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Higgs Properties

Is the boson found The Higgs Boson?

ATLAS Preliminary Input measurements
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The Standard Model Lagrangian

A theory based on the
SU(3) x SU(2) x U(1)
gauge group and the
matter content:

Lsvy =Lyy +Lp

Where: Lyn = Loop + L, + Ly and for the fermions (no explicit mass
_ _% 23:1 GZUGa/,LV _ %Z?Zl F;qui;u/ term inClUded):
1B, B"™ Lp =Xphyy" Duipy

At this level this simple model has only three parameters

But EW gauge bosons are massive and explicit mass terms
are not gauge invariant!!




The Higgs Sector

EW SSB is achieved by adding complex scalar doublet:

Lsv =Lyy +Lp+ Ly + Ly

with L =

(D ,H)'(DHH) — (u?H'H + \(H'H)?)

Yukawa H f f terms can economically generate masses for chiral fermions!

ra} A
Ly ~ —AdQrHdAR + h.c. — my = %

No masses for neutrinos have been considered, usually regarded as BSM!



The Standard Model Parameters

In all the SM have 19 free parameters!

Determine relative strength of

Gauge couplings 3 forces

Higgs parameters 2 Higgs mass and quartic coupling

After EWSSB generated from the

Fermion masses 9 .
Yukawa couplings

Quark mixing angles and CP

CKM parameters 3+1
phase

Related to the QCD vacuum
QCD 6 1 structure and the so called Strong
CP problem
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Observables and Parameter Fits

Choose a set {O*?'} of observables measured and compute {O*()},
where 0 is a subset of SM parameters. Then minimize the x? function:

Oéxpt70§h 2] 2
X2(0) =3 W
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Observables and Parameter Fits

Choose a set {O*?'} of observables measured and compute {O*()},
where 0 is a subset of SM parameters. Then minimize the x? function:

XQ(O) _ Zz (05P 01" (0))*

aexpt
expt
G’F

expt
7

expt
My

expt
1—‘lJrl*

Tree level

(AOS*PY)2
ath — %
m%j 4:%2‘,1)02‘2/‘,
mih = 55
- = st (-3 +25%)" + 1

The theory results are expressed in terms of e, sy and v, with
gr = e/sw, gy = e/cw and v = —p2/\
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Observables and Parameter Fits

Choose a set {O*?'} of observables measured and compute {O*()},
where 0 is a subset of SM parameters. Then minimize the x? function:

ngptioqh 2] 2
2(0) = 3, (O -020))

aexpt
expt
G’F

expt
7

expt
My

expt
1—‘lJrl*

Tree level

(AOS*PY)2
ath = £
thh 4:%2‘,1)02‘2/‘,
mih = 55
Iih,- = gtr st |5 +25%)° + 4]

The theory results are expressed in terms of e, sy and v, with
gr = e/sw, gy = e/cw and v = —p2/\

With very precise measurements from «, Gr and m  we get (tree level)

predictions for my, and I'j+;- |
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The Global EW Fit

Modern fits use larger set of observables and most precise predictions!
Also, theoretical uncertainties are considered for the fit.
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The Global EW Fit

Modern fits use larger set of observables and most precise predictions!
Also, theoretical uncertainties are considered for the fit.

Freo Mz [GeV] 91.1875 £ 0.0021  yes
Parameter Input value in it Iz [GeV] 2.4952 + 0.0023 -
of,q [nb] 41.540 + 0.037 -
My [(;e\f](o) 125.14 £ 0.24 yes R[; 20.767 + 0.025 _
My [GeV] 80385 £0015 - Ar 0.0171:£0.0010 -
Ty [GeV] 2.085 £ 0.042 - A 0.1499 £0.0018 -
sin?6%(Qrp 0.2324 £ 0.0012 -
Tt [GeV] 1.27¥097 yes A, a(Qrs) 0.670 L0027 -
iy [GeV] 4201547 yes A 0.923 +0.020 N
TeV B . es
Z;:[;e(\]‘],[a )2 17;2? i (1]076 zi: Art oo )
A ° A% 0.0992 £0.0016
au(M3) - yes RY 0.1721 £0.0030
R? 0.21629 +£0.00066

Gffiter Group, arXiv:1407.3792




The Global EW Fit

Modern fits use larger set of observables and most precise predictions!
Also, theoretical uncertainties are considered for the fit.

