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Physics understanding begins with realizing which degrees-of-freedom are decisive for the
phenomena of interest. With this clarification the simplest few-body systems are discussed
in general. The concept of Universality is introduced and illustrated by practical physics
examples. The scaling properties of dimensionless radius-energy relations are discussed for
two and three-body systems. The qualitative difference for N -body systems with 4 ≤ N is
then described and demonstrated. Different universal structures emerge at various thresholds
for binding. This gives rise to halos, borromean and brunnian systems, and the Efimov effect.
In general this leads to definition of the broad and very active field of physics, called Efimov
Physics.
Coordinate space formalism is sketched by use of the hyperspherical formulation for three-

body systems, and illustartive examples are shown. Specific few-body astrophysics processes
are discussed in some details.
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I. DEGREES OF FREEDOM

Nuclear physics is a subfield of physics which in turn is a science discipline. Nuclear physics is usually understood
as the structure and reactions of entities consisting of neutrons and protons. A description includes the interactions
between the basic constituents. The field is often extended to include hadron physics, that is the structure and
reactions of strongly interacting particles, preferentially neutrons, protons, π, ρ, and ω-mesons.

The fundamental question in scientific descriptions of any specific system is the choice of degrees of freedom. For
example (1) stars are the ingredients of galaxies, (2) solar systems are made of sun, planets, moons and dust, (3) the
earth is made of water, solid and interior hot core, (4) animals are made of tissues, bones and fluids, (5) plants are
made of fibers, (6) bones, tissues, fibers, etc are made of celles, (7) celles are made of bio-molecules, (8) molecules are
made of atoms, (9) atoms are made of electrons and the nucleus, (10) the nucleus is made of neutrons and protons
and perhaps occasional pions, (11) hadrons are made of quarks, (12) stop so far.
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FIG. 1. The hierarchy of degrees of freedom illustrated by the three-body system He + H + e− (He and H-atoms and an
electron) and subdivisions first into an α-particle and nucleons and eventually into quarks.

This list is deliberately far from being exhaustive for several reasons. First many other groups could be mentioned.
Second many distinctions and subdivisons could be made. Third mixing and interaction could in addition be made,
astro-physics, geo-physics, bio-phyiscs, etc. Relevant for nuclear physics is the families of leptons with electrons,
muons, tau-particles and corresponding neutrionos. The connection is that neutrons spontaneously decay into protons,
elections, and anti-neutrinos. Within nuclei also protons can decay into neutrons, positrons, and neutrinos. These
processes carry detailed and accurate information without affecting nuclear structures. In Fig.1 we illustrate with a
proton, an electron, an α-particle (the nucleus of two neutrons and two protons in the He-atom).
This elaborate introduction should make it abundantly clear that practical investigations of specified systems first

must choose the ingredients of imminent importance. To study one virus, it is meaningless to start with quarks and
leptons, then build nuclei, atoms, molecules, bio-molecules, etc., until the level of a virus is reached. One can to
an extremely good approximation assume that the nucleus within the atom is completely inert provided it is stable.
Therefore first choose the all-decisive degrees of freedom and understand the systems on this level.
For the structure of nuclei neutrons and protons are the building blocks, and we shall therefore concentraten on

combinations of these particles. This is far from excluding analogies with other (preferentially) physics systems.
Similarities (and differences) with structures or techniques in other subfields of physics and chemistry are very much
present and illuminating. Nuclei are systems of 2 and about 300 particles. This means from detailed few-body
(2, 3, 4, 5) to many-body structures, from unavoidable quantum mechanics to classical macroscopic physics, from
mean-field average to strongly correlated structures, from individual to collective motion, from very short- to infinte
range of the interactions, from strongly bound to weakly or unstable continuum structures with finite lifetime. Thus
nuclei are challenging and rewarding to study. Furthemore, they are extremely useful in series of applications,
producing energy, dating of small samples, medical use for diagnoses and for treatments, microscopic tracer elements
in environmental studies, characterization of materials,
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II. FEW-BODY SYSTEMS

The concept of contributing degrees of freedom suggests that an N -body system sometimes can take advantage
of arranging its structure in clusters. This can lead to a different hierarchy where relative cluster-cluster degrees of
freedom are more important than the intrinsic individual cluster degrees of freedom. The prominent nuclear example
is the alpha-particle which is tightly bound with a small radius. It is then suggestive to use it as the building block
combined with a few additional neutrons and protons. In general, this structure does not give a very good description
for intermediate and heavy nuclei, although reminiscences sometimes can be observed in scattering experiments. The
reason can be found by comparing the distance between nucleons within one and between different alpha-particles.
As these distances are very similar the alpha-particle cannot exist as an entity in nuclei. However, several light nuclei
exhibit alpha-cluster structure combined with additional nucleons.

A. Halo nuclei

We know from the deuteron two-body studies that weak binding and short-range interactions lead to the mean
square radius being inversely proportional to the binding energy for s-waves. In general we have

〈rn〉
(

8µB

~2

)n/2

→ n! , (1)

where µ is the reduce mass and B the binding energy. For a finite angular momentum quantum number, l, the
non-normalized nth moment diverges as (µB)(2l−n−1)/2 for n ≥ 2l − 1 and converges for n ≤ 2l − 1. The divergence
is logarithmic when n = 2l − 1. Thus the probability distribution (n = 0) diverges only when l ≥ 1/2, that is for
s-waves. The seond moment (the mean square radius) diverges only when l ≥ 3/2, that is for s and p-waves.
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FIG. 2. Scaling plot for two-body halos. The ratio of the halo and the potential square radii as function of the scaled separation
energy. The dashed line are pure s-wave Yukawa wave function. The solid and dash-dotted lines are for square-well and r−2-
potentials, respectively. The thin horizontal lines indicate where 50% of the wave function is outside the potential. Filled and
open symbols are experimental data or theoretical calculations.

The universal character of the two-body radius-energy relation in eq.(1) is illustrated in Fig.2 for the second moment.
We also show results for p and d-waves. The divergence and covergence for vanishing binding energy is seen for s, p
and d-waves, respectively. We shall return to the realistic systems shown in the figure. They follow roughly the simple
scaling rules where deviations can arise from the strong reduction to only two-body degrees of freedom.
We define halos as spatially extended objects measured in terms of the natural length scale of the system, which

could be the range of the potential or its effective range. Then two-body halos can only appear in s and p-waves,
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provided the binding energy is sufficiently small and the size is measured by the root mean square radius. Higher
moments may diverge for vanishing binding energy but then only a smaller fraction, parts of the tail, of the wave
function would be located at large distance.
Let us now extend from two to a larger number of clusters, Nc, each of them made of a number of nucleons, in total

A nucleons. We perform a transformation from the initial particle coordinates, ~ri, to one overall length coordinate ρ
and d(A− 1)− 1 dimensionless angular coordinates. The factor d is from the dimension of space (usually 1, 2, 3), the
subtraction of d is removal of the center of mass degrees of freedom, and subtracting 1 is the coordinate ρ defined by

mMρ2 ≡
∑

i<k

mimk(~ri − ~rk)
2 ,with M =

∑

i

mi , (2)

where m is an arbitrary normalization mass. The kinetic energy operator, T , expressed in the new coordinates then
becomes

T =
~
2

2m

(

− ∂2

∂ρ2
+

l∗(l∗ + 1)

ρ2
+

1

ρ2
D(angles)

)

, (3)

where l∗ = (dA − d − 3)/2 and D(angles) is a function containing first and second derivatives with respect to the
angles. Then l∗ is a generalized angular momentum which only is conswerved for two particles in spherical potentials.
For d = 3 and d = 2 we get l∗ = 3(A− 2)/2 and l∗ = A− 5/2, respectively.
If the wave function is isotropic, that is independent of angular directions, then the function D acting on the wave

function gives zero. The Schrödinger equation is reduced to contain only the coordinate, ρ, with the effective angular
momentum, l∗, and the corresponding centrifugal barrier. We know from two-body structures that spatially extended
wave functions only are possible for s and p waves and more mathematically angualr momentum qunatum numbers
less than or equal to 3/2. Thus halos can only appear when l∗ ≤ 3/2 which implies that the particle number A ≤ 3.
Therefore halos of more than three clusters are not allowed for isotropic wave functions.
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FIG. 3. Scaling plot for three-body halos as in Fig. 2. The dashed line is the Efimov curve for ν = 0. Triangles and stars are
for masses corresponding to 11Li (9Li+n+n). Squares and circles are for 3

ΛH (Λ+n+p). The realistic points are indicated by a
large closed triangle and square. Plus signs and crosses refer to three different particles with two fixed scattering lengths while
the third is varied. The arrows indicate transitions between Borromean, tango and bound state regions.

