at the M2
B-stability point, one obtains MY ≃ ffiffiffiffiffi

R
p

.

A. Numerical analysis

The numerical values for the quark masses and con-
densates are listed in Table I. These values are consistent

with the ones used in Refs. [20–22] for the QCDSR
analysis on other mixed hadronic states.
For reliable results in a sum rule calculation, one must

establish a valid Borel window which guarantees the
existence of a region with M2

B stability, a good OPE
convergence, and pole dominance over continuum contri-
butions. Nevertheless, another crucial point is the optimal
choice of the continuum threshold s0 and the mixing
angle θ.
We start our analysis discussing the possible values

of both parameters. Considering that we are interested in
a mixed state with a mass MY ∼ 3.9 GeV, a reasonable
initial value for the continuum threshold would beffiffiffiffiffi
s0

p ¼ 4.40 GeV. In principle, the choice of the mixing
angle seems to be arbitrary. Hence, for a fixed value of θ,
we search for a continuum threshold which allows us to
determine the best M2

B stability inside of a valid Borel
window. After lengthy numerical calculations, we find that
the optimal choice is

ffiffiffiffiffi
s0

p ¼ ð4.40( 0.10Þ GeV (16)

θ ¼ ð76.0( 5.0Þ°: (17)

We notice that the OPE does not converge for θ values
outside this range. Using these values, we analyze the
relative contributions of the terms in the OPE, for

ffiffiffiffiffi
s0

p ¼
4.40 GeV and θ ¼ 76.0°. As one can see in Fig. 1, the
contribution of the dimension-eight condensate is smaller
than 20% of the total contribution for values of
M2

B ≥ 2.40 GeV2, which indicates the starting point for
a good OPE convergence. In order to determine the
maximum value of the Borel mass parameter, we must

TABLE I. QCD input parameters.

Parameters Values

m̄c ð1.23 − 1.47Þ GeV
hq̄qi −ð0.23( 0.03Þ3 GeV3

hg2sG2i ð0.88( 0.25Þ GeV4

hg3sG3i ð0.58( 0.18ÞGeV6

m2
0 ≡ hq̄Gqi=hq̄qi ð0.8( 0.1Þ GeV2

ρ≡ hq̄qq̄qi=hq̄qi2 ð0.5 − 2.0Þ
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FIG. 1 (color online). OPE convergence in the region
1.7 ≤ M2

B ≤ 3.8 GeV2 for
ffiffiffiffiffi
s0

p ¼ 4.40 GeV and θ ¼ 76.0°.
One plots the relative contributions starting with the perturbative
contribution (line with circles), and each other line represents the
relative contribution after adding of one extra condensate in the
expansion: + hq̄qi (dashed line), þhG2i (dotted line), þhq̄Gqi
(dot-dashed line), þhq̄qi2 þ hG3i (line with triangles), and
hq̄qi · hq̄Gqi (solid line).
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The parameter !Y gives a measure of the strength of the
coupling between the current and the state. The result in
Eq. (18) has the same order of magnitude as the coupling
obtained for the Xð3872Þ [34], for example.

IV. THE VERTEX FUNCTION AND THE
DECAY WIDTH OF THE Yð4260Þ

The QCDSR technique can also be used to extract
coupling constants and form factors. In particular, in
Ref. [36] the authors determined the form factors and
coupling constants in many hadronic vertices containing
charmed mesons, in the framework of QCD sum rules. In
this section, we will use the QCDSR approach to determine
the coupling constant associated with the vertices YJ=c"
and YJ=c f0ð980Þ to estimate the decay width of the
process Y ! J=c##. We are assuming that the two pions
in the final state come from the " and f0ð980Þ mesons.

We start with the coupling constant associated with the
vertex YJ=c". To determine the coupling we must evalu-
ate the vertex function (three-point function) defined as

!$%ðp; p0; qÞ ¼
Z

d4xd4yeip
0$xeiq$y!$%ðx; yÞ; (19)

with p ¼ p0 þ q and !$%ðx; yÞ given by

!$%ðx; yÞ ¼ h0jTfjc$ðxÞj"ðyÞjYy% ð0Þgj0i: (20)

The interpolating fields appearing in Eq. (20) are the cur-
rents for J=c , ", and Yð4260Þ, respectively. The currents
for J=c and Y were defined by Eqs. (1) and (4). For the
meson ", we have

j"ðxÞ ¼ 1ffiffiffi
2

p ð "uaðxÞuaðxÞ þ "daðxÞdaðxÞÞ: (21)

Although there are conjectures [37] and lattice calculations
[38] proposing that the " itself could be a tetraquark state,
there are also lattice calculations [39] and QCDSR calcu-
lations [40] that find it difficult to explain the light scalars as
tetraquark states. Therefore, here we use a simple quark-
antiquark current to describe the ".
As in the case of the two-point function studied in the

previous section, the three-point correlation function
defined by Eq. (19) can also be described in terms of
hadronic degrees of freedom (phenomenological side) or
in terms of quarks and gluons fields (OPE side). In order
to evaluate the phenomenological side of the sum rule we
insert, in Eq. (19), intermediate states for Y, J=c , and ".
Using the definitions:

h0jjc$ jJ=c ðp0Þi ¼ mc fc &$ðp0Þ;
h0jj"j"ðqÞi ¼ A";

hYðpÞjjY% j0i ¼ !Y&
&
%ðpÞ;

(22)

we obtain the following relation:

!ðphenÞ
$% ðp;p0;qÞ¼ !Ymc fcA"gYc"ðq2Þ

ðp2'm2
YÞðp02'm2

c Þðq2'm2
"Þ

(ððp0 $pÞg$%'p0
%q$'p0

%p
0
$Þþ$$$ ;

(23)

where the dots stand for the contribution of all possible
excited states. The form factor, gYc"ðq2Þ, is defined by
the generalization of the on-mass-shell matrix element,
hJ=c"jYi, for an off-shell " meson:

hJ=c"jYi ¼ gYc"ðq2Þðp0 $ p&&ðp0Þ $ &ðpÞ
' p0 $ &ðpÞp $ &&ðp0ÞÞ; (24)

which can be extracted from the effective Lagrangian that
describes the coupling between two vector mesons and one
scalar meson:

L ¼ igYc"V'(A
'("; (25)

where V'( ¼ @'Y( ' @(Y' and A'( ¼ @'c ( ' @(c ',
are the tensor fields of the Y and c fields, respectively.
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FIG. 2 (color online). The pole contribution (divided by
the total, pole plus continuum, contribution) represented by
solid line and the continuum contribution (dotted line) for theffiffiffiffiffi
s0

p ¼ 4:70 GeV.
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FIG. 3 (color online). The mass as a function of the sum
rule parameter M2

B for
ffiffiffiffiffi
s0

p ¼ 4:60 GeV (dotted line),
ffiffiffiffiffi
s0

p ¼
4:70 GeV (solid line),

ffiffiffiffiffi
s0

p ¼ 4:80 GeV (long-dashed line). The
crosses indicate the valid Borel window.
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The parameter !Y gives a measure of the strength of the
coupling between the current and the state. The result in
Eq. (18) has the same order of magnitude as the coupling
obtained for the Xð3872Þ [34], for example.

IV. THE VERTEX FUNCTION AND THE
DECAY WIDTH OF THE Yð4260Þ

The QCDSR technique can also be used to extract
coupling constants and form factors. In particular, in
Ref. [36] the authors determined the form factors and
coupling constants in many hadronic vertices containing
charmed mesons, in the framework of QCD sum rules. In
this section, we will use the QCDSR approach to determine
the coupling constant associated with the vertices YJ=c"
and YJ=c f0ð980Þ to estimate the decay width of the
process Y ! J=c##. We are assuming that the two pions
in the final state come from the " and f0ð980Þ mesons.

We start with the coupling constant associated with the
vertex YJ=c". To determine the coupling we must evalu-
ate the vertex function (three-point function) defined as

!$%ðp; p0; qÞ ¼
Z

d4xd4yeip
0$xeiq$y!$%ðx; yÞ; (19)

with p ¼ p0 þ q and !$%ðx; yÞ given by

!$%ðx; yÞ ¼ h0jTfjc$ðxÞj"ðyÞjYy% ð0Þgj0i: (20)

The interpolating fields appearing in Eq. (20) are the cur-
rents for J=c , ", and Yð4260Þ, respectively. The currents
for J=c and Y were defined by Eqs. (1) and (4). For the
meson ", we have

j"ðxÞ ¼ 1ffiffiffi
2

p ð "uaðxÞuaðxÞ þ "daðxÞdaðxÞÞ: (21)

Although there are conjectures [37] and lattice calculations
[38] proposing that the " itself could be a tetraquark state,
there are also lattice calculations [39] and QCDSR calcu-
lations [40] that find it difficult to explain the light scalars as
tetraquark states. Therefore, here we use a simple quark-
antiquark current to describe the ".
As in the case of the two-point function studied in the

previous section, the three-point correlation function
defined by Eq. (19) can also be described in terms of
hadronic degrees of freedom (phenomenological side) or
in terms of quarks and gluons fields (OPE side). In order
to evaluate the phenomenological side of the sum rule we
insert, in Eq. (19), intermediate states for Y, J=c , and ".
Using the definitions:

h0jjc$ jJ=c ðp0Þi ¼ mc fc &$ðp0Þ;
h0jj"j"ðqÞi ¼ A";

hYðpÞjjY% j0i ¼ !Y&
&
%ðpÞ;

(22)

we obtain the following relation:

!ðphenÞ
$% ðp;p0;qÞ¼ !Ymc fcA"gYc"ðq2Þ

ðp2'm2
YÞðp02'm2

c Þðq2'm2
"Þ

(ððp0 $pÞg$%'p0
%q$'p0

%p
0
$Þþ$$$ ;

(23)

where the dots stand for the contribution of all possible
excited states. The form factor, gYc"ðq2Þ, is defined by
the generalization of the on-mass-shell matrix element,
hJ=c"jYi, for an off-shell " meson:

hJ=c"jYi ¼ gYc"ðq2Þðp0 $ p&&ðp0Þ $ &ðpÞ
' p0 $ &ðpÞp $ &&ðp0ÞÞ; (24)

which can be extracted from the effective Lagrangian that
describes the coupling between two vector mesons and one
scalar meson:

L ¼ igYc"V'(A
'("; (25)

where V'( ¼ @'Y( ' @(Y' and A'( ¼ @'c ( ' @(c ',
are the tensor fields of the Y and c fields, respectively.
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FIG. 2 (color online). The pole contribution (divided by
the total, pole plus continuum, contribution) represented by
solid line and the continuum contribution (dotted line) for theffiffiffiffiffi
s0

p ¼ 4:70 GeV.