calculations Slide from R. Kogler

All observables calculated at 2-loop level

» Mw :full EW one- and two-loop calculation - C
of fermionic and bosonic contributions
[M Awramik et al., PRD 69, 053006 (2004), PRL 89, 241801 (2002)] “fermionic” "
+ 4-loop QCD correction [Chetyrkin et al., PRL 97, 102003 (2006)]

€ .y Ve
bosonic

» sin20'ess : same order as Mw, calculations for leptons and all quark flavours
[M Awramik et al, PRL 93,201805 (2004), JHEP 1,048 (2006), Nucl. Phys. B313, 174 (2009)]

» partial widths I's: fermionic corrections in two-loop for
all flavours (includes predictions for 6%ad) [A. Freicas, JHEPO4, 070 (2014)]

» Radiator functions: QCD corrections at N3LO
[Baikov et al,, PRL 108, 222003 (2012)]

» 'w : only one-loop EW corrections available, negligible impact on fit
[Cho etal, JHEP 111,068 (2011)]

» all calculations: one- and two-loop QCD corrections and leading terms
of higher order corrections




Global Fits of SM Parameters

Hm Global EW fit
-8 Measurement
- . " L)
» Comparison of results in M, e
terms of corresponding Fu ——
. M, -
uncertainty r g
5 o o Op g -
> Indirect determination R  oam
removes direct A%
. A(LEP)
measurement constrain ASLD) -
. . 2
» Good description of all ™" %%
observables A,
at
» Largest deviation A%
observed in bottom o !
forward-backward m, =
a, (M) s
asymmetry 20° (M)
R I A e e
Gffiter arXiv:1407.3792 s 2 40 1 2 3
Opaioc ~O/ Oy

The X2, obtained in the fit is 18.2 for a total of 14 d.o.f.



Full Power of SM at Hadron Colliders

10°

10

10°

102

=0 ATLAS  Preliminary

Run1 +s=7,8TeV

01<pr<2Tev
o

o LHC pp V5=7TeV LHC pp V5 =8 TeV
mmm  Theory Theory
’-’y&;' - Observed 45-497* & Observed 203

Z O tamWW 77 We H WZ zZ Wy W Zy dw izt Zii Wy wwits-un

il ol il o | ol vl ol o ol | ol fovo el o | ot | i sl fdocial el totl
somiept

Summary plot of
SM cross sections

Impressive
agreement between
theory and
experiment
Smallest cross
section from
WEWE + 2 jets
Similar results from
CMS
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Standard Model Production Cross Section Measurements  siws: warch 2015
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Standard Model Production Cross Section Measurements  siws: warch 2015
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Very Precise: NLO QCD Recent Progress

By now we have highly automated NLO QCD tools for up to 2 — 4 processes!
(Madgraph, OpenLoops, Gosam, ...)
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Very Precise: NLO QCD Recent Progress

By now we have highly automated NLO QCD tools for up to 2 — 4 processes!
(Madgraph, OpenLoops, Gosam, ...)

2—5
W/Z 4-Jet Berger, Bern, Dixon, FFC, Forde,
/ + . 2010-2011 Hoeche, Ita, Kosower, Maitre
Production (BlackHat)
4-Jet Production - 2013 Badger, Biedermann, Guffanti,
vy + 3 Jets Uwer, Yundin (NJet)

Off—shell tfH 2015 Denner, Feger
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Very Precise: NLO QCD Recent Progress

By now we have highly automated NLO QCD tools for up to 2 — 4 processes!
(Madgraph, OpenLoops, Gosam, ...)

2—5
W/Z 4-Jet Berger, Bern, Dixon, FFC, Forde,
/ + . ¢ 2010-2011 Hoeche, Ita, Kosower, Maitre
Production (BlackHat)
4-Jet Production - 2013 Badger, Biedermann, Guffanti,
vy + 3 Jets Uwer, Yundin (NJet)
Off—shell tfH 2015 Denner, Feger
2—6
W + 5-Jet Bern, Dixon, FFC, Hoeche, Ita,

. 2013 Kosower, Ozeren, Maitre
Production (BlackHat)
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Very Precise: (N)NNLO QCD Recent Progress

Higgs production N3LO QCD Anastasiou, Duhr, Dulat, Furlan,
Herzog, Gehrmann, Lazopoulos,
(ggH) (2015) Mistlberger
Gehrmann, Grazzini, Kallweit,
W+W_ NNZO]-QCD Maierhfer, von Manteuffel,
( 0 4) Pozzorini, Rathlev, Tancreedi
W+ Jet NN(Ié(glg)CD Boughezal, Focke, Liu, Petriello
NNLO QCD Boughezal, Caola, Melnikov,
H+1 Jet (2015) EetnelloNschilze
NNLO QCD Gehrmann-De Ridder, Gehrmann,
Z+1 Jet (2015) Glover, Huss, Morgan