The smaller spatial extension of three-body systems is seen in Fig.3. The distinct features are the three curves
appearing as the binding energy decreases towards zero. The lowest curve is related to a restricted variational space
where no correlations are allowed. The second lowest curve is obtained with all correlations allowed but for a number
of different three-body systems and interactions. The highest lying curve emerges in the limit where the Efimov effect
appears, that is when the effective potential has the form, −(ν2 + 1/4)/ρ2, where ν2 is a positive number.
The spike in the upper curve at larger binding energy reflects a transition between two- and three-body structures.

The three-body structure is on the way to be reduced to a two-body structure where one particle itself has a tightly
bound two-body structure compared to the last particle. A survey of possibilities is shown in Fig.4 for three-body
systems with different constituents and interactions. We see the regions of unbound, several types of two-body bound,
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FIG. 4. Regions of stability for three-body systems as function of the inverse s-wave two-body scattering lengths aik. The
point, aik = ∞, is the threshold for two-body binding. The upper part assumes a13 = ∞, no interaction between particles 1
and 3, and the lower part assumes a13 = a23.

and three-bound structures. In general three particles become bound for a smaller attraction than that leading to
binding of a two-body subsystem.

FIG. 5. Mean square radius in units of b2 as function of the binding energy in corresponding dimensionless units for a gaussian
potential of range b for 4, 5, 6 identical bosons both with complete Hilbert space and for only two-body correlated wavefunctions.
Ground state and first excited state are shown for sufficiently large trap length.

Halos of more than three clusters require a different centrifugal barrier, that contributions from the D-operators.
This in turn means higher partial waves between some particles or groups of particles, and therefore correlations or
equivalently, at least tendencies towards, clusterization. If the correlations become too strong we have effectively
reduced the number of clusters. This reduced number of cluster would correspond to a more isotropic wave function,
and the argument can be repeated to further reduce the number of clusters. The conclusion is that the fewer clusters
the easier it is to obtain large spatial extension. Halos are preferentially made of two or three clusters.
Still more than three particles may form a spatially extended structure provided the attraction is sufficiently weak.

For bosons we illustrate this feature in Fig.5 where the four- and five-body bindings are exceedingly small. Unlike the
divergences for two and three particles we now find radii converging to a finite value, a constant. This can attributed
to the centrifugal barrier for isotropic systems. The remarkable property is that the size at vanishing binding easily
can be much larger than the range of the two-body attraction. The average distance between the particles is then
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larger the range their mutual interaction. Thay are almost exclusively in regions of zero interaction which therefore
only has the role of binding but any detail is unimportant. The structures are universdal or model independent.

B. Universal properties

Halos are not only spatially extended objects, they are examples of structures with universal properties. The
meaning of universality is that a large part of the wavefunction can be described without reference to any specific
property of the responsible interaction. The structure is model independent which could mean depending only on
scattering length where the same value can be reached for completely different potentials.

The first example is then weakly bound two-body structures for short-range potentials. Three particles are from
the above discussion seen to have root mean square radii diverging logarithmically with vanishing binding energy.
They can then be halos and described as universal structures. When the strength of an attractive pairwise interaction
between identical bosons in a three-body system is increased from zero, binding is achieved at some point before the
pairs become bound. Thus the three-body system can be bound even when none of the two-body subsystems are
bound. Such systems are called Borromean systems, and expected to be universal for sufficiently weak binding energy,
see. Figs.4 and 3.

FIG. 6. Three-body energy levels measured as function of the two-body energy. On the right (a > 0) is the weakly bound dimer
and on the left (a < 0) is the virtual dimer energy. The bottom part shows the root-mean square hyper radii. The zero-range
predictions (red curves) of the crossing of the Efimov states with the atom-dimer threshold are indicated with arrows.

Another type of universality was discovered as a mathematical anomaly for three bosons when each pair approach
binding. Altough the pairs are unbound, the three-body system is already bound, but the number of bound states
approach infinity as the pairs approach binding. The radii and binding energies of these infinitely many bound states
become exponentially large and small, respectively, that is

Bn

Bn+1
=

< r2 >n+1

< r >n
= exp(2π/ν) , (4)

where ν is a real number between 0 and ∞. If existing, these states would be extremely large and qualified for being
denoted as giant halos. They are naturally called Efimov states after the physicist who discovered this effect in 1970.
These states were searched for in nuclei and molecules for a number of years. Now they are studied in controlled
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atomic physics where the effective interaction can be varied over a large range of values, including both sides of
pairwise binding and no binding.
The connection between Borromean and Efimov states can be seen in Fig.6 which exhibits the three-body energies

as function of the two-body interaction for three idnetical bosons. The cental vertical line distinguishes between
unbound (left) and bound (right) two-body systems. Therefore Borromean systems are to the left where the curves
show three-body bound state energies. The ground state energy is the lowest curve which approach zero at the point
where the attraction is too small to bind even the three-body system. Larger attraction leads to larger binding (lower
energy) and more bound state at discrete irregular intervals. Approaching two-body binding increase the number of
bound three-body states which becomes infinitely large precisely when the two-body binding energy is zero. This is
the Efimov effect which in its clean form occures at that point. All radii and binding energies of these states, except
the lowest, are related by the scaling relations in eq.(4).
Stronger attraction produce the two-body binding shown as the decreasing curve separating discrete three-nbody

states from the continuum of (bound)dimer-particle states. The peculiar feature is now that the three-body energies
decrease slower than the two-body threshold. All energies, except the lowest, therfore merge with the continuum. This
simply means that these three-body states have a higher energy than a dimer plus an unbound particle of perhaps
zero relative kinetic energy. This implies that the number of bound, stable three-body states decrease from infinity
to a finite number.
If a name should be attached to universal structures in physics, it would be natural to choose Vitaly Efimov.

Accordingly a new subfield concerned with universality could be named Efimov Physics. The defining keyword is
model independence, or universality and scale invariance. Model independence is already described. We can explicitly
define “Efimov physics” as the quantum physics where Universality and Scale Invariance apply. By Universality we
mean independence of the particular shape of the interparticle potential, or equivalently that the results are describable
by use of any interparticle potential where one or a few integral properties are the same. By Scale Invariance we
mean independence of the length scale of the system, that is the same description applies on fermi, Ångström , and
any other length scale of the system.
These definitions are often confusingly mixed up with the Efimov effect itself, that is by focusing on the Efimov

states which differ from each other by a scale factor. The same description applies for each of the states that appear
in discrete intervals separated by the scale factor. This is consequently called discrete scale invariance, although the
states differ at least by the number of radial nodes. Universality is instead referred to mean that the same theory
describes Efimov states at different length scales, and possibly also at different energies in the same system.
The fundamental reason for occurrence of model independent structures is simply that the wavefunction of such a

state is located in a classical forbidden region where the potential is negligibly small and the structure consequently
determined by the boundary conditions attached to solutions for the free hamiltonian. Then details of the potential
are unimportant. For two particles the classical allowed regions are given by the potential being larger than the
energy. Already for three particles this definition is ambiguous since the energy can be shared between the particles
in uneven, and in quantum mechanics ill-defined, proportions.

