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Higgs Properties

Is the boson found The Higgs Boson?
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Observed

SM Expected

Measurements so far are consistent with the expectations in the SM
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The Standard Model Lagrangian

A theory based on the
SU(3)× SU(2)× U(1)
gauge group and the
matter content:

LSM = LYM + LD + LH + LYuk

Where: LYM = LQCD + LIw + LY

= − 1
4

∑8
a=1G

a
µνG

aµν − 1
4

∑3
i=1 F

i
µνF

iµν

− 1
4
BµνB

µν

and for the fermions (no explicit mass
term included):

LD = Σf ψ̄fγ
µDµψf

At this level this simple model has only three parameters

But EW gauge bosons are massive and explicit mass terms
are not gauge invariant!!
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The Higgs Sector

EW SSB is achieved by adding complex scalar doublet:

LSM = LYM + LD + LH + LYuk

with LH =

(DµH)†(DµH)− (µ2H†H + λ(H†H)2)

Yukawa Hff terms can economically generate masses for chiral fermions!

LYuk ∼ −λdQLHdR + h.c. → md =
λdv√

2

No masses for neutrinos have been considered, usually regarded as BSM!
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The Standard Model Parameters

In all the SM have 19 free parameters!

Gauge couplings 3
Determine relative strength of

forces

Higgs parameters 2 Higgs mass and quartic coupling

Fermion masses 9
After EWSSB generated from the

Yukawa couplings

CKM parameters 3+1
Quark mixing angles and CP

phase

QCD θ 1
Related to the QCD vacuum

structure and the so called Strong
CP problem
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Observables and Parameter Fits

Choose a set {Oexpt
i } of observables measured and compute {Oth

i (θ)},
where θ is a subset of SM parameters. Then minimize the χ2 function:

χ2(θ) =
∑

i
(Oexpt

i −Oth
i (θ))2

(∆Oexpt
i )2

αexpt

Gexpt
F

mexpt
Z

mexpt
W

Γexpt

l+l−

Tree level

αth = e2

4π

Gth
F = 1√

2v2

mth
Z = e2v2

4s2
W
c2
W

mth
W = e2v2

4s2
W

Γth
l+l−

= v
96π

e3

s3
W
c2
W

[
(
− 1

2
+ 2s2W

)2
+ 1

4
]

The theory results are expressed in terms of e, sW and v, with
gI = e/sW , gY = e/cW and v2 = −µ2/λ

With very precise measurements from α, GF and mZ we get (tree level)
predictions for mW and Γl+l− !
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The Global EW Fit

Modern fits use larger set of observables and most precise predictions!
Also, theoretical uncertainties are considered for the fit.

Gffiter Group, arXiv:1407.3792

Slide from R. Kogler

7 / 37



The Global EW Fit

Modern fits use larger set of observables and most precise predictions!
Also, theoretical uncertainties are considered for the fit.

Gffiter Group, arXiv:1407.3792

Slide from R. Kogler

7 / 37



The Global EW Fit

Modern fits use larger set of observables and most precise predictions!
Also, theoretical uncertainties are considered for the fit.

Gffiter Group, arXiv:1407.3792

Slide from R. Kogler

7 / 37



Global Fits of SM Parameters

totσ - O) / indirect(O
-3 -2 -1 0 1 2 3

)2

Z
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α∆

)2

Z
(Msα

tm
b
0R
c
0R

0,b
FBA

0,c
FBA

bA
cA

)
FB

(Q
lept

eff
Θ2sin

(SLD)lA

(LEP)lA

0,l
FBA

lep
0R

0
had

σ
ZΓ
ZM

WΓ
WM
HM

Global EW fit
Indirect determination
Measurement

I Comparison of results in
terms of corresponding
uncertainty

I Indirect determination
removes direct
measurement constrain

I Good description of all
observables

I Largest deviation
observed in bottom
forward-backward
asymmetry

Gffiter arXiv:1407.3792

The χ2
min obtained in the fit is 18.2 for a total of 14 d.o.f.
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Full Power of SM at Hadron Colliders

pp

total

80 µb−1

Jets
R=0.4

|y |<3.0

0.1< pT < 2 TeV

Dijets
R=0.4

|y |<3.0
y ∗<3.0

0.3<mjj < 5 TeV

W

fiducial

35 pb−1
nj ≥ 0

nj ≥ 1

nj ≥ 2

nj ≥ 3

nj ≥ 4

nj ≥ 5

nj ≥ 6

nj ≥ 7

Z

fiducial

35 pb−1
nj ≥ 0

nj ≥ 1

nj ≥ 2

nj ≥ 3

nj ≥ 4

nj ≥ 5

nj ≥ 6

nj ≥ 7

t̄t

fiducial

e, µ+X

nj ≥ 4

nj ≥ 5

nj ≥ 6

nj ≥ 7

nj ≥ 8

tt−chan

total

WW

total

γγ

fiducial

Wt

total

2.0 fb−1

H

fiducial

H→γγ

VBF
H→WW

ggF
H→WW

H→ZZ→4ℓ

total
(γγ,ZZ )