2.0 2.5 3.0 3.5 4.0
4.20

4.25

4.30

4.35

4.40

4.45

4.50

4.55

MB
2 GeV2

m
Y

G
eV

FIG. 3 (color online). The mass as a function of the sum
rule parameter M2

B for
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s0

p ¼ 4:60 GeV (dotted line),
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s0

p ¼
4:70 GeV (solid line),

ffiffiffiffiffi
s0

p ¼ 4:80 GeV (long-dashed line). The
crosses indicate the valid Borel window.
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⌫
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0
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Model,$i.e.$the$exotic$hadronic$

structure$would$go$beyond$the$

bound$of$three$quarks$for$baryons$

and$quarkEantiquark$pair$for$

mesons.$Some$of$these$QCDEbased$$

structures$are$the$multiquark$

states,$$hadronic$molecules,$hybrid$

quarkonia,$glueballs$and$so$forth.$
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channels$of$the$X(4260)$state,$by$
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charmonium$and$tetraquark$states.

3 . (CONCLUSIONS

Our$9indings$indicate$that$an$exotic$
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cannot$be$ruled$out.$Indeed,$a$mixed$

charmoniumEtetraquark$state$is$a$

good$candidate$for$explaining$the$

mass$and$the$decay$channels$

observed$experimentally.
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Mass

Coupling$
Constant

Hadronic$
Currents

jX⌫ = sin ✓ j4⌫ + cos ✓ j ⌫jX⌫ = sin ✓ j4⌫ + cos ✓ j ⌫

Hadronic$
Currents

j4⌫ =
✏abc✏decp

2

h
(qTa C�5 cb)(q̄d �⌫�5C c̄Te ) + (qTa C�5�⌫ cb)(q̄d �5C c̄Te )

i
j4⌫ =

✏abc✏decp
2

h
(qTa C�5 cb)(q̄d �⌫�5C c̄Te ) + (qTa C�5�⌫ cb)(q̄d �5C c̄Te )

i
j4⌫ =

✏abc✏decp
2

h
(qTa C�5 cb)(q̄d �⌫�5C c̄Te ) + (qTa C�5�⌫ cb)(q̄d �5C c̄Te )

iHadronic$
Currents

QCD(SUM(RULES$

L = igX S X↵� ↵��

BaBar$collaboration$has$announced$the$9irst$observation$of$a$vector$
charmoniumElike$state$in$the$decay$channel$$X(4260) ! J/ ⇡+⇡�

produced$in$the$$e+e�$annihilation,$through$initial$state$radiation.$
This$state$was$later$con9irmed$by$CLEO$and$Belle$collaborations.
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3.6 3.8 4 4.2 4.4 4.6 4.8 51
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210

310

410

Mass 4250± 9 MeV

Total(Width 108± 12 MeV

Decay(Modes J/ ⇡+⇡�
(((((((((J/ ⇡

0⇡0
(

J/ f0(980)(((((J/ K+K�

IG(JPC) = ??(1��)X(4260) • Candidate$for$a$nonEconventional$charmonium$$1��$$state;

• Its$mass$is$not$compatible$with$any$of$the$states$expected$
in$the$conventional$$cc̄ $$spectrum;

• It$does$not$feature$dominant$openEcharm$decay$channels;

• A$consensus$explanation$on$its$internal$structure$still$$
remains$an$open$question.

• Then,$we$can$estimate$the$following$decay$widths:

• Our$estimation$for$the$total$width$is$$�total

' (5.4± 1.0) MeV,$$$
which$is$much$smaller$than$the$experimental$data.

Channel Intermediate$
Process

Decay$Width$
(MeV)

X ! J/ ⇡+⇡� � ! ⇡+⇡� 1.0± 0.4
X ! J/ ⇡+⇡�

f0 ! ⇡+⇡� 3.1± 0.2

X ! J/ K+K� f0 ! K+K� 1.3± 0.4

• Considering$a$mixing$angle$around$$✓ ⇠ (53.0± 0.5)0$,$we$obtained$a$value
mX = (4.26± 0.13) GeV

$$$which$is$in$a$very$good$agreement$with$the$experimental$mass$of$the$X(4260).

• Assuming$that$the$$⇡+⇡�$$and$$K+K�$9inal$states$come$from$intermediate$states,$namely$$�(500)$$and$$f0(980)$$
mesons,$we$calculated$the$coupling$constants$associated$with$the$$X J/ �$$and$$X J/ f0$$vertices.

$$

RESULTS

gX � (�m2
�) = (0.13± 0.01) GeV�1 gX f0

(�m2
f0) = (0.26± 0.01) GeV�1

gYc!ðQ2Þ ¼ g1
g2 þQ2 : (28)

We do the fit for
ffiffiffiffiffi
s0

p ¼ 4:74 GeV. We notice that the
results do not depend much on this parameter. The results
are:

g1¼ð0:58%0:04ÞGeV; g2¼ð4:71%0:06ÞGeV2: (29)

The solid line in Fig. 6 shows that the parametrization
given by Eq. (28) reproduces very well the QCDSR results
for gYc!ðQ2Þ, in the interval 2:0 & Q2 & 4:0 GeV2, where
the QCDSR is valid.

The coupling constant, gYc! is given by using
Q2 ¼ 'm2

! in Eq. (28). We get:

gYc! ¼ gYc!ð'm2
!Þ ¼ ð0:13% 0:01Þ GeV'1: (30)

The error in the coupling constant given above comes from
variations in s0 in the range 4:6 & s0 & 4:8 GeV2, and in
the mixing angle 52:5( & " & 53:5(.

In Table II, we show the other values of the coupling
constant corresponding to the values of

ffiffiffiffiffi
s0

p
that we have

considered in our calculations.

The decay width for the process Yð4260Þ ! J=c! !
J=c## in the narrow width approximation is given by

d!

ds
ðY!J=c##Þ¼ 1

8#m2
Y

jMj2
m2

Y'm2
c þs

2m2
Y

)!!ðsÞm!

#

pðsÞ
ðs'm2

!Þ2þðm!!!ðsÞÞ2
;

(31)

with pðsÞ given by

pðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$ðm2

Y; m
2
c ; sÞ

q

2mY
; (32)

where $ða; b; cÞ ¼ a2 þ b2 þ c2 ' 2ab' 2ac' 2bc,
and !!ðsÞ is the s-dependent width of an off-shell !
meson [45]:

!!ðsÞ ¼ !0!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$ðs; m2

#; m
2
#Þ

$ðm2
!; m

2
#; m

2
#Þ

s
m2

!

s
; (33)

where !0! is the experimental value for the decay of
the ! meson into two pions. Its value is !0! ¼
ð0:4–0:7Þ GeV [44].
The invariant amplitude squared can be obtained from

the matrix element in Eq. (24). We get:

jMj2 ¼ g2Yc!ðsÞfðmY;mc ; sÞ; (34)

where gYc!ðsÞ is the form factor in the vertex YJ=c!,
given in Eq. (28) using s ¼ 'Q2, and

fðmY;mc ; sÞ ¼
1

3

"
m2

Ym
2
c þ 1

2
ðm2

Y þm2
c ' sÞ2

#
:

Therefore, the decay width for the process Yð4260Þ !
J=c## is given by

! ¼ m!

16#2m4
Y

I; (35)

where we have defined

I ¼
Z ðmY'mc Þ2

ð2m#Þ2
dsg2Yc!ðsÞ!!ðsÞðm2

Y 'm2
c þ sÞ

) fðmY;mc ; sÞ
pðsÞ

ðs'm2
!Þ2 þ ðm!!!ðsÞÞ2

: (36)

Hence, taking variations on s0, ", !0!, and m! in the same
intervals given above, we obtain from Eqs. (30)–(35) the
following value for the decay width

!!ðY ! J=c##Þ ¼ ð1:0% 0:4Þ MeV: (37)

The considered decay can also proceed through the
f0ð980Þ intermediate state. In order to estimate the decay
width through this intermediate state, we have to determine
the coupling constant associated with the vertex Y !
J=c f0ð980Þ. Therefore, we have to evaluate the vertex

FIG. 6 (color online). QCDSR results for gYc!ðQ2Þ, as a
function of Q2, for

ffiffiffiffiffi
s0

p ¼ 4:76 GeV (squares). The solid
line gives the parametrization of the QCDSR results through
Eq. (28).