C. Halo and cluster nuclei

A number of nuclear examples exist as two-, three-, and perhaps four- and five-body halo states. Also Borromean
and the generalization to Brunnian structure can be found in nuclei. The definition of Brunnian systems of N particles
is that no subsystem (fewer particles) is bound. Borromean structure is then a subgroup for N = 3.
Two-body halos are weakly bound and spatially extended two-body states. Dripline nuclei where the ground state

barely is bound then suggest itself. Furthermore, excited states of more stable nuclei for very small separation energies
of nucleons or clusters may also form halo states. The tail of the wavefunction is exp(−r/r0) where r0 is related to
the binding energy. The extend beyond the nuclear radius is has at least to be larger than about 5 fm corresponding
to a binding of less than 1 MeV.
We know already the deuteron which can be said to be both a neutron and a proton halo. The two bound states of

11Be (10Be + n) are pronounced neutron halo states with angular momenta l = 0, 1 and separation energies 0.50 MeV
and 0.32MeV, respectively. The ground state of 8B (7Be + p) is a proton halo state with l = 1 and separation
energy 0.138 MeV. A cluster halo state is 8Be (4He + 4He) where the binding energy of 0.092 MeV also is very small.
An exotic system is the hypertriton, 3

ΛH (2H + Λ), with deuteron surrounded by a Λ-particle which has non-zero
strangeness, angular momentum zero and separation energy 0.14 MeV. A number of other two-body halos states are
established or suggested, see Fig.2. In all cases the structure is for at least 50% of the probability as a two-body
system like the deuteron.
Three-body halos are most efficiently Borromean systems. Otherwise one bound two-body subsystem would easily

lead to either too large binding to provide spatial extension or to reduction to an effective two-body system of the
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initial three-body structure. The mean square radius increases logarithmically with vanishing separation energy, which
implies that the spatial extension easily is more confined than two-body s and p-wave halo states. These three-body
halos then seem to be less abundant and less pronounced than two-body halos.
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FIG. 7. Scaling plot for three-body halos. The ratio of the halo and effective potential square radii is plotted versus the scaled
separation energy. The solid lines are theoretical, scaled curves for different hypermomentum K. The dashed lines show the
Efimov states for a symmetric system, ν = 1.01251, and for minimum attraction, ν = 0. Filled symbols are experimental data
and open symbols are theoretical calculations.

The three-body halos are more intriguing and the first observation had tremendous impact. The reaction probability
is a measure of the size of the colliding systems where the lithium isotopes (Z = 3) were combined with an ordinary
well described nucleus. The size of 11Li turned out to be much larger than its neighbours and the prediction of the
A1/3 rule. The explanation is that 11Li (9Li + n +n) is a Borromean system with very small two-neutron separation
energy and consequently very large spatial extension. Another well-studied two-neutron Borromean halo system is
6He (4He + n +n). Other suggested Borromean halo systems are 20C (18C + n +n), 22C (20C + n +n), 19B (17B +
n +n), 9Be (4He + 4He + n), 17Ne (15O + p + p). We show in Fig.7 a number of these systems in the dimensionless
scaling plot of radius versus energy.
Some of the effective two-body halos like 8B and the hypertriton can also be viewed as three-body halos, that is

8B(3He +4He +p) and 3
ΛH (p + n + Λ). This again reflects the importance of choice of degrees of freedom as for 8He

(6He + n + n) and 14Be (12Be + n + n), which also could be viewed as higher order halo systems, that is 8He (4He
+ 4n), 14Be (10Be + 4n). Brunnian systems would usually have much smaller spatial extension, as 10Be (4He + 4He
+ n + n), 10C (4He + 4He + p + p).
For light nuclei the combinations are most obvious for alpha-particles combined with neutrons. We already men-

tioned 8Be and addition of one more alpha-particle leads to 12C which is rather deeply bound. However, the second
excited state is the most prominent cluster example, that is the so-called Hoyle state, 12C (4He + 4He + 4He), consist-
ing of three alpha-particles with a negative binding energy of −0.31 MeV. Its importance can hardly be exaggerated
as a key reaction, the triple alpha process, is stepping stone to synthesis of the heavier elements in our universe. Its
existence was predicted by Hoyle before measurements as necessary to understand the abundance of elements in the
universe.
These examples emphasize that light nuclei have very individual properties. They change character by addition

of one or very few extra nucleons. This of course makes them difficult to understand and describe but for the same
reason also more fascinating. The implication is unfortunately that each of them only can be treated superficially as
in the present survey lecture. Complications increase when excited states can be of halo or cluster structure while
the ground state has a completely different structure. Since excited states are crucial to a number of reactions, it is
often necessary to study the detailed structure of the states of the spectra of each nucleus.
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III. THE THREE-BODY PROBLEM

We have to extend our investigations to three particles. For applications this has to be both to ground, bound
excited, as well as continuum states at energies higher than the threshold where all three particles are separated.

A. Formulation

The description has to start with the hamiltonian entering the three-body Schrödinger equation, i.e.

H = T +
∑

i<k

Vik(|~ri − ~rk|) , (5)

where Vik is the interaction between particles i and k, and T is the relative kinetic energy operator for the three
particles. To illustrate the key problems and some of the features we use the adiabatic hyperspherical expansion
method. First we define relative coordinates (Jacobi coordinates), i.e.

~xik = (~ri − ~rk)
√

mimk/(m(mi +mk)) , ~yik = (~rj − (~ri + ~rk)/2)
√

mj(mi +mk)/(m(mi +mk +mj)) , (6)

where the mass factors are chosen such that ρ2 = x2
ik + y2ik. The hyperradius, ρ, is defined in eq.(2) and inde-

pendent of choice of initial particles, i and k. We select the set of hyperspherical coordinates, {(ρ,Ω)}, where
Ω = {(α, θx, φx, θy, φy)} is a short hand notation for the angular coordinates describing the directions of ~xik and ~yik,
and αik is defined by tanαik = xik/yik).

The kinetic energy operator in these coordinates is then

T =
~
2

2m

(

− ∂2

∂ρ2
− 5

ρ

∂

∂ρ
+

Λ2

ρ2

)

, Λ2 = − ∂2

∂α2
ik

− 4 cot(2αik)
∂

∂αik
+

l̂2xik
sin2 αik

+
l̂2yik

cos2 αik
, (7)

where l̂xik and l̂yik are the angular momentum operators related to ~xik and ~yik.
The procedure is then to solve the Schrödinger equation for fixed ρ. This involves the five angular coordinates,

Ω, where each of them are confined to a finite interval, unlike ρ which can be infinitely large. The solution is an
eigenvalue, λn(ρ), and the corresponding wave function, Φn(ρ,Ω). The total wavefunction Ψ is then expanded in
terms of these solutions, i.e.

