
Dark Matter and  
Structure Formation 

Spatial statistics 

The transfer function 

Linear theory 

Baryon Acoustic Oscillations 

 

 





 













Particle mass about one billion times that of Sun! 
Need to model galaxy formation (cannot simulate it yet…) 

HOMOGENEOUS ON LARGE SCALES 



Cold Dark Matter 

• Cold:  speeds are non-relativistic 

– To illustrate, 1000 km/s ×10Gyr ≈ 10Mpc 

– From z~1000 to present, nothing (except 
photons!) travels more than ~ 10Mpc 

• Dark:  no idea (yet) when/where the stars 
light-up  

• Matter:  gravity the dominant interaction 

Late-time field retains memory of 
initial conditions 



STATISTICS OF RANDOM 
FIELDS 

• Section 3.2-3.4 (p.32-38) in PT review 
(Bernardeau et al. 2002) 

• Section 2.1 in Halo Model review (Cooray-
Sheth 2002) 

But first … some background 



Continuous probability distributions 

• P(<x) = ∫xdx p(x)  

• mth moment:  <xm> = ∫dx p(x) xm 

• Fourier transform:  F(t) = ∫dx p(x) exp(-itx) 

– sometimes called Characteristic function 

– dmF/dtm ~  im <xm>, so F(t) is equivalent to 
knowledge of all moments 

• If x>0, Laplace transform more useful: 

• L(t) = ∫dx p(x) exp(-tx) 



Distribution of sum of n 
independent random variates  

• p2(s) = ∫dx p(x) ∫dy p(y)  dD(x+y = s) 

          = ∫dx p(x) p(s-x) 

• F2(t) = ∫ds exp(-its) ∫dx p(x) p(s-x) 

            = ∫ds ∫dx p(x) exp(-itx) p(s-x) exp[-it(s-x)] 

            = F1(t) F1(t) 

• Fn(t) = [F1(t)]n 

  = Convolve PDFs = Multiply CFs 



Gaussian PDF 

• p(x) = exp[-(x-m)2/2s2]/s2p 

• F(t) = exp(itm) exp(- t2 s2) 

• Fn(t) = exp(it nm) exp(- t2 ns2) 

• Distribution of sum of n Gaussians is Gaussian 
with mean nm and variance ns2 

• In general, PDFs are not ‘scale invariant’ 

 



Gaussian field 

• p(x) = exp(- x C-1 xT/2)/ (2p)n/2 Det[C] 

   where x = (x1, … xn)   with   x1 = x(r1) - <x(r1)> 

   and    Cij = <xi xj> 

 

• HW:  What is F(t)? 



Quantify clustering by number of pairs compared to 
random (unclustered) distribution, triples compared to 
triangles (of same shape) in unclustered distribution, etc. 



2pt spatial statistics 

• dP = <n1> dV1 <n2 > dV2 [1 + x(r1 ,r2)]  
         = <n>2 dV1 dV2 [1 + x(r1 – r2)]   homogeneity 
         = <n>2 dV1 dV2 [1 + x(|r1 – r2|)]  isotropy 
 
Define:  d(r) = [n(r) – <n>]/<n> 
Then:  x(r) = < d(x) d(x + r) >      x is the correlation function 
Estimator:   <(D1-R1)/R1 (D2-R2)/R2> ~ (DD-2DR+RR)/RR 
 
And FT is: < d(k1) d(k2) > = (2p)3 dD(k1-k2) P(|k1|) 
             P(k) is the power spectrum 



Estimator 

x(r) = < d(x) d(x + r) > 

 

Since d(r) = [n(r) – <n>]/<n> 

estimate using    

x= <(D1-R1)/R1 (D2-R2)/R2>  

  ~ (DD-2DR+RR)/RR 

for pairs separated by r 



  

P(k) and x(r) are FT pairs 



Structure formation: 
The shape of P(k) 



Three possible metrics for 
homogeneous and isotropic 3-space 

Changing from r to x = Sk(r) 
makes this: 



Robertson-Walker metric 

Minkowski metric 

Much of Observational Cosmology dedicated to 
determining   k, a(t), R0 

(If homogeneity and isotropy did not exist, it would be necessary to invent them!) 