TABLE II. Monopole parametrization of the QCDSR results
for the chosen structure, for different values of

ffiffiffiffiffi
s0

p
.

ffiffiffiffiffi
s0

p
(GeV)

gYc!ðQ2Þ
(GeV'1)

gYc!ðQ2 ¼ 'm2
!Þ

(GeV'1)

4.6 0:53
Q2þ4:77

0.12

4.7 0:57
Q2þ4:71

0.13

4.8 0:63
Q2þ4:66

0.14
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Q2 (GeV2)

g X
 
�
(G

eV
�
1
)

gX � (Q
2) =

g1
g2 +Q2

gX � (�m2
�)

• Possibly$the$main$decay$channel$of$the$X(4260)$should$be$into$D$mesons,$mostly$due$to$the$presence$of$
charmonium$in$its$internal$structure.$These$channels$would$increase$the$value$estimated$for$$�total.$

• We$shall$retain$a$mixed$charmoniumEtetraquark$state$as$a$good$candidate$for$explaining$the$X(4260)$state.

31$Aug$E$4$Sept$2013$
Manchester,$England

• Assuming	
  that	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  in	
  the	
  Einal	
  states	
  come	
  from	
  intermediate	
  
resonances,	
  namely	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  we	
  can	
  estimate	
  the	
  coupling	
  constants	
  
associated	
  with	
  the	
  processes:

�(500) f0(980)

⇡+⇡� K+K�

gX � (�m2
�) = (0.13± 0.01) GeV�1

X(4260) ! J/ � ! J/ ⇡⇡

gX f0
(�m2

f0) = (0.26± 0.01) GeV�1

X(4260) ! J/ f0(980) ! J/ ⇡⇡

! J/ KK
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• The	
  decay	
  for	
  the	
  process	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  can	
  be	
  evaluated	
  
in	
  the	
  narrow	
  width	
  approximation	
  

!

!

• where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  is	
  the	
  s-­‐dependent	
  
width	
  of	
  an	
  off-­‐shell	
  meson:	
  

!

• and	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  experimental	
  value	
  for	
  the	
  decay	
  of	
  	
  meson	
  into	
  two	
  pions.	
  

• The	
  invariant	
  amplitude	
  squared	
  is	
  given	
  by	
  

!

• Hence,	
  we	
  obtain	
  the	
  value	
  for	
  the	
  decay	
  width

X(4260) ! J/ � ! J/ ⇡⇡

d�

ds
(X ! J/ ⇡⇡) =

|M|2

8⇡M2
X

·
(M2

X �m2
 + s)

2M2
X

· ��(s)m�

2⇡MX
·

q
�(M2

X ,m2
 , s)

(s�m2
�)

2 +m2
� ��(s)2

�(a, b, c) = a2 + b2 + c2 � 2ab� 2ac� 2bc

��(s) =
m2

� �0�

s

s
�(s,m2

⇡,m
2
⇡)

�(m2
�,m

2
⇡,m

2
⇡)

�0�

|M|2 =
1

3
g2
X �

h
M2

Xm2
 +

1

2
(M2

X +m2
 � s)2

i

��(X ! J/ ⇡⇡) = (1.0± 0.4) MeV

Results
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Channel
Intermediate	
  
Process

Decay	
  Width	
  	
  
(MeV)

X ! J/ ⇡+⇡� � ! ⇡+⇡�

f0 ! ⇡+⇡�

f0 ! K+K�

1.0± 0.4

3.1± 0.2

1.3± 0.4X ! J/ K+K�

X(4260)	
  as	
  a	
  Mixed	
  Charmonium-­Tetraquark	
  state	
  
	
  R.M.	
  Albuquerque,	
  J.M.	
  Dias,	
  M.	
  Nielsen	
  &	
  C.M.	
  Zanetti,	
  PRD	
  88,	
  076001	
  (2013)

• Our	
  estimation	
  for	
  the	
  total	
  width	
  is	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  which	
  is	
  
much	
  smaller	
  than	
  the	
  experimental	
  data:	
  ~108	
  MeV.	
  

• Possibly	
  the	
  main	
  decay	
  channel	
  of	
  the	
  X(4260)	
  should	
  be	
  into	
  D	
  mesons,	
  
mostly	
  due	
  to	
  the	
  presence	
  of	
  charmonium	
  in	
  its	
  internal	
  structure.	
  These	
  
channels	
  would	
  increase	
  the	
  value	
  estimated	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  	
  

• The	
  dominance	
  of	
  the	
  tetraquark	
  state	
  could	
  be	
  an	
  explanation	
  to	
  the	
  
preferable	
  hidden-­‐charm	
  decay	
  modes	
  for	
  this	
  particle.	
  	
  

�
total

' (5.4± 1.0) MeV

�
total

64%

36%

|cc̄i � |cqc̄q̄i
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Y(3940)	
  state
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Y(3940)	
  as	
  a	
  Mixed	
  Charmonium-­Molecule	
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  R.M.	
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  Dias,	
  M.	
  Nielsen	
  &	
  C.M.	
  Zanetti,	
  PRD	
  89,	
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  (2014)

�
JPC = 0++

�

jY = sin ✓ jD
⇤D⇤

+ a cos ✓ j�c0

j�c0 = c̄aca

jD
⇤D⇤

= (q̄a �µ ca) (c̄b �
µ qb)

In the present work we revisit the study of the Yð3940Þ
within the QCDSR approach, using a mixed charmonium-
molecule current. The prescription of a mixture of two- and
four-quark states has been successfully implemented for
other states in the framework of sum rules. Following the
work of Ref. [18] that was applied in the light quark sector,
the authors in Refs. [19–21] described the Xð3872Þ state as
a molecule-charmonium state, implementing the mixing of
the current and extending it to the charm sector. In these
works the mass and decay width for the channels J=ψ þ
ð2π; 3π; γÞ and the production in B-meson decays were
estimated in good agreement with the experimental values.
Another state that was studied as a mixture was the
Yð4260Þ. In Ref. [22], the Yð4260Þ was described as a
tetraquark-charmonium mixed state, and the mass and
decay width estimated were also consistent with the
experimental values.
In the following sections we use the QCDSR approach to

describe the Yð3940Þ as a mixing between the χc0 char-
monium and the D$D̄$ molecule, with JPC ¼ 0þþ. We
obtain the mass for this state and the decay width in the
channel Y → J=ψω.

II. MIXED HADRONIC CURRENT

In order to evaluate the sum rule for the Yð3940Þ state as
a mixed ðχc0Þ − ðD$D̄$Þ state, with JPC ¼ 0þþ, one
employs the following hadronic current,

j ¼ a cos θjχc0 þ sin θjD$D$ ; (1)

where θ is an arbitrary mixing angle. The meson and
molecule currents are, respectively, given by

jχc0 ¼ c̄kck (2)

jD$D$ ¼ ðq̄iγμciÞðc̄jγμqjÞ: (3)

Notice that the normalization factor a is introduced in
Eq. (3) for ensuring that the mixed current can be evaluated
at the same Fock space. Usually, one sets [18–21]

a ¼ −
hq̄qiffiffiffi

2
p : (4)

Then, evaluating the two- and three-point correlation
functions altogether with Eq. (1), one can estimate the
mass and decay width of the mixed ðχc0Þ − ðD$D̄$Þ state.

III. TWO-POINT CORRELATION FUNCTION

To obtain the mass of a hadronic state using the QCDSR
approach, one has to evaluate the two-point correlation
function

ΠðqÞ ¼ i
Z

d4xeiq·xh0jT½jðxÞj†ð0Þ'j0i: (5)

According to the quark-hadron duality principle, Eq. (5)
can be evaluated in two ways: the phenomenological side
and the QCD side. The phenomenological side is calculated
by inserting, in Eq. (5), a complete set of intermediate
states, Y, which couple to the hadronic current in Eq. (1).
Parametrizing this coupling through a generic parameter λY,
one defines

h0jjjYi ¼ λY: (6)

Using Eq. (6) and after some algebraic manipulation, one
can write the phenomenological side of Eq. (5) as

Π PHENðqÞ ¼ λ2Y
M2

Y − q2
þ
Z

∞

0
ds

ρcontðsÞ
s − q2

; (7)

where MY is the mixed ðχc0Þ − ðD$D̄$Þ ground state mass,
and the second term in the rhs of Eq. (7) denotes the
continuum (or higher resonance) contributions. As usual in
a QCDSR approach, it is assumed that the continuum
contribution to the spectral density, ρcontðsÞ in Eq. (7),
vanishes below a certain threshold s0. Above this threshold,
it is assumed that the result coincides with the one obtained
in the OPE side. Therefore, one uses the ansatz [23]

ρcontðsÞ ¼ ρOPEðsÞΘðs − s0Þ; (8)

where Θðs − s0Þ is the Heaviside step function.
In the OPE side, one calculates the correlation function

in terms of quark and gluon fields using the Wilson’s
operator product expansion (OPE). This is also called the
OPE side. Then, inserting Eq. (1) into the above equation,
one obtains

ΠOPEðqÞ ¼ i
Z

d4xeiq·x
"
1

2
hq̄qi2cos2θΠχc0 þ sin2θΠD$D$

−
hq̄qiffiffiffi

2
p sin θ cos θ½Πmix þ Π$

mix'
#
; (9)

where the Πχc0ðxÞ and ΠD$D$ ðxÞ functions are, respectively,
the correlation functions of the χc0 meson and the
D$D$ð0þþÞ molecular state, which have been calculated
in other works [14,16]. Thus, one only has to calculate the
ΠmixðxÞ and Π$

mixðxÞ functions defined as follows:

ΠmixðxÞ ¼ h0jT½jχc0ðxÞj
†
D$D$ ð0Þ'j0i

¼ −Tr½Sqjið0ÞγμScikð−xÞSckjðxÞγμ' (10)

Π$
mixðxÞ ¼ h0jT½jD$D$ ðxÞj†χc0ð0Þ'j0i

¼ −Tr½Sqjið0ÞγμScikðxÞSckjð−xÞγμ'; (11)
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where ScðxÞ and SqðxÞ are the charm- and light-quark
propagators, respectively. The next step is to write the
correlation function in terms of a dispersion relation, such
that

ΠOPEðq2Þ ¼
Z

∞

4m2
c

ds
ρOPEðsÞ
s − q2

; (12)

where ρOPEðsÞ is given by the imaginary part of the
correlation function: πρOPEðsÞ ¼ Im½ΠOPEðq2 ¼ sÞ%.
According to Eq. (9), the expression for the spectral
density is

ρOPEðsÞ ¼ 1

2
hq̄qi2cos2θρχc0ðsÞ þ sin2θρD'D' ðsÞ

−
hq̄qiffiffiffi

2
p sin θ cos θρmixðsÞ: (13)

One calculates the sum rule at leading order in αs in the
operators and considers the contributions from the con-
densates up to dimension eight in the OPE. The expressions
for the spectral density are given in Appendix A.
To improve the matching between the two sides of the

sum rule, one performs the Borel transform. After trans-
ferring the continuum contributions to the OPE side, the
sum rule for the scalar charmonium-molecule, considered
as a mixed scalar ðχc0Þ − ðD'D̄'Þ state, can be written as

λ2Ye
−M2

Y=M
2
B ¼

Z
s0

4m2
c

dse−s=M
2
BρOPEðsÞ: (14)

Therefore, one can estimate the ground state mass from the
following ratio,

R ¼

R s0
4m2

c
dsse−s=M

2
BρOPEðsÞ

R s0
4m2

c
dse−s=M

2
BρOPEðsÞ

; (15)

where at the M2
B-stability point, one obtains MY ≃ ffiffiffiffiffi

R
p

.

A. Numerical analysis

The numerical values for the quark masses and con-
densates are listed in Table I. These values are consistent

with the ones used in Refs. [20–22] for the QCDSR
analysis on other mixed hadronic states.
For reliable results in a sum rule calculation, one must

establish a valid Borel window which guarantees the
existence of a region with M2

B stability, a good OPE
convergence, and pole dominance over continuum contri-
butions. Nevertheless, another crucial point is the optimal
choice of the continuum threshold s0 and the mixing
angle θ.
We start our analysis discussing the possible values

of both parameters. Considering that we are interested in
a mixed state with a mass MY ∼ 3.9 GeV, a reasonable
initial value for the continuum threshold would beffiffiffiffiffi
s0

p ¼ 4.40 GeV. In principle, the choice of the mixing
angle seems to be arbitrary. Hence, for a fixed value of θ,
we search for a continuum threshold which allows us to
determine the best M2

B stability inside of a valid Borel
window. After lengthy numerical calculations, we find that
the optimal choice is

ffiffiffiffiffi
s0

p ¼ ð4.40( 0.10Þ GeV (16)

θ ¼ ð76.0( 5.0Þ°: (17)

We notice that the OPE does not converge for θ values
outside this range. Using these values, we analyze the
relative contributions of the terms in the OPE, for

ffiffiffiffiffi
s0

p ¼
4.40 GeV and θ ¼ 76.0°. As one can see in Fig. 1, the
contribution of the dimension-eight condensate is smaller
than 20% of the total contribution for values of
M2

B ≥ 2.40 GeV2, which indicates the starting point for
a good OPE convergence. In order to determine the
maximum value of the Borel mass parameter, we must

TABLE I. QCD input parameters.

Parameters Values

m̄c ð1.23 − 1.47Þ GeV
hq̄qi −ð0.23( 0.03Þ3 GeV3

hg2sG2i ð0.88( 0.25Þ GeV4

hg3sG3i ð0.58( 0.18ÞGeV6

m2
0 ≡ hq̄Gqi=hq̄qi ð0.8( 0.1Þ GeV2

ρ≡ hq̄qq̄qi=hq̄qi2 ð0.5 − 2.0Þ

2.0 2.5 3.0 3.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

MB
2 GeV2

O
PE

Pert
qq
G2

qGq
qq 2 G3

qq qGq

FIG. 1 (color online). OPE convergence in the region
1.7 ≤ M2

B ≤ 3.8 GeV2 for
ffiffiffiffiffi
s0

p ¼ 4.40 GeV and θ ¼ 76.0°.
One plots the relative contributions starting with the perturbative
contribution (line with circles), and each other line represents the
relative contribution after adding of one extra condensate in the
expansion: + hq̄qi (dashed line), þhG2i (dotted line), þhq̄Gqi
(dot-dashed line), þhq̄qi2 þ hG3i (line with triangles), and
hq̄qi · hq̄Gqi (solid line).
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the	
  mass	
  value	
  is	
  in	
  a	
  good	
  agreement	
  with	
  the	
  experimental	
  data.	
  
Optimal	
  SR	
  conditions	
  satisXied.
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analyze the pole contribution. Since the QCDSR approach
extracts information only from the ground state, we have to
ensure that the pole contribution is greater than the
continuum contribution. Thus, we fix the maximum value
of the Borel mass parameter as the value for which the pole
is greater than or equal to the continuum contribution. From
Fig. 2, we can see that this condition is satisfied when
M2

B ¼ 2.70 GeV2. Therefore, the Borel window is set
as 2.40 ≤ M2

B ≤ 2.70 GeV2.
In Fig. 3, we plot the ground state mass as a function of

M2
B, considering three different values of

ffiffiffiffiffi
s0

p
. We conclude

that there is a good M2
B stability in the determined Borel

window.
Varying the value of the continuum threshold in the

range
ffiffiffiffiffi
s0

p ¼ ð4.40# 0.10Þ GeV, the mixing angle in the
range θ ¼ ð76.0# 5.0Þ°, and the other parameters as
indicated in Table I, we get

MY ¼ ð3.95# 0.11Þ GeV: (18)

This mass is compatible with the experimental mass of the
Yð3940Þ state observed by BELLE Collaboration [1].
Therefore, from a QCD sum rule point of view, a mixed
scalar ðχc0Þ − ðD%D̄%Þ state could be a good candidate to
explain the Yð3940Þ state.
After the determination of the mass, we can use this

result in Eq. (14) to estimate the coupling parameter,
defined in Eq. (6). Therefore, considering the same values
of s0, θ and the Borel window used for the mass calculation,
we obtain

λY ¼ ð2.1# 0.6Þ × 10−2 GeV5: (19)

IV. THE Yð3940Þ → J=ψω DECAY WIDTH

In order to provide more evidence to support the
conclusion reached at the end of the previous section, that
the Yð3940Þ can be explained as a scalar mixed state, we
now use the QCDSR to compute the form factor associated
with the vertex YJ=ψω and to estimate the width of the
channel Yð3940Þ → J=ψω. For this purpose, we start
writing the three-point function defined as

Πμνðp; p0; qÞ ¼
Z

d4xd4yeip
0·xeiq·yΠμνðx; yÞ; (20)

where p ¼ p0 þ q and Πμνðx; yÞ is given by

Πμνðx; yÞ ¼ h0jTfjψμ ðxÞjων ðyÞj†ð0Þgj0i: (21)

The interpolating currents for the J=ψ meson and the mixed
ðχc0Þ − ðD%D̄%Þ state used in Eq. (21) are defined in Sec. II,
while the interpolating current associated with the ωmeson
is defined by

jων ¼ 1

6
ðūaγνua þ d̄aγνdaÞ: (22)

In the same manner that it was done for the two-point
correlation function, we again invoke the quark-hadron
duality principle to calculate the three-point function in two
ways. We match both sides after performing the Borel
transform. In the phenomenological side, one has to insert
the intermediate states for the J=ψ , ω and Yð3940Þ mesons
in Eq. (20). Using the following relations,

h0jjψμ jJ=ψðp0Þi ¼ Mψfψϵμðp0Þ;
h0jjων jωðqÞi ¼ MωfωϵνðqÞ;
hYðpÞjjj0i ¼ λY; (23)

we obtain the expression

Π PHEN
μν ðp; p0; qÞ ¼

λYMψfψMωfωgYψωðq2Þ
ðp2 −M2

YÞðp02 −M2
ψ Þðq2 −M2

ωÞ
× ½qμp0

ν − ðp0 · qÞgμν( þ ) ) ) ; (24)

2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0

MB
2 GeV2

Po
le

x
C

on
tin

uu
m

Pole
Continuum

FIG. 2 (color online). The pole (solid line) and continuum
(dotted line) contributions for

ffiffiffiffiffi
s0

p ¼ 4.40 GeV and θ ¼ 76.0°.