Ψ =
1

ρ5/2

∑

n

fn(ρ)Φn(ρ,Ω) , (8)

where ρ5/2 is the three-body equivalent of r leading to the reduced relative radial wave function u = rR for two
particles.
The differential equation for the radial wavefunctions, fn=0, is found by inserting Ψ into the Schrödinger equation

and using the expression for T from eq.(7), i.e.
[

− d2

dρ2
− λ(ρ) + 15/4

ρ2
+Q(ρ)− 2mE

~2

]

f0(ρ) = 0 , (9)

where λ = 2ν(2ν +2) = K(K +4) is related to ν from eq.(4) and K introduce after eq.(11). In eq.(9) we omitted the
terms coupling to other radial wave functions, but maintained the diagonal coupling, Q, i.e.

Q(ρ) = 〈Φ| ∂
2

∂ρ2
|Φ〉Ω , (10)

where the expectation value only is taken over angular coordinates.
The differential equation in eq.(9) has the form of the Schrödinger equation for one particle in a potential. The

potential is first of all given by the angular eigenvalue, λ(ρ), and second modified by the Q-term. If the motion in the
angular coordinates is much faster than in the ρ-direction, the motion is adiabatic in ρ-space where the angular parts
are quickly adjusted to different values of ρ. Inclusion of coupling terms in eq.(9) produce a set of coupled equations
but still only for one coordinate, ρ. Enough terms must be included to get the desired accuracy. This is therefore
called the hyperspherical adiabatic expansion method.
The angular equation (ρ constant) for short-range interactions has simple limiting solutions for both small and

large ρ. In fact the solutions are the same for ρ = 0 and for ρ = ∞, that is the hyperspherical wave functions:

Φn(ρ,Ω) = sinlx(α) cosly (α)P (lx+1/2,ly+1/2)
n (cos(2α))Ylxmx

(θx, φx)Ylymy
(θy, φy) , (11)
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where P
(a,b)
n are the Jacobi polynomials, n ≥ 0, and K = 2n+ lx + ly, where λ = K(K +4) in the limits of small and

large ρ. It is then clear that the potentials multiplied by ρ2, determined by λ, vary from the same constant through
a curve for intermediate ρ-values, and back to the same constant value depending on K. The lowest is obviously for
K = 0. A pocket in between means attraction at these distances.
The method can give both ground and excited states. Bound states are defined by a negative energy and a wave

function decreasing exponentially with distance, ρ, with a rate, κ, determined by the energy, E = −~
2κ2/(2mρ2).

When the energy becomes positive, unbound solutions exist for all E, but the non-normalizable wave functions now
oscillate from intermediate distances to infinity. For special energies and angular quantum numbers the wave function
has values at small distance much larger than the amplitude of the oscillations at large distance. These structures are
the resonances which can play a decisive role in reactions.
The solutions in the continuum can be calculated with the same method as bound states. If the boundary condition,

instead of the correct oscillatory behavior, is chosen as zero at a large hyperradius, we only get discrete energy solutions.
The larger distance of the boundary the closer are the energies. The resulting states can be used as approximations
to the true continuum solutions. This is also valid for resonances which reveal themselves through the structure of
their wave functions.

B. Numerical illustrations of three-body ingredients

The effective hyperradial potentials illustrate the crucial ingredients of the method. In Fig.8 we show the lowest
set of coupled adiabatic hyperradial potentials for the angular momenta of the lowest bound states and resonances
for 9Be. The interactions are for α−α, and α-neutron. In all cases we see that the lowest potential has an attractive
pocket at small distance, whereas most of the higher-lying potentials are purely repulsive for all distances. The deepest
potentials is found for 3/2− which also turns out to be the ground state.
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FIG. 8. Real parts of the seven lowest adiabatic potentials as functions of the hyperradius ρ for the 1/2+, 5/2−, 1/2−, 5/2+,
3/2+ and 3/2− low-lying resonances in 9Be.

Another nucleus which potentially could be of three-body structure is 12C. We show results for the many possible
angular momenta in Fig.9. The deepest potential is found for 0+ which also is the ground state quantum numbers.
Furthermore, another 0+ appear as a very llow-lying resonance, the famous Hoyle state. There is only one excited
bound state which has quantum numbers 2+. It is necessary to emphasize that although we can make three-body
computations for any set of (conserved) angular momentum quantum numbers, the resulting states do not have to
be even rough approximations of the true physics states. On the contrary, a few states may be well approximated
as three-body cluster states, while a number of other states can be absent in three-body calculations. The quantum
numbers can still appear for the measured states. This only means that these states must be of completely different
structures.
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the correct energy.
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IV. TWO AND THREE-BODY ASTROPHYSICS PROCESSES

In a previous section we superficially mentioned how to proceed from the Big Bang production of Hydrogen (H)
and Helium (He) to Carbon (C), and the further on to nuclei of the strongest binding around Iron (Fe). Then the
explosions and build up of heavier nuclei through rapid or slow neutron capture, and proton capture along the proton
dripline. The delicate pieces of these many processes are for the light systems where the A = 5, 8 gaps must be
bridged, and at the weighting points at Borromean systems along the proton dripline. We shall consider in some
details typical processes where two and three-body reactions are crucial but not fully understood.
Two particles reacting to produce two other (or the same) particles is the simplest non-trivial process to describe.

This can already be difficult enough but maybe not sufficiently accurate as only an approximation of the reaction
mechanism. In astrophysics complications are that relative energies often are too small to allow experimental tests of
model results, and reactions take place through or from continuum states. Furthermore, key processes involve three
particles, and it seems unavoidable to employ three-body models instead of the much simpler two-body models. We
therefore should use our knowledge of the three-body problem applied to bound states as well as continuum states.
Still, until very recently only results from reduction to two-body problems were available. In most cases they are

probably rather accurate in the context. However, such two-body based results are bound to be catastrophically
wrong when the total energy is between two and three-body thresholds where the three-body but not the two-body
process can proceed. The description may also be very inaccurate when three-body resonances are present or in
general when the three-body structure in the continuum contributes beyond two-body approximations.

Three-body methods should by definition be able to provide reaction rates without assumptions about the underlying
mechanism. This allows in prinicple the direct reaction mechanism without other specification than initial and final
states. This is in contrast to traditional formulations where a two-step process is assumed, that is one two-body
reaction into an intermediate structure which reacts with the third particle in another two-body process. This so-
called sequential mechanism can be very accurate for example when the intermediate structure is long-lived. To
illustrate the content of these models we shall assume simplified descriptions allowing numerical comparison where
we first focus on very low temperature.

A. Direct radiative three-body rates

This is from: [7]: Eur. J. Phys. A47 (2011) 102
The direct three-body radiative capture process, a + b + c → A + γ, is related to the reverse photodissiciation

reaction, A + γ → a + b + c, where a, b and c label the three particles. The reaction rate, Rabc(E), for a given
three-body energy E is obtained through detailed balance somwhat in analogy to page 264, (but given in Diego et al
appendix B, [8]: Eur.Phys.J A 50 (2014) 93), that is

Rabc(E) = ν!
~
3

c2
8π

(µabµab,c)3/2
2gA

gagbgc

(

Eγ

E

)2

σγ(Eγ) (12)

where Eγ is the photon energy, E = Eγ +B is the initial three-body kinetic energy, B (< 0) is the three-body energy
of the nucleus A, µab and µab,c are the reduced masses of the a-b two-body system (related to the Jacobi coordinate
x) and the ab-c system (related to the Jacobi coordinate y), respectively, gi (i = a, b, c, A) is the degeneracy meaning
what, angular momentum projection, state degeneracy of particle i, and ν is the number of identical particles in the
three-body system.
The photodissociation cross section, σγ(Eγ), of the A nucleus is assumed to proceed by populating a (three-body)

Breit-Wigner shaped resonance of particles a, b, and c with total angular momentum J and energy ER. Then

σγ(Eγ) =
2J + 1

2gA

π~2c2

E2
γ

Γabc(E)Γγ(E)

(E − ER)2 + Γ2(E)/4
, (13)

where Γγ and Γabc = ΓR are the partial decay widths of the resonance for photon and three particle emission
respectively, and Γ = Γabc + Γγ is the total width. Notice that gA is the degeneracy of the bound state of nucleus A
into which the resonance decays, whereas J is related to the resonance through which the reaction proceeds.