H→ττ

WZ

total

13.0 fb−1

ZZ

total

Wγ

fiducial

WW+
WZ

semilept.
fiducial

Zγ

fiducial

t̄tW

total

t̄tZ

total

95% CL

upper

limit

t̄tγ

fiducial

Zjj
EWK

fiducial

Wγγ

fiducial
njet=0

W±W±jj
EWK

fiducial

ts−chan

total

95% CL

upper

limit

0.7 fb−1

σ
[p

b]

10−3

10−2

10−1

1

101

102

103

104

105

106

1011

LHC pp
√
s = 7 TeV

Theory

Observed 4.5 − 4.9 fb−1

LHC pp
√
s = 8 TeV

Theory

Observed 20.3 fb−1

Standard Model Production Cross Section Measurements Status: March 2015

ATLAS Preliminary

Run 1
√
s = 7, 8 TeV

I Summary plot of
SM cross sections

I Impressive
agreement between
theory and
experiment

I Smallest cross
section from
W±W± + 2 jets

I Similar results from
CMS
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Very Precise: NLO QCD Recent Progress

By now we have highly automated NLO QCD tools for up to 2→ 4 processes!
(Madgraph, OpenLoops, Gosam, ...)

2→ 5

W/Z + 4-Jet
Production

2010-2011
Berger, Bern, Dixon, FFC, Forde,

Hoeche, Ita, Kosower, Maitre
(BlackHat)

4-Jet Production -
γγ + 3 Jets

2013 Badger, Biedermann, Guffanti,
Uwer, Yundin (NJet)

Off-shell tt̄H 2015 Denner, Feger

2→ 6

W + 5-Jet
Production

2013
Bern, Dixon, FFC, Hoeche, Ita,

Kosower, Ozeren, Maitre
(BlackHat)
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Very Precise: (N)NNLO QCD Recent Progress

Higgs production
(ggH)

N3LO QCD
(2015)

Anastasiou, Duhr, Dulat, Furlan,
Herzog, Gehrmann, Lazopoulos,

Mistlberger

W+W−
NNLO QCD

(2014)

Gehrmann, Grazzini, Kallweit,
Maierhfer, von Manteuffel,

Pozzorini, Rathlev, Tancreedi

W+ Jet
NNLO QCD

(2015)
Boughezal, Focke, Liu, Petriello

H + 1 Jet
NNLO QCD

(2015)
Boughezal, Caola, Melnikov,

Petriello, Schulze

Z + 1 Jet
NNLO QCD

(2015)
Gehrmann-De Ridder, Gehrmann,

Glover, Huss, Morgan

And much more!
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This Lecture

INTRODUCTION
The SM Global Fit, LHC Observables, Recent progress in pQCD

FACTORIZATION FOR HADRONIC XS’s
PDF/Hard XS/Fragmentation, Perturbations, Interference Diags, δσ(N)NLO

QCD TREE LEVEL FACTORIZATION
Collinear and Soft Limits, Dim Reg, General Expressions
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Following Lectures

2) SUBTRACTION METHODS
NLO algorithms, Tools, NNLO state of the art −→ (de Florian)

3) DISSECTING HIGHER ORDERS
KLN Theorem, Scales, Numerical Stabilities −→ (Kosower)

4) HANDS ON LAB SESSION
Computing observables at NLO in automated frameworks!

14 / 37



FACTORIZATION FOR HADRONIC XS’s
PDF/Hard XS/Fragmentation, Perturbations, Interference Diags, δσ(N)NLO
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QCD TREE LEVEL FACTORIZATION
Collinear and Soft Limits, Dim Reg, General Expressions
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Producing X via a q̄g channel

Suppose you are studying
some production channels
of your preferred signal X

X

Start for computing the born level cross section, and then ask

how can I get extra radiation on on top of X?

Start with adding a gluon!