2.0 2.5 3.0 3.5

3.8

3.9

4.0

4.1

4.2

4.3

MB
2 GeV2

M
Y

G
eV

s0 4.50 GeV
s0 4.40 GeV
s0 4.30 GeV

FIG. 3 (color online). The mass as a function of the sum rule
parameter M2

B for
ffiffiffiffiffi
s0

p ¼ 4.30 GeV (dotted line),
ffiffiffiffiffi
s0

p ¼
4.40 GeV (solid line) and

ffiffiffiffiffi
s0

p ¼ 4.50 GeV (dashed line). The
respective parentheses indicate the valid Borel window.
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92%
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gYψωðQ2Þ ¼ g1
g2 þQ2

; (32)

and the results for the fitting parameters are

g1 ¼ ð4.0% 1.0Þ GeV;
g2 ¼ ð7.4% 0.2Þ GeV2: (33)

Considering that the monopolar function could not be the
optimal choice, we have also used an exponential function
for fitting the data. It is noteworthy that both fits presented
basically equivalent results. Therefore, we have used these
two fits to estimate the error in the extrapolation.
The theoretical errors are evaluated considering errors

on the following parameters:
ffiffiffiffiffi
s0

p ¼ 4.40% 0.10 GeV,

θ ¼ 76:0° % 5.0°, and also the error on the meson coupling
parameter λY, given by Eq. (19). We notice that the results
do not depend much on the parameters

ffiffiffiffiffi
s0

p
and θ, while the

theoretical errors are mainly affected by the meson cou-
pling λY .
In order to see how well the parametrization works, the

solid line in Fig. 5 represents the Eq. (32) with values given
by Eq. (33). The coupling constant, gYψω, is given by using
the momentum value Q2 ¼ −M2

ω in Eq. (32). Then, we get

gYψω ¼ gYψωð−M2
ωÞ ¼ ð0.58% 0.14Þ GeV−1: (34)

The decay width for this process Yð3940Þ → J=ψω is
given by

ΓYð3940Þ→J=ψω¼
g2Yψω
3

pðMY;Mω;Mψ Þ
8πM2

Y

×
"
M2

ψM2
ωþ

1

2
ðM2

Y−M2
ψ −M2

ωÞ2
#
; (35)

where

pða; b; cÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ b4 þ c4 − 2a2b2 − 2a2c2 − 2b2c2

p

2a
:

(36)

Therefore, we obtain the decay width inserting the value
obtained for the coupling constant (34) in (35):

ΓYð3940Þ→J=ψω ¼ ð1.7% 0.6Þ MeV: (37)

This result is consistent with the experimental width of the
state and the lower limit for the process Y → J=ψω
[1,2,7,8]. It is also of the same order as other available
theoretical evaluations [12,13].

V. THE Yð3940Þ → DD̄ DECAY WIDTH

Establishing the Yð3940Þ as a mixed state, it seems that
the main decay channel would be intoDmesons, due to the
charmonium part of the current. However, the approach
used here does not allow us to evaluate such decay, since
one can only use the QCDSR approach to study properties
of the low-lying state. Therefore, a charmonium JPC ¼ 0þþ

current can only be used to study the decay of χc0ð1PÞ. If
one tries to use the charmonium current to study the
χc0ð2PÞ decay into DD̄, one would get promptly a number
different from zero, but this number is meaningless because
the approach can not be used to study this resonant state. In
addition we have verified that the molecular part of the
current is not allowed to decay into the channel containing
DD̄ mesons.
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[1,2,7,8]. It is also of the same order as other available
theoretical evaluations [12,13].
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different from zero, but this number is meaningless because
the approach can not be used to study this resonant state. In
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Therefore, we obtain the decay width inserting the value
obtained for the coupling constant (34) in (35):

ΓYð3940Þ→J=ψω ¼ ð1.7% 0.6Þ MeV: (37)

This result is consistent with the experimental width of the
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[1,2,7,8]. It is also of the same order as other available
theoretical evaluations [12,13].
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VI. THE Yð3940Þ → γγ DECAY WIDTH

As done in Sec. IV, we can estimate the decay width of
the channel Yð3940Þ → γγ, through the three-point func-
tion (20). For this vertex Yγγ, we must consider the
following function,

Πμνðx; yÞ ¼ h0jTfjγμðxÞjγνðyÞj†ð0Þgj0i; (38)

where the interpolating current for the photon is given by

jγμ ¼
2

3
eðūaγμua þ c̄aγμcaÞ −

1

3
eðd̄aγμda þ s̄aγμsaÞ: (39)

In the phenomenological side, we have the expression

ΠPHEN
μν ðp; p0; qÞ ¼ −

e2λYgYγγðq2Þ
ðp2 −M2

YÞ
× ½qμp0

ν − ðp0 · qÞgμν& þ ' ' ' ; (40)

where the p0 and q are the momenta related to the two-
photon vertex. The form factor gYγγðq2Þ is defined by the
transition matrix of the process Y → γγ [27,28],

Mμν ¼ e2gYγγðq2Þ½gμνðp0 · qÞ − qμp0
ν&: (41)

The matching of both sides of the sum rule is done in the
same way as for the channel J=ψω, and we get in the
structure qμp0

ν the following expression,

e2λYgYγγðQ2Þe−M2
Y=M

2
B þ FðQ2Þe−s0=M2

B

¼ ΠOPEðM2
B;Q

2Þ; (42)

and the FðQ2Þ function represents the contribution to the
pole-continuum transitions. For this decay channel, the
ΠOPEðM2

B;Q
2Þ function is given by

ΠOPEðM2
B;Q

2Þ ¼ 8

3
e2½ΠOPE

J=ψωðM2
B;Q

2Þ þ ΠOPE
γγ ðM2

B;Q
2Þ&;

(43)

where ΠOPE
J=ψωðM2

B;Q
2Þ is the same function obtained in the

J=ψω channel given in Eq. (28). The ΠOPE
γγ ðQ2;M2

BÞ
function can be found in the Appendix.
The numerical analysis of the sum rule (42) provides the

form factor gYγγðQ2Þ. In Fig. 6, we show a plot of the form
factor gYψωðQ2Þ as a function of M2

B and Q2. As one can
see, we obtain a good stability in Borel mass parameter
and we consider a confidence region at 4.0 GeV2 ≤
M2

B ≤ 7.0 GeV2. Using again the monopolar function
given in Eq. (32), we can extrapolate the QCDSR results
and estimate the coupling constant for the process Y → γγ.
Therefore, in Fig. 7 we present such extrapolation from
where we obtain, at Q2 ¼ 0:

gYγγ ¼ ð0.025( 0.010Þ GeV−1; (44)

and the results for the fitting parameters are given by g1 ¼
ð0.08( 0.05Þ GeV and g2 ¼ ð3.13( 0.22Þ GeV2.
The decay width into γγ can be evaluated by the

expression [28]

ΓYð3940Þ→γγ ¼
π
4
α2emM3

Yg
2
Yγγ; (45)

where αem ≃ 1=137 is the fine structure constant.
Replacing the value of the coupling constant given above
we then obtain

ΓYð3940Þ→γγ ¼ ð1.6( 1.3Þ KeV: (46)
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VI. THE Yð3940Þ → γγ DECAY WIDTH

As done in Sec. IV, we can estimate the decay width of
the channel Yð3940Þ → γγ, through the three-point func-
tion (20). For this vertex Yγγ, we must consider the
following function,

Πμνðx; yÞ ¼ h0jTfjγμðxÞjγνðyÞj†ð0Þgj0i; (38)

where the interpolating current for the photon is given by

jγμ ¼
2

3
eðūaγμua þ c̄aγμcaÞ −

1

3
eðd̄aγμda þ s̄aγμsaÞ: (39)

In the phenomenological side, we have the expression

ΠPHEN
μν ðp; p0; qÞ ¼ −

e2λYgYγγðq2Þ
ðp2 −M2

YÞ
× ½qμp0

ν − ðp0 · qÞgμν& þ ' ' ' ; (40)

where the p0 and q are the momenta related to the two-
photon vertex. The form factor gYγγðq2Þ is defined by the
transition matrix of the process Y → γγ [27,28],

Mμν ¼ e2gYγγðq2Þ½gμνðp0 · qÞ − qμp0
ν&: (41)

The matching of both sides of the sum rule is done in the
same way as for the channel J=ψω, and we get in the
structure qμp0

ν the following expression,

e2λYgYγγðQ2Þe−M2
Y=M

2
B þ FðQ2Þe−s0=M2

B

¼ ΠOPEðM2
B;Q

2Þ; (42)

and the FðQ2Þ function represents the contribution to the
pole-continuum transitions. For this decay channel, the
ΠOPEðM2

B;Q
2Þ function is given by

ΠOPEðM2
B;Q

2Þ ¼ 8

3
e2½ΠOPE

J=ψωðM2
B;Q

2Þ þ ΠOPE
γγ ðM2

B;Q
2Þ&;

(43)

where ΠOPE
J=ψωðM2

B;Q
2Þ is the same function obtained in the

J=ψω channel given in Eq. (28). The ΠOPE
γγ ðQ2;M2

BÞ
function can be found in the Appendix.
The numerical analysis of the sum rule (42) provides the

form factor gYγγðQ2Þ. In Fig. 6, we show a plot of the form
factor gYψωðQ2Þ as a function of M2

B and Q2. As one can
see, we obtain a good stability in Borel mass parameter
and we consider a confidence region at 4.0 GeV2 ≤
M2

B ≤ 7.0 GeV2. Using again the monopolar function
given in Eq. (32), we can extrapolate the QCDSR results
and estimate the coupling constant for the process Y → γγ.
Therefore, in Fig. 7 we present such extrapolation from
where we obtain, at Q2 ¼ 0:

gYγγ ¼ ð0.025( 0.010Þ GeV−1; (44)

and the results for the fitting parameters are given by g1 ¼
ð0.08( 0.05Þ GeV and g2 ¼ ð3.13( 0.22Þ GeV2.
The decay width into γγ can be evaluated by the

expression [28]