The energy averaged reaction rate is obtained as a function of the temperature T by using the Maxwell-Boltzmann
distribution, MB, as weighting function. For three-particles we have

MB(E, T ) =
1

2

E2

(kBT )3
exp (− E

kBT
), (14)
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where kB is the Boltzmann constant. The energy averaged reaction rate becomes:

〈Rabc(E)〉 = ν!
~
3

c2
8π

(µabµab,c)3/2
gA

gagbgc

× 1

(kBT )3

∫ ∞

0

E2
γσγ(Eγ) exp (−

E

kBT
)dE . (15)

Therefore, once the photodissociation cross section σγ for the process A+ γ → a+ b+ c is known, the rate 〈Rabc(E)〉
can be easily obtained. In partucular, it can be obtained directly from the experimental σγ cross section.
The result, Eq.(15), has been derived without any assumption about the reaction mechanism leading to the for-

mation of the nucleus A. It is general and applies in particular to capture without population of an intermediate
two-body state. Then the width Γabc corresponds to the width for direct decay of the three-body resonance into
particles a, b, and c. We shall refer to Eq.(15) as the reaction rate in the “direct” or “three-body” picture.

B. Sequential radiative three-body rates

This is from: [7]: Eur. J. Phys. A47 (2011) 102
The sequential process is when the reaction proceeds through an intermediate two-body structure, for example a

two-body resonance at some energy Er in the a-b system. This is treated in two steps where particle a first captures b
to populate the intermediate a-b two-body resonant state. In the second step, the a-b system is able, before decaying,
to capture particle c, populate some three-body resonance of the nucleus A, and then decay by photo emission into
one of the bound states of A.
The reaction rate is given by the rate for the capture of c by the two-body subsystem a-b, 〈Rab,c(E

′′, E′)〉, weighted
with the rate for formation of a-b (can be seen in Angulo et al. NPA656 (1999) 3):

〈Rabc(E
′′, E′)〉 = ν!

1 + δab

8π~

µ2
ab

(

µab

2πkBT

)3/2

(16)

×
∫ ∞

0

σab(E
′′)

Γab(E′′)
e−E′′/kBT 〈Rab,c(E

′′, E′)〉E′′dE′′,

where the total three-body energy, E = E′ +E′′, is given in terms of the relative energy, E′′, between particles a and
b and the energy, E′, of particle c relative to the center of mass of a-b, and σab is the a-b elastic cross section. Since
δab is 1 if a and b are identical particles, and 0 otherwise, we get

〈Rab,c(E
′′, E′)〉 = 8π

µ2
ab,c

(

µab,c

2πkBT

)3/2

×
∫ ∞

0

σab,c(E
′′, E′)e−E′/kBTE′dE′, (17)

where the cross section σab,c(E
′′, E′) for the capture of particle c by the two-body subsystem a-b is related to the

photodissociation cross section through the detailed-balance theorem for the two-body system (ab and c), that is

σab,c(E
′) =

gA
gabgc

1

µab,c c2
E2

γ

E′ σγ(Eγ) , (18)

where gab is the degeneracy of the two-body resonance in the two-body subsystem a-b, and Eγ = E+|B|, E = E′+E′′,
and E′′ is kept constant.
Similarly to the direct process Eq.(13), the photodissociation cross section σγ again takes the form:

σγ(Eγ) =
2J + 1

2gA

π~2c2

E2
γ

Γab,c(E
′)Γγ(E

′ + E′′)

(E − ER)2 + Γ(E′, E′′)2/4
. (19)

This expression is formally identical to Eq.(13), but now Γab,c refers explicitly to the partial width for decay of the
three-body resonance with angular momentum J into the two-body resonance a-b plus particle c. The assumption is
that no other decay mode exists, and the direct decay circumventing this two-body path is not allowed, or at least
negligibly small. As before, Γγ is then the partial width for gamma decay, and Γ = Γab,c + Γγ is the total width.
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Replacement of Eq.(18) into (17), and of Eq.(17) into (16) then give the expression for the energy averaged reaction
rate:

〈Rabc(E
′′, E′)〉 = ν!

1 + δab

gA
gabgc

8~

πc2(kBT )3
1

µ
1/2
ab µ

3/2
ab,c

×
∫ ∞

0

E′′ σab(E
′′)

Γab(E′′)
dE′′

∫ ∞

E′′

E2
γσγ(Eγ)e

−E/kBT dE (20)

where we have replaced the dependence on E′ by E by use of E = E′ + E′′. The elastic a-b cross section, σab, takes
the form, as in Eq.(13) when going through a Breit-Wigner resonance (e.g. Hodgson et al p458):

σab(E
′′) = (1 + δab)

gab
gagb

π

κ2

Γab(E
′′)2

(E′′
− Er)2 + Γ2

ab(E
′′)/4

, (21)

where κ2 = 2µabE
′′/~2, Er is the energy of the resonance in the a-b system.

The energy dependent widths in Eqs.(13), (19), and (21) are proportional to the penetration factor through the
barrier responsible for the correponding resonance (Γ(E) ∝ P (E)). The constant of proportionality is determined by
assuming that when evaluated at the resonance energy Er the width Γ(Er) provides the established (or experimental)
width of the resonance Γ0. This is therefore leading to the expression:

Γ(E) = Γ0
P (E)

P (Eres)
. (22)

The expression in Eq.(20) is called the sequential reaction rate.

10
-3

10
-2

10
-1

10
0

10
1

T (GK)

10
-160

10
-120

10
-80

10
-40

10
0

N
A

2  <
R

(E
)>

 (
cm

6 s-1
m

ol
-2

)

Three charged particles

Γr=10
-6

 MeV

Er=0.10 MeV
ER=0.15 MeV, ΓR=10

-5
 MeV

ER=0.15 MeV, ΓR=10
-15

 MeV

ER=0.15 MeV, ΓR=10
-25

 MeV

Extreme sequential

FIG. 10. (color online) Reaction rates in the sequential picture for a system of masses and charges corresponding to three
α-particles, but for different small values for the width of the three-body resonance ΓR. The thick-solid and thin-solid curves
are the direct and sequential rates. The dashed and dot-dashed curves are direct rates with ΓR = 10−15 MeV and ΓR = 10−25

MeV, respectively.

C. Comparing direct and sequential rates

This is from: [7]: Eur. J. Phys. A47 (2011) 102
We compare in Fig.10 the different approximation for specific sets of parameters. For temperatures higher than

about 0.03 GK the rates obtained in the sequential picture are not sensitive to the properties of the intermediate
two-body resonance, and the computed rate agrees with the one obtained in the direct picture. This is consistent
with the fact that when both two and three-body resonances are very narrow the reaction rate can be approximately
obtained by assuming very small width, Γab,c small but still Γγ << Γab,c, in Eq.(19). Then from Eqs.(15) and (19)
we get the energy averaged reaction rate:

〈Rabc(E)〉 = ν!
2J + 1

gagbgc

(2π)3~5

(kBT )3
Γγ(ER)

(µabµab,c)3/2
e−ER/kBT (23)
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which is valid when the two-body resonance energy Er is below the three-body resonance energy ER. Otherwise, if
ER < Er the reaction rate is zero in this limit of very small widths. This is the rate in the extreme sequential picture.
The corresponding rate agrees for T & 0.03 GK with both the direct and the sequential calculations. At low

temperatures this is not true anymore, which shows that the finite width of the resonances influence the rates, and
the limit of zero width leading to Eq.(23) becomes increasing invalid. The reason is that the effect from the tails of the
resonances, where the penetration factors play a role, is completely absent in Eq.(23). This is also easily recognized
in Fig.10, where the thick-solid and thin-solid curves are direct and sequential, and the dashed and dot-dashed curves
are the calculations with ΓR = 10−15 MeV and ΓR = 10−25 MeV, respectively. As we can see, the narrower the
three-body resonance the lower the temperature at which the full sequential calculation matches the curve in the
extreme sequential picture.