I O(αs) corrections to
your signal

I Part of the real NLO
corrections

X + g
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Extra gluon emission q̄g → X + g

Pay attention to the diagrams in which the extra gluon couples to
the external q̄ line:

Aq̄g→g+X =
∑

All partitions

+ · · ·︸ ︷︷ ︸
Other diagrams with g
not coupling to q̄ line

=
∑
i

Di + · · ·

In the square of the amplitude we then find:

|Aq̄g→g+X |2 =
∑
i

|Di|2 +
∑
i 6=j

D†iDj + · · · (1)

Notice that the propagator leading to the
vertex that couples g and q̄ in diagram Dj

leads to a term like (we set mq̄ = 0 for now!):

1

(−pq̄ + pg + pX′j )
2

And so in Eq. 1 we find a potential divergent terms of the form
1/(2pq̄ · pg)2!
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Exploring Singularities of QCD Tree Amplitudes

These (most) singular terms
come in |Aq̄g→g+X |2 from
the square of the set of
diagrams (let’s call them
D1):

So let’s
explore in
detail D1

contributions!

First:

D1 = gst
av̄(pq̄)γµ

/pg − /pq̄
(pg − pq̄)2

Ãq̄g→X εµ∗ (2)

In the matrix element square, we need to deal with the sum over
polarizations of the g. We introduce a light-like vector nµ with
n · pg 6= 0 and write:

∑
polarizations

εµ∗εν = −gµν +
pµgnν + pνgn

µ

pg · n
(3)
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Exploring Singularities of QCD Tree Amplitudes

And then, in a sum over initial and final states degrees of freedom,
we find:∑
|D1|2 = g2

sCF

Tr

{
Ã†q̄g→X

/pg − /pq̄
(pg − pq̄)2

[
γν/pq̄γµ

] /pg − /pq̄
(pg − pq̄)2

Ãq̄g→X
}

(
−gµν +

pµgnν + pνgn
µ

pg · n

)
= g2

sCF

Tr

{
Ã†q̄g→X

/pg − /pq̄
(pg − pq̄)2

[
−γµ/pq̄γµ +

/n/pq̄/pg + /pg/pq̄/n

n · pg

]
/pg − /pq̄

(pg − pq̄)2
Ãq̄g→X

}
(4)

Employing identities for Dirac’s γ matrices (like {γµ, γν} = 2gµν ,
γµγνγµ = −2γν , etc) we obtain the compact expresion:
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Exploring Singularities of QCD Tree Amplitudes

∑
|D1|2 = g2

sCF
2

(2pq̄ · pg)2(n · pg)
Tr

{
Ã†q̄g→X(/pg − /pq̄)[

(n · pq̄)/pg + (pq̄ · pg)/n
]
(/pg − /pq̄)Ãq̄g→X

}
= g2

sCF
2

(2pq̄ · pg)(n · pg)
Tr

{
Ã†q̄g→X[

(n · pq̄)/pq̄ + n · (pg − pq̄)(/pg − /pq̄) + (pq̄ · pg)/n
]
Ãq̄g→X

}
(5)

Here it comes the crucial step!

If we explore the regions were our diagrams diverge (i.e. were
(2pq̄ · pg)→ 0), this occurs either because g is soft or because g

turns collinear to q̄! 24 / 37



Collinear Singularities in QCD

Characterize the collinear region with the help of the Sudakov
parameterization (k⊥ is a space-like vector ⊥ to both pg and pq̄):

pg = (1− z)pq̄ + βnµ − kµ⊥ (6)

where picking β = −k2
⊥/(2(1− z)(n · pq̄)) ensures p2

g = 0.

We are going to let k⊥ go to zero, and with it have a measure of
how collinear is our configuration! We get:

∑
|D1|2 = g2

sCF
2

(2pq̄ · pg)(n · pg)
Tr

{
Ã†q̄g→X[

(n · pg)
(1− z)/

p
q̄
− (pg · n)z

(1− z)
(/pg − /pq̄)−

k2
⊥

2(pg · n)
/n

]
Ãq̄g→X

}
(7)
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Collinear Singularities in QCD

Now, with the use of the simple identity:

/pq̄ =
1

z

(
−(/pg − /pq̄)− /k⊥ −

k2
⊥

2(1− z)(n · pq̄)
/n

)
we find:∑

|D1|2 = 2g2
sCF
−1

k2
⊥

Tr

{
Ã†q̄g→X[

(−1

z
− z)(/pg − /pq̄) +O(k2

⊥)

]
Ãq̄g→X

}
(8)

And notice that in the collinear limit (k2
⊥ going to zero), the

singular piece approximates the full amplitude square:

∑
|Aq̄g→g+X |2

k2⊥→0

≈
∑
|D1|2 (9)
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Collinear Singularities in QCD

And then we encounter an interesting relation!