And much more!
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This Lecture

INTRODUCTION

The SM Global Fit, LHC Observables, Recent progress in pQCD

FACTORIZATION FOR HADRONIC XS's

PDF/Hard XS/Fragmentation, Perturbations, Interference Diags, §o(N)NLO

QCD TREE LEVEL FACTORIZATION

Collinear and Soft Limits, Dim Reg, General Expressions



Following Lectures

2) SUBTRACTION METHODS

NLO algorithms, Tools, NNLO state of the art — (de Florian)

3) DISSECTING HIGHER ORDERS

KLN Theorem, Scales, Numerical Stabilities — (Kosower)

4) HANDS ON LAB SESSION

Computing observables at NLO in automated frameworks!



FACTORIZATION FOR HADRONIC XS's

PDF/Hard XS/Fragmentation, Perturbations, Interference Diags, 5o (N)NLO
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Partonic Cross Section
in Perturbation Theory

2
G(as,nup, np) = las(up)l™ [3(0) + ;’5(1)(111-‘41:?) + (“4> 7 (up, pp) + - }
0y 27

LO NLO NNLO

Problem: Leading-order, tree-level predictions only qualitative

due to poor convergence w . Do uef oy
of expansionin  as(p1) NNLO = Trki ¢ tomaiis
— B — NNLO, MRST 04
tti =up = 5 of 3
(setting R MF ) 2 NLO (2007)
Example: Zproduction at Tevatron 3 A
Distribution in rapidity ¥ y o \
1 (E+p: 3 Lo L
Y = ZIn 3 “ \
2 E—p. D \
do h 0 X
—_ as Ny =
ay ° ) 1 LT B I B T
still ~50% corrections, LO > NLO [Anastasiou, Dixon, Melnikov, Petriello hep-ph/0312266]
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QCD TREE LEVEL FACTORIZATION

Collinear and Soft Limits, Dim Reg, General Expressions
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Producing X via a qg channel

Suppose you are studying
some production channels X
of your preferred signal X

Start for computing the born level cross section, and then ask

‘ how can | get extra radiation on on top of X 7

Start with adding a gluon!

» O(ay) corrections to

your signal X4g
» Part of the real NLO

corrections
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Extra gluon emission gg — X + ¢

Pay attention to the diagrams in which the extra gluon couples to
the external ¢ line:

+ :ZDi_'_'..
3

Other diagrams with ¢
not coupling to g line

AégﬁgﬂrX =

In the square of the amplitude we then find:

(Aggsgrx|? =Y 1Dif* + 3 DID; + - (1)
i i#j
Notice that the propagator leading to the
vertex that couples g and ¢ in diagram D; 1
leads to a term like (we set mg = 0 for now!): (—pg + Py +pX§.)2

And so in Eq. 1 we find a potential divergent terms of the form
1/<2ptj : pg>2!
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Exploring Singularities of QCD Tree Amplitudes

These (most) singular terms

come in | Agg—sg+x]|? from So let's

the square of the set of explore in
diagrams (let's call them detail D;
Dy): contributions!

First:
a Zﬁg B W‘j A o
Dy = gst U(pfi)’YuiQ Agg—x € (2)
(g — Pq)

In the matrix element square, we need to deal with the sum over
polarizations of the g. We introduce a light-like vector n* with
n-pg # 0 and write:

Mnu + pYnH
Z e’ = —g" + Polv TPl (3)

n
polarizations Pg



Exploring Singularities of QCD Tree Amplitudes

And then, in a sum over initial and final states degrees of freedom,
we find:

YD = gCr

Tr {flgﬁ ¥ M {%pqw} m&ﬁx }
(_guu n pgn;;j ZZ”“)
= giCp
Tr{fh];g—w (Z; . __fq)z [_VH%VM + ﬂpqp:; Tpljg’?q%]

Employing identities for Dirac's v matrices (like {v,,7} = 29,
Yy, = —27v", etc) we obtain the compact expresion:
23 /37



Exploring Singularities of QCD Tree Amplitudes

g2Cp

> Dy

2 -
(2pg - pg)*(n - pg) Tr{AQQHX(]pg — 7y
(

B, + (0 2] (8, — 9 A |
(2pq 'Pj)(n ) Tr{“i;‘!—*X

[(n PP, + n-(pg—pa)(p, —p,) + (pa- pg)ﬁ} ftqgﬁx}
(5)

= g:Cp

Here it comes the crucial step!