D. The 9Be rate

This is from: [7]: Eur. J. Phys. A47 (2011) 102
We consider in details the specific case of two α-particles and one neutron, that the α+ α+ n → 9Be+ γ reaction.

The properties of the low energy spectrum of 9Be will determine the reaction rate at low temperatures. The presence
of the internal two-body subsystem, 8Be with the very narrow 0+ resonance at 0.092 MeV, suggests a sequential
description of the capture process as an appropriate model.
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FIG. 11. (color online) Photodissociation cross section for 9Be as a function of the three-body energy E. The solid and open
circles are experimental data. The dashed, dot-dashed, and dotted curves correspond to the contribution of the 1/2+, 5/2+,
and 1/2− states in 9Be, respectively. The thick solid line gives the sum of the three contributions. The solid thin line is the
total cross section when the 5/2+ resonance is parametrized as in NACRE. The vertical arrow in the x-axis indicates the energy
of the 0+ resonance in 8Be. The inner part is a zoom of the low energy region of the cross section, where the solid and dashed
lines are the cross section when the sequential and direct pictures are assumed in the low energy region, respectively.

The resulting nucleus, 9Be, has no low-lying and narrow three-body resonance. However, 9Be has a low lying 1/2+

resonance in the vicinity of 0.11 MeV, only slightly above the 0.092 MeV of the 0+ resonance in 8Be. The width of the
1/2+ state in a three-body model is estimated to be around 0.1 MeV. In a two-body model this width is estimated to
be around 0.2 MeV which makes the resonance extend below the threshold for separation into the three constituents.
As a consequence the photodissociation cross section in Fig.11 shows a relatively broad peak at a three-body energy
of around 0.11 MeV, in such a way that σγ is not negligible in the vicinity of the two-body resonance energy Er=0.092
MeV.
The experimental data in Fig.11 show that for three-body energies below the 0+ resonance at 0.092 MeV in 8Be,

the cross section essentially vanishes, or at least it is extremely small. This fact supports the assumption that the
intermediate 0+ state in 8Be is actually populated in the process, and therefore the sequential description appears to
be appropriate. The energy dependence of the cross section (19) for sequential decay of 9Be into 8Be plus a neutron
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is found by use of the energy dependence of the partial widths given in eq.(10.2.25) on page 262, that is

Γab,c(E
′) = Γab,c

(

E′

ER − Er

)ℓab,c+1/2

(24)

Γab(E
′′) = Γab

(

E′′

Er

)ℓab+1/2

, (25)

where ℓab,c and ℓab are the relative orbital angular momenta between particle c and the center of mass of a-b and
between particles a and b, respectively, and where the energy dependence of these partial widths are chosen appro-
priately. Then σγ vanishes when E′ = 0 or equivalently when E = Er. Furthermore, for high temperatures, a pure
three-body calculation of the reaction rate, without any additional assumption about the reaction mechanism, agrees
reasonably well with the one obtained in the sequential picture.

The behavior of σγ at very low energies, also for very small σγ , will determine the value of the reaction rate at
very low temperatures, and this rate could change depending on which model, direct or sequential, is assumed for the
capture mechanism at such low energies. At high temperatures the three-body and sequential pictures provide similar
results. For energies higher than Er we then start by taking the simple parametrization of the cross section used in the
sequential description. This gives rise to the cross section shown in Fig.11 by the thin solid line, with an appropriate
energy dependence for with λ = 1, and Eq.(24), has been used for all the resonances. The peak corresponding to the
5/2+ resonance is clearly overestimated but properties do not play any role in the low temperature behavior of the
reaction rate.
In the inner part of Fig.11 we show a zoom of the low energy region of the photodissociation cross section. When

the sequential picture is assumed, the cross section takes the form (19) with Γab,c given by (24), and then σγ vanishes
for E = Er, as shown by the solid line in the inset of the figure. However, if for such low energies we assume a direct
mechanism, due to the Coulomb repulsion of the two alpha particles, the low energy behavior of the cross section
in eq.(13) can be found by the second order WKB transmission rate in eq.(10.2.12). For the Coulomb repulsion the

action integral is b/
√
E, that is we get

Γabc(E) = Γabc
1 + e2babc/

√
ER

1 + e2babc/
√
E

(26)

with

babc =
π

2

√

2

~2(ma +mb +mc)

(

∑

(

ZiZje
2
)2/3

(mimj)
1/3

)3/2

(27)

where ma, mb, and mc are the masses of the particles and the sum runs over the three possible pairs of particles. The
spcific expression for babc is found by minimizing the path from small to large distance. We use the definition that
Γabc = Γabc(E = ER). The resulting cross section then behaves as shown by the dashed line in the inset of Fig.11.
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FIG. 12. (color online) Reaction rate for the reaction α+ α+ n →
9Be + γ. The solid points are experimental data and open

circles are NACRE results. The dashed line has been obtained in the extreme sequential approximation. The thin solid line is
the calculation in the sequential picture (20). The thick solid curve is the calculation (15) assuming a direct capture process at
very low energies (dashed curve in the inset of Fig.15). The inset shows the ratio between the thick solid rate (direct capture
assumption at low energies) and the thin solid line (sequential capture assumption at low energies).
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The reaction rates are shown in Fig.12 for the α + α + n → 9Be + γ process given in a recent experiment, and
the NACRE compilation, respectively. They basically agree in the whole temperature range shown in the figure. A
correct sequential calculation requires use of Eq.(20), which implies use of the cross section (21) and consequently
inclusion of the proper energy tail coming from the decay of the 0+ resonance in 8Be. When this is done we obtain
the rate given by the thin solid line in Fig.12, which, as expected, are below the (almost canonical) NACRE results
(open circles) at very low temperatures.
If the low energy tail in σγ corresponds to a direct decay mechanism (dashed curve in the inset of Fig.11). In

this case, the cross section is given by (13), and the low energy tail takes again the form (26). The reaction rate is
then given by Eq.(15), and we obtain the thick solid curve in Fig.12. The reaction rate computed assuming a direct
capture at very low energies and the one obtained assuming a sequential capture begin to differ for temperatures
smaller than about 0.07 GK. Very soon the rate obtained in the direct picture is several orders of magnitude bigger
than the sequential one. This is better appreciated in the inset of the figure, where we show the ratio between both
reaction rates. For a temperature of 0.01 GK the reaction rate in the direct picture is almost 7 orders of magnitude
bigger than in the sequential picture. The general behaviour of the reaction rates is similar to the one obtained for
the triple alpha reaction, although due to the smaller Coulomb repulsion, the absolute values of the rates are now
much bigger.
The computed rates are the limiting cases of a fully direct process and a fully sequential process in the very low

energy region. If both processes compete, the computed reaction rate would be found in between the thin and thick
solid curves in Fig.12. And second, the calculation in the direct picture has been made assuming that Γγ(E) is the
same as in the sequential picture, with Γγ = 0.51 eV. A change in Γγ would imply the same change in the reaction
rate.