∑
|Aq̄g→g+X |2

k2⊥→0

≈ 2g2
sCF
−1

k2
⊥

1 + z2

z
Tr

{
A†q̄g→X(/pg − /pq̄)Aq̄g→X

}
= 2g2

sCF

(
− 1

k2
⊥

)
1 + z2

z

∑
|Aq̄g→X |2 (10)

Now suppose that you are interested in the behavior of the
differential cross section around the collinear limit. Notice that you
can factorize the Lorentz Invariant Phase-Space of the collinear
gluon like:

d3pg
(2π)3

1

2Eg

k2⊥→0

≈ 1

16π2

dz

(1− z)
d(−k2

⊥)
dφ

2π
=

1

16π2

dz

(1− z)
d(−k2

⊥)

(11)
Where in the last step we integrated the azimuthal angle.
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Collinear Factorization in QCD

We arrive to this important collinear relation:

dσ̂q̄g→g+X
k2⊥→0

≈
dk2
⊥

k2
⊥

dz

z

αs
2π

1 + z2

1− z︸ ︷︷ ︸
P̃qq(z)

dσ̂q̄g→X (12)

I The function P̃qq(z) is associated to the so called
Altarelli-Parisi splitting function for a q to turn into a collinear
q (and a g).

I Notice that as written, P̃qq(z) has a divergence for z → 1,
which is actually associated with a soft divergence.

I This is commonly regulated in order to avoid double counting
when soft divergences are treated separately.
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Collinear Factorization in QCD

We have found a picture of the factorization of our process
q̄g → g +X when the g goes collinear with the q̄ like:

2

k2⊥→0

∝ P̃qq(z)

2

Comments

I If g goes collinear with the initial state gluon we find a similar
result. Also for any other colored parton in the final state an
associated relation is found.

I In such cases corresponding Splitting functions appear.

I Notice that integration over dk2
⊥/k

2
⊥ is divergent, so there is

need of a regularization procedure!
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Mass regularization of Collinear Divergences

Consider a collinear splitting g → q′q̄′, and suppose the quarks q′

have a mass m > 0. In such situation one finds that, up to powers
of m2, the singular transverse integral changes according to:

d|k2
⊥|

|k2
⊥|

m>0−→
d|k2
⊥|

|k2
⊥|+m2

(13)

Which then allows to integrate down to k2
⊥ = 0, returning a

log(Q2/m2) (Q2 some large scale).

I The divergence is now explicit in the log of the (small) mass.
I Although a useful regularization procedure for collinear

divergences with quark masses, we can’t do the proper with
gluon masses (as we would explicitly break gauge invariance).

I If the quark mass is of relevance for your studies (e.g. certain
b quark studies) large logarithms might be present!

I Soft divergences are not regularized by m.
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The d = 4− 2ε Trick

A way to regularize divergences in gauge theories is the procedure
called Dimensional Regularization. Preservation of gauge
invariance, regularization of both soft and collinear divergences
(and also UV!), extraction of divergences as poles in a Laurent
series, are some of the properties that makes it a standard in
perturbative calculation in gauge theories!

A simple idea...∫
d3r

1

|~r|3
→
∫ r2

r1

|~r|2d|~r| 1

|~r|3
→ log

(
r2

r1

)
r1→0−→ ∞

⇓∫
d3−2εr

1

|~r|3
→
∫ r2

r1=0
|~r|2−2εd|~r| 1

|~r|3
ε<0−→ −1

ε
r
|ε|
2
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Volume Integrals in d Dimensions

But how to get a grasp of continuous dimensions?
(Most of the time) Just don’t!

Recursive (d− 1) Solid Angle Calculation

I d = 2⇒
∫
dΩ1 =

∫
dφ = 2π, polar coordinates in IR2

I d = 3⇒
∫
dΩ2 =

∫
dφ sin(θ)dθ = 4π, spherical coord in IR3

I d = 4⇒
∫
dΩ3 =

∫
dφ sin(θ′)dθ′ sin2(θ)dθ = 2π2

I d⇒
∫
dΩd−1 =

∫
dΩd−2 sind−2(θ)dθ = 2πd/2/Γ(d/2)

I The space dimension is then a parameter in your calculation
and amplitudes become a Laurent series in ε

