Subtracted Geometries

Diego B. Cohen Maldonado
Work in progress with Alejandra Castro

Universiteit van Amsterdam

2 February 2015
Extremal Kerr/CFT

Warped AdS3

Kerr BH

near horizon limit

asymptotic symmetry group allows CFT interpretation.

The Kerr line element is

\[
\begin{align*}
 ds^2 &= -\frac{\Delta^2}{\rho^2} (d\hat{t} - a \sin^2 \hat{\theta})^2 + \frac{\sin^2 \theta}{\rho^2} \left((\hat{r}^2 + a^2) d\hat{\phi} - a d\hat{t} \right)^2 + \\
 &\quad + \frac{\rho^2}{\Delta} d\hat{r}^2 + \rho^2 d\theta^2,
\end{align*}
\]

with

\[
\Delta \equiv \hat{r}^2 - 2Mr + a^2, \quad \rho^2 \equiv \hat{r}^2 + a^2 \cos^2 \theta
\]

and the NHEK line element is

\[
\begin{align*}
 ds^2 &= 2J\Omega^2(\theta) \left(-(1 + r^2) d\tau^2 + \frac{dr^2}{1 + r^2} + d\theta^2 + \Lambda(\theta)^2 (d\varphi + rd\tau)^2 \right)
\end{align*}
\]

This allows a CFT interpretation.
Radial part of ϕ can be solved in terms of hypergeometric functions

CFT approach is a sensible thing to do.

\[\frac{1}{\sqrt{-g}} \partial_{\mu} (\sqrt{-g} g^{\mu \nu} \partial_{\nu} \Phi) = 0. \]

Say \(\Phi(t, r, \theta, \phi) = e^{-i\omega t + im\phi} R(r) S(\theta) \) and get

\[
\left[\partial_r \nabla \partial_r + \frac{(2Mr_+ \omega - am)^2}{(r - r_+)(r_+r_-)} - \frac{(2Mr_- \omega - am)^2}{(r - r_+)(r_+r_-)} \right.
\]
\[
+ \left. (r^2 + 2M(r + 2M))\omega^2 \right] R(r) = K_\ell R(r).
\]

asking \(\omega M \ll 1 \), we can discard the last term for the \(r < M \) region, and solve the equation as an hypergeometric function.
Subtracted Geometry

Rotating Black Hole

Rotating and Charged Black Hole.

Rotating and Charged BTZ Black Hole.
Proposed by M. Cvetic, M. Guica and Z. Saleem (2013). The subtracted geometry line element is

\[ds^2 = -e^{2U} (dt + \omega_3)^2 + e^{-2U} ds_3^2 \]

with

\[ds_3^2 = \frac{\Delta^2}{\Delta} dr^2 + \Delta_2 d\theta^2 + \Delta \sin^2 \theta d\phi^2, \]
\[\Delta = r^2 - 2mr + a^2, \quad \Delta_2 = \Delta - a^2 \sin^2 \theta. \]

The uplift works as

\[ds_5^2 = f^2 (dz + A^0)^2 + f^{-1} ds_4^2 \]
\[= ds_{BTZ} + S^2. \]
First Law of Thermodynamics
First Law of Thermodynamics

The original Kerr first law is satisfied by

$$dM_{\text{Kerr}} = \frac{\kappa}{8\pi} dA + \Omega dJ$$

now

$$dM = \frac{\kappa}{8\pi} dA + \Omega dJ + \Phi^i_E dQ^i + \Phi^i_M dP^i$$

this is not easy because asymptotically

$$ds^2 = -dt^2 \rho^{3/2} + \frac{d\rho^2}{\rho^{3/2}} + d\theta^2 \rho^{1/2} + \sqrt{\rho} \sin^2 \theta d\phi^2$$

and this makes fail

$$M \propto \int \sqrt{\gamma^{(2)}} n_\mu \sigma_\nu \nabla^\mu \chi^\nu_{(t)}, \quad J \propto \int \sqrt{\gamma^{(2)}} n_\mu \sigma_\nu \nabla^\mu \chi^\nu_{(\phi)}$$
(1) Extremal Kerr has a well established CFT dual. Entropy can be computed.
(2) Non extremal Kerr shows some signs of duality. Entropy can be computed, but why?
(3) Subtracted geometries try to give an explanation of this.
(4) Still more work is needed to establish a formal thermodynamics of this geometries.