E. The triple alpha process at low temperature

This is from: [7]: Eur. J. Phys. A47 (2011) 102
The reaction rate for the triple alpha reaction, α+α+α → 12C+γ, at very low temperatures is quite controversial.

One problem is that now all three subsystems have Coulomb repulsion. In fact, in a recent theoretical work, the
reaction rate at a temperature of 10−2 GK has been found to be about 20 orders of magnitude bigger than the
one given in the (standard) NACRE compilation. Such enormous increase in the reaction rate would have dramatic
consequences for the late stages of the stellar evolution in low mass stars. For one reason or another this computation
probably gives an incorrect answer.
For very small temperatures the relevant three-body energies in the reaction rate are clearly below the 0.092 MeV

of the intermediate 0+ resonance in 8Be. It is then not so obvious that the sequential picture through that 0+ state
is still appropriate. The occurrence of a direct or a sequential capture mechanism would imply a different behavior
of the tail of the photodissintegration cross section (see Eq. (26)), and therefore it would lead to a different reaction
rate. This is in fact observed in the schematic case in Fig.10, where an example similar to the triple alpha reaction
showed a model dependent rate varying by several orders of magnitude at low temperatures.

In Fig.13 the solid and open circles are the reaction rates for the triple alpha reaction given by Fowler et al. and the
NACRE compilation, respectively. The main difference between these rates is found at high temperatures, where the
result from Fowler is below the one of NACRE. This is due to the fact that while the effects of the first 2+ resonance
are included in NACRE, they are omitted in Fowler. At low temperatures, both calculations, assuming both a fully
sequential capture mechanism, provide essentially the same result. In the calculations shown in this section the lowest
2+ resonance in 12C has been included using the NACRE resonance parameters.
In the figure, the thin dashed line gives the reaction rate obtained in the extreme sequential model. This approxi-

mation amounts to cutting the tail of the cross section for energies smaller than the one of the intermediate 0+ state
in 8Be. This strong approximation gives rise to a reaction rate in good agreement with the results in Fowler and
NACRE at high temperatures, while for temperatures smaller than ∼ 0.03 GK it clearly underestimates the rate.
This is consistent with Fig.10, where we see that a decreasing width of the three-body resonance increases the range
of temperatures where the sequential and the extreme sequential calculations agree.

A full sequential description of the process requires the use of Eq.(20). When the Coulomb interaction is decisive,
the energy dependence of the partial widths in the sequential picture is changed into:

Γab,c(E
′) = Γab,c

1 + e2bab,c/
√
ER−Er

1 + e2bab,c/
√
E′

(28)

Γab(E
′′) = Γab

1 + e2bab/
√
Er

1 + e2bab/
√
E′′

, (29)



18

10
-3

10
-2

10
-1

10
0

10
1

T (GK)

10
-90

10
-80

10
-70

10
-60

10
-50

10
-40

10
-30

10
-20

10
-10

10
0

N
A

2  <
R

(E
)>

 (
cm

6 s-1
m

ol
-2

)

W.A. Fowler et al.  [1]
NACRE [4]
Sequential
Direct
Extreme sequential

10
-3

10
-2

10
-1

10
0

10
1

10
0

10
5

10
10

10
15

<R(E)>
dir.

<R(E)>
seq.

FIG. 13. (color online) Reaction rate for the triple α process. The solid points are from Fowler and open circles are the NACRE
results. The thick solid curve is the calculation as in Eq.(15) assuming a direct capture process at very low energies. The
thin solid line is the calculation in the sequential picture (20). The dashed line has been obtained in the extreme sequential
approximation. The inset shows the ratio between the thick solid rate (direct capture assumption at low energies) and the thin
solid line (sequential capture assumption at low energies).

where

bab,c =
π

2
(Za + Zb)Zce

2

√

2µab,c

~2
(30)

bab =
π

2
ZaZbe

2

√

2µab

~2
, (31)

and where Za, Zb, and Zc are the charges of particles a, b, and c, respectively, and e is the electron charge.
Compared to the extreme sequential limit, this calculation includes now the low energy tails of the cross sections

(19) and (21), which are given by (28) and (29), respectively.
However, when the low energy tail in σγ is assumed to be given by (26), which corresponds to a direct capture

(dashed curve in Fig.14), and the σγ cross section (13) is inserted into Eq.(15), we then get the reaction rate shown
by the thick solid line in Fig.13. As we can see, for temperatures smaller than ∼ 0.07 GK, the reaction rate obtained
assuming a direct capture at very low energies is several orders of magnitude bigger than when the sequential capture
is assumed. This is appreciated more quantitatively in the inset of the figure, where we show the ratio between
both reaction rates, direct and sequential. We can immediately see that the ratio increases when decreasing the
temperature. For a temperature of 10−3 GK we have obtained a reaction rate for the direct capture about 12 orders
of magnitude bigger than in the sequential picture. This difference reduces to about 7 orders of magnitude for T=0.01
GK.
It is important to note that the computed rates are the ones obtained in the limiting cases of a fully direct or a fully

sequential description in the very low energy region. If both processes compete, the computed reaction rate would
then be found in between the thin and thick solid curves in Fig.13, which can be taken as the upper and lower limits
to the true reaction rate. In any case, even if the process is considered to be fully direct, the increase in the reaction
rate compared to the NACRE result at T=0.01 GK is of only 7 orders of magnitude, and thus far smaller then the
mentioned 20 orders of magnitude.
We emphasise that the calculations in the direct picture have been made with the same Γγ = 3.7 · 10−3 eV in

both direct and sequential pictures. A change in Γγ implies precisely the same change in the reaction rate, as seen
immediately from Eqs.(13) and (15).

F. Triple alpha and resonance structure

This is from [6]: Phys. Lett. B 695 (2011) 324-328
Surprisingly enough the resonances of 12C are not well known. In fact, the existence of a 2+ resonance at a

relatively low energy is still not experimentally determined. The first of the methods used in this work is the three-
body calculation describing radiative capture, see Eq.(12).
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The photo dissociation cross section for the inverse process A + γ → a + b + c can be expanded into electric and
magnetic multipoles. In particular, the electric multipole contribution of order λ is

σ(λ)
γ (Eγ) =

(2π)3(λ+ 1)

λ[(2λ+ 1)!!]2

(

Eγ

~c

)2λ−1
dB
dE

, (32)

where the strength function B from eq.(10.3.44b) on p284 is

B(Eλ, n0J0 → nJ) =
∑

µM

|〈nJM |Oλ
µ|n0J0M0〉|2, (33)

where J0, J and M0, M are the total angular momenta and their projections of the initial and final states, and all
other quantum numbers are collected into n0 and n. The electric multipole operator is given by:

yyyOλ
µ =

3
∑

i=1

zi|ri −R|λYλ,µ(Ωyi
) , (34)

where i runs over the three particles of charges zi, and where we neglect contributions from intrinsic transitions within
each of the three constituents.
Finally the energy averaged reaction rate is obtained as a function of the temperature by using the Maxwell-

Boltzmann distribution as weighting function. For three alpha particles, Eq.(15) becomes

〈Rααα(E)〉 = ~
3

c2
48π

(µααµα8
Be
)3/2

(2J + 1)e
− B

kBT ×

× 1

(kBT )3

∫ ∞

|B|
E2

γσ
(λ)
γ (Eγ)e

− Eγ
kBT dEγ . (35)
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FIG. 14. Reaction rate for the triple α process with the full three-body calculation (thick solid line) and the sequential approach
(thick dashed line) as described in the text. The corresponding contributions from the 0+ → 2+1 and 2+ → 0+1 transitions are
given by the thin curves. The dotted line is the contribution from the 2+ → 2+1 in the full three-body calculation. The open
circles correspond the NACRE rate.