I By the KLN theorem, ε poles will cancel off phys. observables
I To keep integral dimensions correctly, one introduces a

dimensionful parameter µ, the regularization scale (which gets
identified with µr and µf ), d4p→ µ2εdd=4−2εp 32 / 37



Spitting Functions in Dimensional Regularization

We can then go ahead and revisit our collinear factorization in d
dimensions. We would find a similar picture, with the leading order,
d dimensional, massless, unregulated, averaged over polarizations
Splitting functions P̂ij(z) for the spitting process i→ jk:

Altarelli-Parisi Splitting Functions

I P̂qq(z) = CF

(
1+z2

1−z − (1− z)ε
)

I P̂qg(z) = CF

(
1+(1−z)2

z − (z)ε
)

I P̂gq(z) = TR

(
1− 2z(1−z)

1−ε

)
I P̂gg(z) = CA

(
z

1−z + 1−z
z + z(1− z)

)
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QCD General Factorization in Soft and Collinear Limits

Some of the most important properties for tree level QCD
amplitudes are indeed their factorizing behavior when soft and
collinear limits are taken. We are ready to enunciate these relations
(and you can prove them before the discussion session!)

I For a process like a(pa) + b(pb)→ i1(p1) + · · ·+ in(pn) we
write the QCD tree level amplitude like
A({ca, sa, pa}, {cb, sb, pb}; {c1, s1, p1}, · · · , {cn, sn, pn}) ≡
A2,n

I Construct a ket |a, b; 1, · · · , n〉2,n in color and spin space such
that the coefficient of a given element in color and spin space
|{ca, sa}, {cb, sb}; {c1, s1}, · · · , {cn, sn}〉 would be this
amplitude

I With this notation you get the relation:∑
colors,spins

|A2,n|2 = 2,n 〈a, b; 1, · · · , n|a, b; 1, · · · , n〉2,n
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Collinear Limits

Consider the final state splitting (ij)→ ij. Employing the
Sudakov parameterization:

pµi = zpµ+kµ⊥−
k2
⊥

2zp · n
nµ, pµj = (1−z)pµ−kµ⊥−

k2
⊥

2(1− z)p · n
nµ

We can then generalize our previous collinear relation to:

2,n+1 〈a, b; 1, · · · , n+ 1|a, b; 1, · · · , n+ 1〉2,n+1

k2⊥→0
−→

4πµ2εαs
pi · pj 2,n

〈
a, b; 1, · · · , n+ 1︸ ︷︷ ︸

i, j replaced by(ij)

∣∣∣P̂(ij),i(z, k⊥, ε)
∣∣∣a, b; 1, · · · , n+ 1︸ ︷︷ ︸

i, j replaced by(ij)

〉
2,n

Here P̂(ij),i(z, k⊥, ε) can in general be polarization dependent (spin
correlations!). If the splitting parton was in the initial state, we
reproduce our previous result (with the extra 1/z factor).
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Soft Limits in QCD

Soft divergences appear when a final state gluon momenta goes to
zero. Let’s introduce a dimensionless parameter λ to parameterize
the soft limit:

pµj = λqµ

Then, in the limit λ→ 0 it is found:

2,n+1 〈a, b; 1, · · · , n+ 1|a, b; 1, · · · , n+ 1〉2,n+1 −→

−8πµ2εαs
λ2

∑
i

1

pi · q
∑
k 6=i

pk · pi
(pi + pk) · q

2,n

〈
a, b; 1, · · · , n+ 1︸ ︷︷ ︸

j removed

∣∣∣Tk ·Ti

∣∣∣a, b; 1, · · · , n+ 1︸ ︷︷ ︸
j removed

〉
2,n

The last amplitude is a color correlated amplitude, in which the
operator Tk ·Ti represents an insertion of the color degrees of
freedom of a gluon between the partons k on the left and i on the
right.
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IR Limits in QCD Processes

I After two partons go collinear, square of QCD amplitudes
factorize into a lower point amplitudes times a divergent term
and a Splitting function. Spin correlations remain.

I If a final state gluon goes soft, square of QCD amplitudes
produce a divergent term times a color correlated amplitude.

I These divergences are commonly regulated using dimensional
regularization.

I In the same spirit of what we studied, multi-particle
divergences appear in QCD amplitudes. Later in this set of
lectures we will employ them to further our understanding of
gauge theory amplitudes!
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Summary

I QCD Corrections necessary for hadron collider
(precision) pheno

I Great progress over the last decade for QCD
calculations

I Subtraction techniques used by automated tools

I Factorization properties basic to our
understanding of QCD!
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