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Cold Dark Matter

* Cold: speeds are non-relativistic

— To illustrate, 1000 km/s x10Gyr = 10Mpc

— From z~1000 to present, nothing (except
photons!) travels more than ~ 10Mpc

* Dark: no idea (yet) when/where the stars
light-up

* Matter: gravity the dominant interaction

Late-time field retains memory of
initial conditions



STATISTICS OF RANDOM
FIELDS

e Section 3.2-3.4 (p.32-38) in PT review
(Bernardeau et al. 2002)

e Section 2.1 in Halo Model review (Cooray-
Sheth 2002)

But first ... some background



Continuous probability distributions

* P(<x) = ["dx p(x)
 mth moment: <x™> = [dx p(x) x™
* Fourier transform: F(t) = [dx p(x) exp(-itx)

— sometimes called Characteristic function

— d™F/dt™ ~ im<x™>, so F(t) is equivalent to
knowledge of all moments

* |f x>0, Laplace transform more useful:
* L(t) = Jdx p(x) exp(-tx)



Distribution of sum of n
independent random variates

* p,(s) = Jdx p(x) [dy p(y) Op(x+y =s)

= [dx p(x) p(s-x)

* F,(t) = [ds exp(-its) [dx p(x) p(s-x)

= [ds [dx p(x) exp(-itx) p(s-x) exp[-it(s-x)]
= F4(t) Fy(t)

+ F(t) = [Fy ()

= Convolve PDFs = Multiply CFs



Gaussian PDF

p(x) = exp[-(x-1)2/262]/cV2m
F(t) = exp(itu) exp(- t> 6?)
- (t) = exp(it nu) exp(- t? nc?)

Distribution of sum of n Gaussians is Gaussian
with mean nu and variance nc?

In general, PDFs are not ‘scale invariant’



Gaussian field

e p(x) = exp(- x C1 x7/2)/ (27)"2\Det[C]
where x = (X, ... X,,) with x; =x(r;) - <x(r;)>

and  C; = <x; x>

e HW: What is F(t)?
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Quantify clustering by number of pairs compared to
random (unclustered) distribution, triples compared to
triangles (of same shape) in unclustered distribution, etc.



2pt spatial statistics

e dP = <n,> dV1 <n, > dV2 1+ i(rl ,r2)]
=<n>2dV, dV, [1+&(r, —r,)] homogeneity
=<n>2dV, dV, [1+&(|r,—r1,[)]  isotropy

Define: o(r) = [n(r) — <n>]/<n>
Then: (r) =< d(x) d(x +r) > & is the correlation function
Estimator: <(D,-R,)/R; (D,-R,)/R,>~ (DD-2DR+RR)/RR

And FTis: < 0(k,) d(k,) > = (2m) 6,(k,-k,) P(|k,|)
P(k) is the power spectrum



Estimator
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&r) = (5(X)5(X+I‘)>
= lim f Zékexp (ik - X)Zék,exp —ik’ - (x+71)] d
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P(k) and &(r) are FT pairs




Structure formation:
The shape of P(k)



Three possible metrics for
homogeneous and isotropic 3-space

ds® = dr? + S,.(r)?dQ*
Changing fromrtox =S (r)

makes this:
dQ)* = d#* + sin® 0dp*
_ dz? _—
Rsin(r/R) (k=+1) ds° = ——s + z7d)”
S.(r)=1{ r (1 = 0) l — kx=/R

Rsinh(r/R) (k= —1)



Robertson-Walker metric

(If homogeneity and isotropy did not exist, it would be necessary to invent them!)

ds® = —c2dt* — dr? + r2d° Minkowski metric

Much of Observational Cosmology dedicated to
determining «, a(t), R,



Connection to GR
G,=R, -8,R/2=81GT,

Homogeneity/isotropy:
T, = diagonal = (p,-p,-p,-p)
Conservation of stress-energy:
Vi(T,)=0
Using FRW metric:
d(pa?) = -p d(a?)
Since a3ocV this is like 1%t Law of thermodynamics.
So, if p(p) then can solve for p(t):
Evolution depends on ‘equation of state’



Equation of state

Consider: p(t) =w p(t) w independent of t
Then d(pV)/dt =V (dp/dt) + p (dV/dt) = -p (dV/dt)
So V(dp/dt) =-(p+p) (dV/dt)

(dInp/dt) = - (1+p/p) (dInV/dt)
So p(t) oc  g-3(1+w)

Special cases:

Non-relativistic matter: p=0 so w=0 so p«a3
Radiation: w=1/3 so pxa*
Vacuum energy: w =-1 so p constant



. Matter
Special cases:
Non-relativistic matter: 0 —>

w=0 so poa’

Radiation: Radiation

w=1/3 so poxca? __,

Vacuum energy:
w =-1 so p constant



If Universe
contains all
three, then
different ones
dominate at
different t
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Friedmann
eguations

From 00 element of
Einstein equations with
RW metric (relates
expansion rate to density
and curvature);

And from time derivative
of it (relates acceleration
to density and pressure).



Friedmann equation
(dIna/dt) % + (kc?/Ry%a(t)?) = (8nG/3) p
HZ = (8nG/3) p - (kc?/Ry%a(t)?)

1 - Q(t)=-x [c/H(t)]%/Ry%a(t)?
Knowing €2 = knowing sign of curvature
Flat Universe (k =0) has Q(t) = 1;
it has energy density 3H?/(87G).

Note that €2 is sum of all components
(matter + radiation + dark energy) .