If we explore the regions were our diagrams diverge (i.e. were
(2pg - pg) — 0), this occurs either because ¢ is soft or because g
turns collinear to ¢!
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Collinear Singularities in QCD

Characterize the collinear region with the help of the Sudakov
parameterization (k| is a space-like vector L to both py and pg):

pg = (1= 2)pg + Bn** — k| (6)

where picking 8 = —k?% /(2(1 — 2)(n - pz)) ensures P§ =0.

We are going to let k| go to zero, and with it have a measure of
how collinear is our configuration! We get:

2 _ 2 2 it
2P = ey T e

2pg - pg)
(- pg) _ (pg - 1)z _ _ kf_ A
G2 - B g e

(7)
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Collinear Singularities in QCD

Now, with the use of the simple identity:

at

t= 2 (-0 k- )

we find:
Z‘Dl‘z = CFk_T Tr{‘Aqg—>X
=2, -5+ 000 [ Aagox b @)

And notice that in the collinear limit (k% going to zero), the
singular piece approximates the full amplitude square:

ki—>0
D Agggixl® = Y |DiP 9)

26 /37



Collinear Singularities in QCD

And then we encounter an interesting relation!

o Moo o —1142
Z|Aqg%g+X| ~ 2QSCF% > Tr (,gﬁx(]ﬁ P) Gg—X

1\ 1422
= 2g3Cr <_k2> TZ [Agg—x|? (10)
1

Now suppose that you are interested in the behavior of the
differential cross section around the collinear limit. Notice that you
can factorize the Lorentz Invariant Phase-Space of the collinear

gluon like:

d*pg 1 Koo 1 dz (— z)dﬁ_ 1 dz (k)
(2m)32E, ~ 1672 (1 - 2) Lo = 1672 (1 - 2) =

(11)

Where in the last step we integrated the azimuthal angle.



Collinear Factorization in QCD

We arrive to this important collinear relation:
rprgrx mo GEldzos 142
W99+ ki z2m 1—2z
——

qu (2)

dogg—x (12)

» The function P,,(2) is associated to the so called
Altarelli-Parisi splitting function for a ¢ to turn into a collinear
q (and a g).

» Notice that as written, P,,(2) has a divergence for z — 1,
which is actually associated with a soft divergence.

» This is commonly regulated in order to avoid double counting
when soft divergences are treated separately.
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Collinear Factorization in QCD

We have found a picture of the factorization of our process
d9 — g + X when the g goes collinear with the ¢ like:

2 2

k2 50 -
L qu(z)

Comments

» If g goes collinear with the initial state gluon we find a similar
result. Also for any other colored parton in the final state an
associated relation is found.

» In such cases corresponding Splitting functions appear.

» Notice that integration over dk? /k? is divergent, so there is
need of a regularization procedure!
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Mass regularization of Collinear Divergences

Consider a collinear splitting ¢ — ¢'q’, and suppose the quarks ¢’

have a mass m > 0. In such situation one finds that, up to powers

of m?, the singular transverse integral changes according to:
dlk3] m>o  dk7]

™
k%] k2| +m?

(13)

Which then allows to integrate down to k2 = 0, returning a
log(Q?/m?) (Q* some large scale).

v

The divergence is now explicit in the log of the (small) mass.

v

Although a useful regularization procedure for collinear
divergences with quark masses, we can't do the proper with
gluon masses (as we would explicitly break gauge invariance).
If the quark mass is of relevance for your studies (e.g. certain
b quark studies) large logarithms might be present!

v

v

Soft divergences are not regularized by m.
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The d =4 — 2¢ Trick

A way to regularize divergences in gauge theories is the procedure
called Dimensional Regularization. Preservation of gauge
invariance, regularization of both soft and collinear divergences
(and also UV!), extraction of divergences as poles in a Laurent
series, are some of the properties that makes it a standard in
perturbative calculation in gauge theories!

A simple idea...
dsr%/ 7°d|T —lo <r2>rz>ooo
[ s s
D

1 "2 e<q 1 g
e el I =
/ P Jr=o 713 e’
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Volume Integrals in d Dimensions

But how to get a grasp of continuous dimensions?
(Most of the time) Just don't!