ΓYð3940Þ→γγ ¼
π
4
α2emM3

Yg
2
Yγγ; (45)

where αem ≃ 1=137 is the fine structure constant.
Replacing the value of the coupling constant given above
we then obtain

ΓYð3940Þ→γγ ¼ ð1.6( 1.3Þ KeV: (46)
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gYψωðQ2Þ ¼ g1
g2 þQ2

; (32)

and the results for the fitting parameters are

g1 ¼ ð4.0% 1.0Þ GeV;
g2 ¼ ð7.4% 0.2Þ GeV2: (33)

Considering that the monopolar function could not be the
optimal choice, we have also used an exponential function
for fitting the data. It is noteworthy that both fits presented
basically equivalent results. Therefore, we have used these
two fits to estimate the error in the extrapolation.
The theoretical errors are evaluated considering errors

on the following parameters:
ffiffiffiffiffi
s0

p ¼ 4.40% 0.10 GeV,

θ ¼ 76:0° % 5.0°, and also the error on the meson coupling
parameter λY, given by Eq. (19). We notice that the results
do not depend much on the parameters

ffiffiffiffiffi
s0

p
and θ, while the

theoretical errors are mainly affected by the meson cou-
pling λY .
In order to see how well the parametrization works, the

solid line in Fig. 5 represents the Eq. (32) with values given
by Eq. (33). The coupling constant, gYψω, is given by using
the momentum value Q2 ¼ −M2

ω in Eq. (32). Then, we get

gYψω ¼ gYψωð−M2
ωÞ ¼ ð0.58% 0.14Þ GeV−1: (34)

The decay width for this process Yð3940Þ → J=ψω is
given by

ΓYð3940Þ→J=ψω¼
g2Yψω
3

pðMY;Mω;Mψ Þ
8πM2

Y

×
"
M2

ψM2
ωþ

1

2
ðM2

Y−M2
ψ −M2

ωÞ2
#
; (35)

where

pða; b; cÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ b4 þ c4 − 2a2b2 − 2a2c2 − 2b2c2

p

2a
:

(36)

Therefore, we obtain the decay width inserting the value
obtained for the coupling constant (34) in (35):

ΓYð3940Þ→J=ψω ¼ ð1.7% 0.6Þ MeV: (37)

This result is consistent with the experimental width of the
state and the lower limit for the process Y → J=ψω
[1,2,7,8]. It is also of the same order as other available
theoretical evaluations [12,13].

V. THE Yð3940Þ → DD̄ DECAY WIDTH

Establishing the Yð3940Þ as a mixed state, it seems that
the main decay channel would be intoDmesons, due to the
charmonium part of the current. However, the approach
used here does not allow us to evaluate such decay, since
one can only use the QCDSR approach to study properties
of the low-lying state. Therefore, a charmonium JPC ¼ 0þþ

current can only be used to study the decay of χc0ð1PÞ. If
one tries to use the charmonium current to study the
χc0ð2PÞ decay into DD̄, one would get promptly a number
different from zero, but this number is meaningless because
the approach can not be used to study this resonant state. In
addition we have verified that the molecular part of the
current is not allowed to decay into the channel containing
DD̄ mesons.
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g2 þQ2

; (32)

and the results for the fitting parameters are

g1 ¼ ð4.0% 1.0Þ GeV;
g2 ¼ ð7.4% 0.2Þ GeV2: (33)

Considering that the monopolar function could not be the
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basically equivalent results. Therefore, we have used these
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s0

p ¼ 4.40% 0.10 GeV,

θ ¼ 76:0° % 5.0°, and also the error on the meson coupling
parameter λY, given by Eq. (19). We notice that the results
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ffiffiffiffiffi
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[1,2,7,8]. It is also of the same order as other available
theoretical evaluations [12,13].
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VI. THE Yð3940Þ → γγ DECAY WIDTH

As done in Sec. IV, we can estimate the decay width of
the channel Yð3940Þ → γγ, through the three-point func-
tion (20). For this vertex Yγγ, we must consider the
following function,

Πμνðx; yÞ ¼ h0jTfjγμðxÞjγνðyÞj†ð0Þgj0i; (38)

where the interpolating current for the photon is given by

jγμ ¼
2

3
eðūaγμua þ c̄aγμcaÞ −

1

3
eðd̄aγμda þ s̄aγμsaÞ: (39)

In the phenomenological side, we have the expression

ΠPHEN
μν ðp; p0; qÞ ¼ −

e2λYgYγγðq2Þ
ðp2 −M2

YÞ
× ½qμp0

ν − ðp0 · qÞgμν& þ ' ' ' ; (40)

where the p0 and q are the momenta related to the two-
photon vertex. The form factor gYγγðq2Þ is defined by the
transition matrix of the process Y → γγ [27,28],

Mμν ¼ e2gYγγðq2Þ½gμνðp0 · qÞ − qμp0
ν&: (41)

The matching of both sides of the sum rule is done in the
same way as for the channel J=ψω, and we get in the
structure qμp0

ν the following expression,

e2λYgYγγðQ2Þe−M2
Y=M

2
B þ FðQ2Þe−s0=M2

B

¼ ΠOPEðM2
B;Q

2Þ; (42)

and the FðQ2Þ function represents the contribution to the
pole-continuum transitions. For this decay channel, the
ΠOPEðM2

B;Q
2Þ function is given by

ΠOPEðM2
B;Q

2Þ ¼ 8

3
e2½ΠOPE

J=ψωðM2
B;Q

2Þ þ ΠOPE
γγ ðM2

B;Q
2Þ&;

(43)

where ΠOPE
J=ψωðM2

B;Q
2Þ is the same function obtained in the

J=ψω channel given in Eq. (28). The ΠOPE
γγ ðQ2;M2

BÞ
function can be found in the Appendix.
The numerical analysis of the sum rule (42) provides the

form factor gYγγðQ2Þ. In Fig. 6, we show a plot of the form
factor gYψωðQ2Þ as a function of M2

B and Q2. As one can
see, we obtain a good stability in Borel mass parameter
and we consider a confidence region at 4.0 GeV2 ≤
M2

B ≤ 7.0 GeV2. Using again the monopolar function
given in Eq. (32), we can extrapolate the QCDSR results
and estimate the coupling constant for the process Y → γγ.
Therefore, in Fig. 7 we present such extrapolation from
where we obtain, at Q2 ¼ 0:

gYγγ ¼ ð0.025( 0.010Þ GeV−1; (44)

and the results for the fitting parameters are given by g1 ¼
ð0.08( 0.05Þ GeV and g2 ¼ ð3.13( 0.22Þ GeV2.
The decay width into γγ can be evaluated by the

expression [28]

ΓYð3940Þ→γγ ¼
π
4
α2emM3

Yg
2
Yγγ; (45)

where αem ≃ 1=137 is the fine structure constant.
Replacing the value of the coupling constant given above
we then obtain

ΓYð3940Þ→γγ ¼ ð1.6( 1.3Þ KeV: (46)
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form factor gYγγðQ2Þ. In Fig. 6, we show a plot of the form
factor gYψωðQ2Þ as a function of M2

B and Q2. As one can
see, we obtain a good stability in Borel mass parameter
and we consider a confidence region at 4.0 GeV2 ≤
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given in Eq. (32), we can extrapolate the QCDSR results
and estimate the coupling constant for the process Y → γγ.
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where we obtain, at Q2 ¼ 0:

gYγγ ¼ ð0.025( 0.010Þ GeV−1; (44)

and the results for the fitting parameters are given by g1 ¼
ð0.08( 0.05Þ GeV and g2 ¼ ð3.13( 0.22Þ GeV2.
The decay width into γγ can be evaluated by the

expression [28]

ΓYð3940Þ→γγ ¼
π
4
α2emM3

Yg
2
Yγγ; (45)

where αem ≃ 1=137 is the fine structure constant.
Replacing the value of the coupling constant given above
we then obtain

ΓYð3940Þ→γγ ¼ ð1.6( 1.3Þ KeV: (46)

0 1 2 3 4 5 6

0.00

0.02

0.04

0.06

Q2 GeV2

g Y
G

eV
1

FIG. 7 (color online). QCDSR results for the form factor
gYγγðQ2Þ, for ffiffiffiffiffi

s0
p ¼ 4.40 GeV (circles). The solid line gives

the parametrization of the QCDSR results. The cross is the value
of the coupling constant, at Q2 ¼ 0.

2
4

6
8MB

2 GeV2
1

2

3

4

Q 2 GeV2

0.0

0.2

0.4

0.6

g Y
G

eV
1

FIG. 6 (color online). The form factor gYγγðQ2Þ as a function of
the momentum Q2 and Borel mass parameter M2

B.

Yð3940Þ AS A MIXED CHARMONIUM-MOLECULE STATE PHYSICAL REVIEW D 89, 076007 (2014)

076007-7

• Our	
  estimation	
  for	
  the	
  width	
  is	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  which	
  is	
  smaller	
  
than	
  the	
  experimental	
  width	
  (~30	
  MeV),	
  but	
  is	
  consistent	
  with	
  the	
  lower	
  
limit	
  for	
  this	
  channel	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  

• The	
  product	
  of	
  the	
  two	
  partial	
  widths

Based on this decay width value and the one obtained for
the channel J=ψω in Eq. (37), the product of the two partial
widths of the Yð3940Þ is given by

Γγγ × ΓJ=ψω ∼Oð103Þ KeV2: (47)

The result for this product is in reasonable agreement with
one predicted by BELLE and BABAR Collaborations in
Refs. [5,6].