The full three-body method is used to compute the reaction rate for the triple α process. With a specific α-α
interaction the 12C spectrum is found, but for all interactions the computed 2+ resonances appear too often at too
low an energy. In particular a 2+ resonance at 1.38 MeV above the three-body threshold with a width of 0.13 MeV
was found in a recent systematic study. The same interaction gives rise to the triple α reaction rate shown by the
thick solid line in Fig.14. The contributions coming from the 0+ → 2+1 and 2+ → 0+1 transitions are shown by the
corresponding thin solid lines. The agreement between the total reaction rate and the NACRE result (open circles in
the figure) is reasonably good. For completeness, we show in the figure the contribution from the 2+ → 2+1 transition
(dotted curve). This contribution is very small and could actually be neglected.
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FIG. 15. Reaction rate in the sequential case for different energies of the lowest 2+ resonance in 12C. The energy increases
from the upper curve to the lower from 1 MeV up to 5 MeV. The dotted curve is the calculation where the contribution from
the 2+ → 0+1 transition has been completely removed.

G. Element production from neutrons and alpha’s

This from Europhys. Lett., 90 (2010) 52001.
Elements in the universe heavier than 4He (the α-particle) can essentially be explained as created through step-

by-step nuclear reactions in stars. Formation of heavy elements must overcome the problem that all nuclear isotopes
with mass numbers 5 and 8 are unstable. When the hydrogen fuel in a star is exhausted, the production of energy by
formation of 4He stops and the temperature drops. The subsequent gravitational collapse increases the temperature,
and the red giant phase, where helium is now the source of energy, begins. Due to the lack of neutrons in the core of
the helium burning red giants, the A=5 and A=8 instability gaps have to be bridged, first of all, by the triple-alpha
reaction α+ α+ α → 12C+ γ.
Other reactions can be conceived for alpha’s and nucleons where the charge of the proton decrease the cross sections

tremendously at very small energies. In some scenarios also neutrons are present, that is allowing the reactions
α+n+n → 6He+γ and α+α+n → 9Be+γ. The necessary neutron density can appear at the early Big Bang stages
or in the nucleosynthesis related to the type II supernova shock front. In both cases, temperatures are estimated to
be of about 7 to 10 GK (GK=109 K). With both alpha’s and neutrons the A = 5, 8 gaps can be overcome through
these reactions.
The dominating processes are the electromagnetic radiative recombination of the three particles from continuum

to bound state, except at very high densities where four-body recombination can compete favorably. However, the
three-body processes producing these nuclei differ from each other. The production of 6He and 9Be is dominated by
dipole transitions, while the production of 12C is of quadrupole character.

The production rate P for the capture reaction is obtained after averaging Rabc(E) using the Maxwell-Boltzmann
distribution as weighting function, and multiplying by the density ni of particles a, b, and c. This density is usually
written as ni = ρNAXi/Ai, where ρ is the density of the environment, NA is the Avogadros number, Ai is the
mass number of particle i, and Xi = NiMi/(NaMa + NbMb + NcMc) is the mass abundance of nucleus i expressed
by the number of particles Ni and their masses Mi. It is also possible to use the relative abundance defined by
Yi = Ni/(Na +Nb +Nc).
The three-body recombination can be calculated as described above. The final expression for the production rate

P depends then on both, temperature (T ) and mass density (ρ) of the environment, which can vary substantially in
different scenarios. By rewriting Eq.(15) slightly and multiplying by the densities, we obtain the production rate

Pabc(ρ, T ) = nanbnc
~
3

c2
8π

(µxµy)3/2
gA

gagbgc
e
− B

kBT

× 1

(kBT )3

∫ ∞

|B|
E2

γσγ(Eγ)e
− Eγ

kBT dEγ . (36)

Density dependence. The density dependence of the production rates in Eq.(36) is very simple for a given temper-
ature. The basic reaction rate for only three particles has to be multiplied by the number of each species of particles.
For a given total density ρ found by adding neutron and α-particle densities we can express the density dependence
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as ρ3Xn
αX

3−n
n , where Xn = 1 − Xα and Xα are the mass fraction of neutrons and α-particles. Then n = 1, 2, 3

correspond to production of 6He, 9Be and 12C, respectively.
When no α-particles are present, Xα = Yα = 0, the production rates are all zero. When only α-particles are

present, Xα = Yα = 1, only 12C can be produced. The density dependence for production of 6He and 9Be are each
others reflection in Xα = 1/2 but pushed towards smaller values as function of Yα. The production of 12C increases
monotonically as function of Xα and Yα.
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FIG. 16. The rates as functions of temperature for producing 6He, 9Be and 12C in their respective ground states from various
continuum states. From 1− and 2+ to 0+ for 6He (solid curves), from 1/2+, 3/2+, and 5/2+ to 3/2− for 9Be (dashed curves),
from 2+ to the 0+ ground state and from both 0+ and 2+ to 2+ excited bound state for 12C (dotted curves).

The temperature dependence is obtained by folding the calculated energy dependence with the Boltzmann distri-
bution as seen formally in Eq.(36). The different transitions are compared in Fig.16. The production rate for 9Be is
by far the largest at low temperatures but matched for 6He above temperatures of T ≈ 4 GK. The rate for production
12C is much smaller in this temperature range.
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FIG. 17. The numbers of produced 6He, 9Be and 12C per unit time and volume as functions of temperature for Yα =0.1
(dashed), 0.5 (dotted), and 0.9 (solid) and a density ρ=1 g/cm3.

The complicated temperature dependence in Fig.16 can now be combined with the simple density dependence,
nanbnc, in Eq.(36). After adding up the different contributions for each of the three nuclei we find the creation
probabilities shown in Fig.17 as functions of temperature for three different relative fractions of the three nuclei.
Creation of 12C only becomes competitive for any temperature when Yα is close to unity, i.e. when essentially only
α-particles are present.
The slightly increasing 6He curves cross the slightly decreasing 9Be curves while the 12C curves stay below for all

temperatures below 5 GK. Thus unless the relative α-neutron abundance is extreme we get dominance of 9Be at small
temperature and dominance of 6He at large temperature. However, now it is important precisely which number of
neutrons and α-particles are available for the recombination process. When Yα = 0.1 the dominance changes from
9Be to 6He at T ≈ 1.5 GK. For Yα values larger than 0.5 9Be dominate for all temperatures.
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FIG. 18. The phase diagram for producing 6He, 9Be and 12C in the Yα-temperature parameter space. The curves correspond
to a constant ratio of production rates of two nuclei.

The complete picture of the density-temperature dependence of the creation of the three nuclei is shown in Fig.18.
For Yα less than about 0.2 and temperatures above T ≈ 1 − 4 GK the nucleus 6He is produced more than twice as
often as 9Be. As Yα increases the relative 9Be production increases and becomes dominant for all temperatures when
Yα exceeds 0.4.
By further increase of Yα the relative creation rate of 12C increases. At Yα ≈ 0.88 the 9Be production is still

dominating when 12C is created with half the rate of 6He. At Yα ≈ 0.92 the production rates for 12C and 6He are
equal, but the production of 9Be still dominates. Only when Yα is larger than about 0.98, where very few neutrons
are present, the production rate of 12C exceeds the other rates. These relative rates are very crudely independent of
temperature except for very low Yα values. Except for the small Yα results, similar overall conclusions are obtained
in most previous investigations.
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