Recursive (d — 1) Solid Angle Calculation

» d=2= [dQ = [d¢$ = 2n, polar coordinates in IR?

» d=3= [dQ = [d¢sin(6)df = 4, spherical coord in IR3
> d=4= [dQ = [ dsin(@)dd’ sin®(8)df = 2r°

> d= [dQq_1 = [dQ_osin?%(0)d0 = 27%2/T(d/2)

» The space dimension is then a parameter in your calculation
and amplitudes become a Laurent series in €

» By the KLN theorem, € poles will cancel off phys. observables

» To keep integral dimensions correctly, one introduces a
dimensionful parameter p, the regularization scale (which gets
identified with p1, and pf), d'p — p?<d?=*">p
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Spitting Functions in Dimensional Regularization

We can then go ahead and revisit our collinear factorization in d
dimensions. We would find a similar picture, with the leading order,
d dimensional, massless, unregulated, averaged over polarizations
Splitting functions f’ij(z) for the spitting process ¢ — jk:

Altarelli-Parisi Splitting Functions

> qu(z) = Or (11+Zj —(1- z)e)

> (Z) C,F(1+(1 z)? E)

> Py(2) = Th (1 21 Z)

> Py(z) = cA(l e (1—2))
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QCD General Factorization in Soft and Collinear Limits

Some of the most important properties for tree level QCD
amplitudes are indeed their factorizing behavior when soft and
collinear limits are taken. We are ready to enunciate these relations
(and you can prove them before the discussion session!)
» For a process like a(py) + b(py) — i1(p1) + -+ + in(pn) we
write the QCD tree level amplitude like
A({cas SasPats {cb, sb, Do} {c1, s1,p1}, - {ens sn, P }) =
-A2,n
» Construct a ket |a,b; 1, - 7”>2,n in color and spin space such
that the coefficient of a given element in color and spin space

{ca, sa}t, {cv,sv}; {c1,s1}, -+ s {cn, sn}) would be this
amplitude

» With this notation you get the relation:

a,b;l,---,n),

Z |./42,n|2 =on(a,b;l,---,n

colors,spins

7
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Collinear Limits

Consider the final state splitting (ij) — ij. Employing the
Sudakov parameterization:

]{72
nt, pif = (1=2)p! =k - L

k.2
Fo— ot - L T
P = J L 2(1—-2)p-n

Pz
- 2zp-n

We can then generalize our previous collinear relation to:

k% —0
2n+1 <CL, ba 17 N+ 1’0’7 b7 17 Y (Iay 1>2,n+1

Ao A
— <avb; 1,,7’L+1 P(ij),i(z7kL76)a)b; 1,,7’L+1 >
pi-pj 2n ~— —— /2n
i, j replaced by(ij) i, j replaced by(ij)
Here Is(ij)vi(z,kbe) can in general be polarization dependent (spin
correlations!). If the splitting parton was in the initial state, we
reproduce our previous result (with the extra 1/z factor).
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Soft Limits in QCD

Soft divergences appear when a final state gluon momenta goes to
zero. Let's introduce a dimensionless parameter A to parameterize
the soft limit:

P = Ag"

Then, in the limit A — 0 it is found:
om+1{a,b;1,--- ;n+1la,b;1,--- ,n+ 1)2777/+1 —

87ru Qg Pk - Pi
Zp qz p1+pk

<a,b;1,--- ,n+1‘Tk-Ti a,b;1,--- ,n+1>
2,n —_—— ~————/2n
J removed j removed

The last amplitude is a color correlated amplitude, in which the
operator T, - T; represents an insertion of the color degrees of
freedom of a gluon between the partons k on the left and 7 on the
right.
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IR Limits in QCD Processes

» After two partons go collinear, square of QCD amplitudes
factorize into a lower point amplitudes times a divergent term
and a Splitting function. Spin correlations remain.

» If a final state gluon goes soft, square of QCD amplitudes
produce a divergent term times a color correlated amplitude.

» These divergences are commonly regulated using dimensional
regularization.

> In the same spirit of what we studied, multi-particle
divergences appear in QCD amplitudes. Later in this set of
lectures we will employ them to further our understanding of
gauge theory amplitudes!



Summary

» QCD Corrections necessary for hadron collider
(precision) pheno

» Great progress over the last decade for QCD
calculations

» Subtraction techniques used by automated tools

» Factorization properties basic to our
understanding of QCD!
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