VII. SUMMARY AND CONCLUSIONS

In summary, we have used the QCDSR approach to
study the two-point and three-point functions of the
Yð3940Þ state, by considering it as a mixed charmo-
nium-molecule state. We evaluated the mass working with
the two-point function at leading order in αs and consid-
ering the contributions from the condensates up to dimen-
sion seven in the OPE. We obtained a mass which is in
reasonable agreement with the experimental value for the
Yð3940Þ state, and we found a mixing angle around
θ ¼ ð76.0$ 5.0Þ0.
To evaluate the decay width of the channel

Yð3940Þ → J=ψω, we worked with the three-point func-
tion also at leading order in αs, and we considered the
contributions from the condensates up to dimension
seven. The obtained value of the width is ΓJ=ψω ¼
ð1.7$ 0.6Þ MeV, which is smaller than the total exper-
imental width [1,2], but is consistent with the lower limit
for this channel Γ > 1 MeV [12,13]. We also estimated the
decay width of Yð3940Þ into two photons as
Γγγ ¼ ð1.6$ 1.3Þ KeV. These results allowed us to esti-
mate the order of magnitude of the product of the two
partial widths, Γγγ × ΓJ=ψω ∼Oð103Þ KeV2, which is also
in reasonable agreement with the experimental data.
Thus, according to the available experimental data, we

can conclude that a mixing between the χc0 charmonium
and the D%D̄% molecule, with JPC ¼ 0þþ quantum
numbers, could be a good candidate to explain the
Yð3940Þ state.
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In all these expressions we have used the following
definitions:

ALBUQUERQUE et al. PHYSICAL REVIEW D 89, 076007 (2014)

076007-8

Based on this decay width value and the one obtained for
the channel J=ψω in Eq. (37), the product of the two partial
widths of the Yð3940Þ is given by

Γγγ × ΓJ=ψω ∼Oð103Þ KeV2: (47)

The result for this product is in reasonable agreement with
one predicted by BELLE and BABAR Collaborations in
Refs. [5,6].

VII. SUMMARY AND CONCLUSIONS

In summary, we have used the QCDSR approach to
study the two-point and three-point functions of the
Yð3940Þ state, by considering it as a mixed charmo-
nium-molecule state. We evaluated the mass working with
the two-point function at leading order in αs and consid-
ering the contributions from the condensates up to dimen-
sion seven in the OPE. We obtained a mass which is in
reasonable agreement with the experimental value for the
Yð3940Þ state, and we found a mixing angle around
θ ¼ ð76.0$ 5.0Þ0.
To evaluate the decay width of the channel

Yð3940Þ → J=ψω, we worked with the three-point func-
tion also at leading order in αs, and we considered the
contributions from the condensates up to dimension
seven. The obtained value of the width is ΓJ=ψω ¼
ð1.7$ 0.6Þ MeV, which is smaller than the total exper-
imental width [1,2], but is consistent with the lower limit
for this channel Γ > 1 MeV [12,13]. We also estimated the
decay width of Yð3940Þ into two photons as
Γγγ ¼ ð1.6$ 1.3Þ KeV. These results allowed us to esti-
mate the order of magnitude of the product of the two
partial widths, Γγγ × ΓJ=ψω ∼Oð103Þ KeV2, which is also
in reasonable agreement with the experimental data.
Thus, according to the available experimental data, we

can conclude that a mixing between the χc0 charmonium
and the D%D̄% molecule, with JPC ¼ 0þþ quantum
numbers, could be a good candidate to explain the
Yð3940Þ state.

ACKNOWLEDGEMENTS

This work has been supported by FAPESP and CNPq.

APPENDIX A: SPECTRAL DENSITIES FOR THE
TWO-POINT CORRELATION FUNCTION

Next, we list the spectral densities for the mixed scalar
ðχc0Þ − ðD%D̄%Þ state described by the current in Eq. (1).
We consider the OPE contributions up to dimension-eight
condensates and keep terms at leading order in αs. In order
to retain the heavy quark mass finite, we use the momen-
tum-space expression for the heavy quark propagator. We
calculate the light quark part of the correlation function in
the coordinate-space and use the Schwinger parametriza-
tion to evaluate the heavy quark part of the correlator. For

the d4x integration in Eq. (5), we use again the Schwinger
parametrization, after a Wick rotation. Finally, the result of
these integrals are given in terms of logarithmic functions
through which we extract the spectral densities. The same
technique can be used for evaluating the condensate
contributions.
For the χc0 meson contribution, the spectral densities are

written below [16],

ρpertχc0 ðsÞ ¼ −
3m2

c

8π2
v
!
4 −

1

x

"
;

ρhG
2i

χc0 ðsÞ ¼ hg2sG2i
25π2M2

B
v
!
2þ 2

x
−
m2

c=M2
B

x2

"

ρhG
3i

χc0 ðsÞ ¼ −
hg3sG3i

3 · 27π2M4
B

v
x

#
49þ 6

x
þ ðx −m2

cτÞ

×
!
28þ 49

x
þ 3

x2

"$
: (A1)

For the D%D̄%ð0þþÞ molecular state [14],

ρpertD%D%ðsÞ¼
m8

c

5 ·212π6

#
v
!
480þ1460

x
−
274

x2
−
38

x3
þ 1

x4

"

þ120Lv

!
8x−1−6LogðxÞ−8

x
þ 2

x2

"
−1440Lþ

$

ρhq̄qiD%D%ðsÞ¼
m5

chq̄qi
64π4

#
v
!
6−

5

x
−

1

x2

"
þ6Lv

!
2x−2þ1

x

"$

ρhG
2i

D%D%ðsÞ¼
m4

chg2sG2i
3 ·210π6

#
v
!
6−

5

x
−

1

x2

"
þ6Lv

!
2x−2þ1

x

"$

ρhq̄GqiD%D% ðsÞ¼
3m3

chq̄Gqi
128π4

!
v
x
−2Lv

"

ρhq̄qi
2

D%D%ðsÞ¼
m2

cρhq̄qi2

4π2
v

ρhG
3i

D%D%ðsÞ¼
m2

chg3sG3i
3 ·212π6

#
v
!
6−

25

x
þ 1

x2

"

þ6Lv

!
2xþ2þ1

x

"$

ρh8iD%D%ðsÞ¼−
hq̄qihq̄Gqi

8π2
v
!
m4

c=M4
B

x

"
: (A2)

Finally, for the mixed term, we have

ρhq̄qimix ðsÞ ¼
m2

chq̄qi
4π2

v
!
4 −

1

x

"
;

ρhq̄Gqimix ðsÞ ¼ 0: (A3)

In all these expressions we have used the following
definitions:

ALBUQUERQUE et al. PHYSICAL REVIEW D 89, 076007 (2014)

076007-8

Based on this decay width value and the one obtained for
the channel J=ψω in Eq. (37), the product of the two partial
widths of the Yð3940Þ is given by

Γγγ × ΓJ=ψω ∼Oð103Þ KeV2: (47)

The result for this product is in reasonable agreement with
one predicted by BELLE and BABAR Collaborations in
Refs. [5,6].

VII. SUMMARY AND CONCLUSIONS

In summary, we have used the QCDSR approach to
study the two-point and three-point functions of the
Yð3940Þ state, by considering it as a mixed charmo-
nium-molecule state. We evaluated the mass working with
the two-point function at leading order in αs and consid-
ering the contributions from the condensates up to dimen-
sion seven in the OPE. We obtained a mass which is in
reasonable agreement with the experimental value for the
Yð3940Þ state, and we found a mixing angle around
θ ¼ ð76.0$ 5.0Þ0.
To evaluate the decay width of the channel

Yð3940Þ → J=ψω, we worked with the three-point func-
tion also at leading order in αs, and we considered the
contributions from the condensates up to dimension
seven. The obtained value of the width is ΓJ=ψω ¼
ð1.7$ 0.6Þ MeV, which is smaller than the total exper-
imental width [1,2], but is consistent with the lower limit
for this channel Γ > 1 MeV [12,13]. We also estimated the
decay width of Yð3940Þ into two photons as
Γγγ ¼ ð1.6$ 1.3Þ KeV. These results allowed us to esti-
mate the order of magnitude of the product of the two
partial widths, Γγγ × ΓJ=ψω ∼Oð103Þ KeV2, which is also
in reasonable agreement with the experimental data.
Thus, according to the available experimental data, we

can conclude that a mixing between the χc0 charmonium
and the D%D̄% molecule, with JPC ¼ 0þþ quantum
numbers, could be a good candidate to explain the
Yð3940Þ state.

ACKNOWLEDGEMENTS

This work has been supported by FAPESP and CNPq.