Empty Universe: (2=0

1= -« [¢/H(t)]/R,2a(t)?
(aH)? = - i (c/R,)?

k=0 requires a = constant
k=1 not allowed
Kk=-1 requires da/dt = constant; a = ct/R,



Flat Universe: (2 =1

Suppose a oc td
Then H=q/t sop oca3l*Woc HZ oc t2
means q = 2/3(1+w)

Matter (w=0): 3 o t2/3
Radiation (w=)): 3 oc £1/2
Dark Energy (w=-1)?? a oc e
(because p oc a3(1*W) oc H2 oc constant)
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Different wavelengths enter horizon
at different times

" Mode enters

during RAD
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Sub-horizon: Linear theory

 Newtonian analysis:

d?R/dt? = - GM/R?(t) = - (41/3) Gp(t)R(t) [1+d(t)]
* M constant means R3oc p1[1+48]?1 oc a3[1+3]?

* l.e.,, Roca[1+8] Y3 so dR/dt oc HR - dd/dt (R/3) [1+3]2
and when |0] << 1 then

(d?R/dt?)/R = (d?a/dt?)/a - (d20/dt?)/3 — (2/3)H (do/dt)
= - (41/3) Gp(t) [1+0(t)]

* Friedmann equation: (d%a/dt?)/a = - (4n/3) Gp(t) so

(d20/dt?) + 2H (do/dt) =4n Gp(t) o(t) = (3/2) Q,H?2 5(t)




Linear theory (contd.)

* When radiation dominated (H = 1/2t):
(d?6/dt?) + 2H (dd/dt) = (d?0/dt?) + (dd/dt)/t =0
o(t) =C, + C, In(t) (weak growth)
* |n distant future (H = constant):
(d?0/dt?) + 2H,(dd/dt) = 0
o(t) = C, + C, exp(-2H ,t)
* |f flat matter dominated (H = 2/3t):
5(t) =D, t¥3+D_tloca(t) atlatetimes

* Because linear growth just multiplicative factor, it
cannot explain non-Gaussianity at late times



Super-horizon growth

Start with Friedmann equation when k=0:
H? = (8nG/3) p

Now consider a model with same H but
slightly higher p (so it is a closed universe):

H2 = 8nGp,/3 — K/a?
Then o = (p,; — p)/p = (k/a%)/(8nGp/3)
For small 3 we have 0 oc a (matter dominated)
but O oc a2 (radiation dominated)



Putting it together

Consider two modes, A, and A, < A, which entered at
a,/a, = A,/\, while radiation dominated

Their amplitudes will be (a,/a,)? = (k,/k,)? so expect
suppression of power oc k2 at k>Ke, (i.e. for the short
wavelength modes which entered earlier)

After entering horizon, dark matter grows only
logarithmically until matter domination, after which it
grows oc a

Baryons oscillate (i.e. don’t grow) until decoupling,
after which they fall into the deeper wells defined by
the dark matter



e dark matter, from baryon after decoupling
r'ad_latm_n " bar)rn_ns radiation to matter falling into DM potential
during tight coupling dominated universe wells

super-horizon -
evolution of an
adiabatic mode

{ A super-horizon |
. mode at :

! decoupling :

\_

If there were no
DM wells to fall 0.
into, baryon
fluctuations -2
today would be
much smaller; — 6. —1. 0.
observed
clustering
strength - DM Horizon crossing decoupling
must exist!




Transfer function: T(k) oc 1/(1+k?)

Currant power spectrum P{k) [(h-1 Mpe)f]
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Same, but
position-
(rather
than k-)

space

o?(r) = (2m)3 [dk 4mk? P(k) W?(kr)

Density fluctuations
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Cosmology from the same
physics imprinted in the galaxy
distribution at different redshifts:

Baryon Acoustic Oscillations



CMB from interaction between
photons and baryons when
Universe was 3,000 degrees

(about 300,000 years old)

* Do galaxies which formed much later carry
a memory of this epoch of last scattering?



Photons ‘drag’ baryons for 300,000 years...
300,000 light years ~ 100,000 pc ~ 100 kpc

Expansion of Universe since then stretches
this to (3000/2.725) x100 kpc ~ 100 Mpc



Mass Prafile of Perturbation

Mass Fraofile of Perturkbation
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Expect to see a feature in the Baryon distribution
on scales of 100 Mpc today

But this feature is like a standard rod:
We see it in the CMB itself at z~1000
Should see it in the galaxy distribution at other z



Cartoon of expected effect




Baryon Oscillations in the Galaxy
Distribution

Looking back in time in the Universe

SDSS GALAXIES



Spike in real space &(r)
means sin(krgag)/Krgao
oscillations in Fourier
space P(k)
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In fact, spike is not delta

function because

surface of last scattering
not instantaneous:
e-(k/ksilk) " sin(kraao)/Krgao



BAO in CMB photons
on last scattering
surface ...
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... should/are seen in matter distribution at later times



...we need a tracer of the baryons

 Luminous Red Galaxies
— Luminous, so visible out to large distances

— Red, presumably because they are old, so
probably single burst population, so evolution
relatively simple

— Large luminosity suggests large mass, so
probably strongly clustered, so signal easier to
measure

— Linear bias on large scales, so length of rod not
affected by galaxy tracer!



The cosmic web at z~0.5, as traced by
luminous red galaxies
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SDSS (M. White 2010) BOSS
A slice 500h1 Mpc across and 10 A1 Mpc thick
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CMASS power spectrum BAO
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Can see baryons that are not in stars ...

Quasar
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 Imtervening gas

H absorption
/ ‘Metal’ absorption lines
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BAO in Ly-o forest at z~2.4
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e Signal from cross-correlating different lines of
sight



* The baryon distribution today ‘remembers’
the time of decoupling/last scattering; can
use this to build a ‘standard rod’

* Next decade will bring observations of this
standard rod out to redshifts z ~ 1.
Constraints on model parameters from 10%
to 1%