APPENDIX A: SPECTRAL DENSITIES FOR THE
TWO-POINT CORRELATION FUNCTION

Next, we list the spectral densities for the mixed scalar
ðχc0Þ − ðD%D̄%Þ state described by the current in Eq. (1).
We consider the OPE contributions up to dimension-eight
condensates and keep terms at leading order in αs. In order
to retain the heavy quark mass finite, we use the momen-
tum-space expression for the heavy quark propagator. We
calculate the light quark part of the correlation function in
the coordinate-space and use the Schwinger parametriza-
tion to evaluate the heavy quark part of the correlator. For

the d4x integration in Eq. (5), we use again the Schwinger
parametrization, after a Wick rotation. Finally, the result of
these integrals are given in terms of logarithmic functions
through which we extract the spectral densities. The same
technique can be used for evaluating the condensate
contributions.
For the χc0 meson contribution, the spectral densities are

written below [16],

ρpertχc0 ðsÞ ¼ −
3m2

c

8π2
v
!
4 −

1

x

"
;

ρhG
2i

χc0 ðsÞ ¼ hg2sG2i
25π2M2

B
v
!
2þ 2

x
−
m2

c=M2
B

x2

"

ρhG
3i

χc0 ðsÞ ¼ −
hg3sG3i

3 · 27π2M4
B

v
x

#
49þ 6

x
þ ðx −m2

cτÞ

×
!
28þ 49

x
þ 3

x2

"$
: (A1)

For the D%D̄%ð0þþÞ molecular state [14],

ρpertD%D%ðsÞ¼
m8

c

5 ·212π6

#
v
!
480þ1460

x
−
274

x2
−
38

x3
þ 1

x4

"

þ120Lv

!
8x−1−6LogðxÞ−8

x
þ 2

x2

"
−1440Lþ

$

ρhq̄qiD%D%ðsÞ¼
m5

chq̄qi
64π4

#
v
!
6−

5

x
−

1

x2

"
þ6Lv

!
2x−2þ1

x

"$

ρhG
2i

D%D%ðsÞ¼
m4

chg2sG2i
3 ·210π6

#
v
!
6−

5

x
−

1

x2

"
þ6Lv

!
2x−2þ1

x

"$

ρhq̄GqiD%D% ðsÞ¼
3m3

chq̄Gqi
128π4

!
v
x
−2Lv

"

ρhq̄qi
2

D%D%ðsÞ¼
m2

cρhq̄qi2

4π2
v

ρhG
3i

D%D%ðsÞ¼
m2

chg3sG3i
3 ·212π6

#
v
!
6−

25

x
þ 1

x2

"

þ6Lv

!
2xþ2þ1

x

"$

ρh8iD%D%ðsÞ¼−
hq̄qihq̄Gqi

8π2
v
!
m4

c=M4
B

x

"
: (A2)

Finally, for the mixed term, we have

ρhq̄qimix ðsÞ ¼
m2

chq̄qi
4π2

v
!
4 −

1

x

"
;

ρhq̄Gqimix ðsÞ ¼ 0: (A3)

In all these expressions we have used the following
definitions:

ALBUQUERQUE et al. PHYSICAL REVIEW D 89, 076007 (2014)

076007-8

Branz,	
  Gutsche	
  &	
  Lyubovitskij,	
  PRD	
  80	
  (2009)
Branz,	
  Molina	
  &	
  Oset,	
  PRD	
  83	
  (2011)

Based on this decay width value and the one obtained for
the channel J=ψω in Eq. (37), the product of the two partial
widths of the Yð3940Þ is given by

Γγγ × ΓJ=ψω ∼Oð103Þ KeV2: (47)

The result for this product is in reasonable agreement with
one predicted by BELLE and BABAR Collaborations in
Refs. [5,6].

VII. SUMMARY AND CONCLUSIONS

In summary, we have used the QCDSR approach to
study the two-point and three-point functions of the
Yð3940Þ state, by considering it as a mixed charmo-
nium-molecule state. We evaluated the mass working with
the two-point function at leading order in αs and consid-
ering the contributions from the condensates up to dimen-
sion seven in the OPE. We obtained a mass which is in
reasonable agreement with the experimental value for the
Yð3940Þ state, and we found a mixing angle around
θ ¼ ð76.0$ 5.0Þ0.
To evaluate the decay width of the channel

Yð3940Þ → J=ψω, we worked with the three-point func-
tion also at leading order in αs, and we considered the
contributions from the condensates up to dimension
seven. The obtained value of the width is ΓJ=ψω ¼
ð1.7$ 0.6Þ MeV, which is smaller than the total exper-
imental width [1,2], but is consistent with the lower limit
for this channel Γ > 1 MeV [12,13]. We also estimated the
decay width of Yð3940Þ into two photons as
Γγγ ¼ ð1.6$ 1.3Þ KeV. These results allowed us to esti-
mate the order of magnitude of the product of the two
partial widths, Γγγ × ΓJ=ψω ∼Oð103Þ KeV2, which is also
in reasonable agreement with the experimental data.
Thus, according to the available experimental data, we

can conclude that a mixing between the χc0 charmonium
and the D%D̄% molecule, with JPC ¼ 0þþ quantum
numbers, could be a good candidate to explain the
Yð3940Þ state.

ACKNOWLEDGEMENTS

This work has been supported by FAPESP and CNPq.

APPENDIX A: SPECTRAL DENSITIES FOR THE
TWO-POINT CORRELATION FUNCTION

Next, we list the spectral densities for the mixed scalar
ðχc0Þ − ðD%D̄%Þ state described by the current in Eq. (1).
We consider the OPE contributions up to dimension-eight
condensates and keep terms at leading order in αs. In order
to retain the heavy quark mass finite, we use the momen-
tum-space expression for the heavy quark propagator. We
calculate the light quark part of the correlation function in
the coordinate-space and use the Schwinger parametriza-
tion to evaluate the heavy quark part of the correlator. For

the d4x integration in Eq. (5), we use again the Schwinger
parametrization, after a Wick rotation. Finally, the result of
these integrals are given in terms of logarithmic functions
through which we extract the spectral densities. The same
technique can be used for evaluating the condensate
contributions.
For the χc0 meson contribution, the spectral densities are

written below [16],

ρpertχc0 ðsÞ ¼ −
3m2

c

8π2
v
!
4 −

1

x

"
;

ρhG
2i

χc0 ðsÞ ¼ hg2sG2i
25π2M2

B
v
!
2þ 2

x
−
m2

c=M2
B

x2

"

ρhG
3i

χc0 ðsÞ ¼ −
hg3sG3i

3 · 27π2M4
B

v
x

#
49þ 6

x
þ ðx −m2

cτÞ

×
!
28þ 49

x
þ 3

x2

"$
: (A1)

For the D%D̄%ð0þþÞ molecular state [14],

ρpertD%D%ðsÞ¼
m8

c

5 ·212π6

#
v
!
480þ1460

x
−
274

x2
−
38

x3
þ 1

x4

"

þ120Lv

!
8x−1−6LogðxÞ−8

x
þ 2

x2

"
−1440Lþ

$

ρhq̄qiD%D%ðsÞ¼
m5

chq̄qi
64π4

#
v
!
6−

5

x
−

1

x2

"
þ6Lv

!
2x−2þ1

x

"$

ρhG
2i

D%D%ðsÞ¼
m4

chg2sG2i
3 ·210π6

#
v
!
6−

5

x
−

1

x2

"
þ6Lv

!
2x−2þ1

x

"$

ρhq̄GqiD%D% ðsÞ¼
3m3

chq̄Gqi
128π4

!
v
x
−2Lv

"

ρhq̄qi
2

D%D%ðsÞ¼
m2

cρhq̄qi2

4π2
v

ρhG
3i

D%D%ðsÞ¼
m2

chg3sG3i
3 ·212π6

#
v
!
6−

25

x
þ 1

x2

"

þ6Lv

!
2xþ2þ1

x

"$

ρh8iD%D%ðsÞ¼−
hq̄qihq̄Gqi

8π2
v
!
m4

c=M4
B

x

"
: (A2)

Finally, for the mixed term, we have

ρhq̄qimix ðsÞ ¼
m2

chq̄qi
4π2

v
!
4 −

1

x

"
;

ρhq̄Gqimix ðsÞ ¼ 0: (A3)

In all these expressions we have used the following
definitions:

ALBUQUERQUE et al. PHYSICAL REVIEW D 89, 076007 (2014)

076007-8

in	
  accordance	
  with	
  one	
  predicted	
  by	
  Belle	
  and	
  BaBar	
  Collaborations.
PRL	
  104,	
  092001	
  (2010) PRD	
  86,	
  072002	
  (2012)



/46

II	
  Workshop	
  on	
  Perspectives	
  in	
  Nonperturbative	
  QCD	
  
EXOTIC	
  STATES	
  IN	
  CHARMONIUM	
  SPECTROSCOPY Conclusions

46

Charmonium	
  Exotic	
  States

• The	
  LHCb	
  observation	
  in	
  the	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  invariant	
  mass	
  has	
  proved	
  unambiguously	
  that	
  
the	
  minimal	
  quark	
  content	
  of	
  the	
  charged	
  Z(4430)	
  state	
  is	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
    
Therefore,	
  it	
  is	
  a	
  four-­‐quark	
  state.	
  

• From	
  a	
  QCD	
  sum	
  rule	
  calculation,	
  we	
  shall	
  retain	
  an	
  admixture	
  of	
  charmonium	
  and	
  
four-­‐quark	
  states	
  as	
  a	
  possible	
  hadronic	
  structure	
  to	
  describe	
  these	
  exotic	
  states	
  
observed	
  recently.	
  

• Using	
  such	
  a	
  exotic	
  structure	
  we	
  could	
  explain	
  the	
  expected	
  mass	
  and	
  decay	
  widths	
  
obtained	
  in	
  the	
  experiments.	
  	
  

❖ X(4260)	
  as	
  a	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐	
  tetraquark	
  state,	
  with	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  

❖ Y(3940)	
  as	
  a	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  molecule,	
  with	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  

• Future	
  QCDSR	
  estimations	
  of	
  the	
  decay	
  channels	
  into	
  D	
  mesons	
  can	
  improve	
  the	
  
results	
  for	
  the	
  total	
  widths.

 0 ⇡�

cc̄dū

JPC = 1��J/ 

�c0 D⇤D̄⇤ JPC = 0++
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