Connection to GR 
Gmn = Rmn – gmn R/2 = 8pG Tmn 

Homogeneity/isotropy:   
                    Tmn = diagonal = (r,-p,-p,-p) 
Conservation of stress-energy: 
                           n (Tmn) = 0  
Using FRW metric: 
                       d(ra3) = -p d(a3) 
Since a3V this is like 1st Law of thermodynamics. 
So, if p(r) then can solve for r(t):   
         Evolution depends on ‘equation of state’ 



Equation of state 

Consider:  p(t) = w r(t)         w independent of t 
Then d(rV)/dt = V (dr/dt) + r (dV/dt) = -p (dV/dt) 
So     V (dr/dt) = - (r+p) (dV/dt) 
          (dlnr/dt) = - (1+p/r) (dlnV/dt) 
So          r(t)           a-3(1+w) 

 
Special cases:  
Non-relativistic matter: p = 0  so  w = 0  so  r  a-3 
Radiation:                                 w = 1/3      so  r  a-4 

Vacuum energy:                      w = -1  so  r constant   



Special cases:  
Non-relativistic matter: 
w = 0  so  r  a-3 
 
Radiation:                                 
w = 1/3      so  r  a-4 

 
Vacuum energy:                      
w = -1  so  r constant   



If Universe 
contains all 
three, then 

different ones 
dominate at 
different t 

 
Conventional 

to define: 
Wm = rm/rc  

Wr = rr/rc  

WL = rL/rc 

 rc =3H2/8pG  



Friedmann 
equations 

From 00 element of 
Einstein equations with 
RW metric (relates 
expansion rate to density 
and curvature); 
 
And from time derivative 
of it (relates acceleration 
to density and pressure).   



Friedmann equation 

(dlna/dt) 2 + (kc2/R0
2a(t)2) = (8pG/3) r 

H2 = (8pG/3) r - (kc2/R0
2a(t)2)  

1 - W(t)= - k [c/H(t)]2/R0
2a(t)2  

Knowing W = knowing sign of curvature  
Flat Universe (k =0) has W(t) = 1;  
it has energy density 3H2/(8pG). 
Note that W is sum of all components 
(matter + radiation + dark energy) . 



Empty Universe:  W=0 

               1 = - k [c/H(t)]2/R0
2a(t)2  

                      (aH)2 = - k (c/R0)2  
 
k=0   requires a = constant 
k=1    not allowed 
k=-1  requires da/dt = constant; a = ct/R0

 

 



Flat Universe: W = 1  

Suppose   a  tq 

Then    H = q/t  so r  a-3(1+w)  H2  t-2 

means q = 2/3(1+w)  
 
Matter (w=0):                a  t2/3 
Radiation (w=⅓):           a  t1/2 
Dark Energy (w=-1)??   a  eHt 
(because r  a-3(1+w)  H2  constant)  
 



L (w=-1):            
a  eHt 
Empty:   
a  t 
Matter (w=0):                
a  t2/3 
Radiation(w=⅓):           
a  t1/2 

From these, can work out dL(z|W,L)  





Matter + curvature + L 

Flat 
WL0 = 0.7 
T0 = 2.725K 
H0 = 70 km/s/Mpc 

radiation matter 

L 



Different wavelengths enter horizon 
at different times 



Sub-horizon:  Linear theory 
• Newtonian analysis: 

    d2R/dt2 = - GM/R2(t) = - (4p/3) Gr(t)R(t) [1+d(t)] 

• M constant means   R3  r-1 [1+d]-1  a3 [1+d]-1  

• I.e.,  R  a [1+d]-1/3  so  dR/dt  HR - dd/dt (R/3) [1+d]-1  
and when |d| << 1 then 

    (d2R/dt2)/R = (d2a/dt2)/a - (d2d/dt2)/3 – (2/3)H (dd/dt) 

                         = - (4p/3) Gr(t) [1+d(t)] 

• Friedmann equation: (d2a/dt2)/a = - (4p/3) Gr(t) so 

    (d2d/dt2) + 2H (dd/dt)  = 4p Gr(t) d(t) = (3/2) WmH2 d(t) 



Linear theory (contd.) 
• When radiation dominated (H = 1/2t):   
   (d2d/dt2) + 2H (dd/dt)  = (d2d/dt2) + (dd/dt)/t = 0 
                                 d(t) = C1 + C2 ln(t)  (weak growth) 
• In distant future (H = constant):   
   (d2d/dt2) + 2HL(dd/dt) = 0 
                              d(t) = C1 + C2 exp(-2HLt) 
• If flat matter dominated (H = 2/3t): 
    d(t) = D+ t2/3 + D- t

-1  a(t)     at late times 
  
• Because linear growth just multiplicative factor, it 

cannot explain non-Gaussianity at late times 



Super-horizon growth 

• Start with Friedmann equation when k=0: 

                             H2 = (8pG/3) r 

• Now consider a model with same H but 
slightly higher r (so it is a closed universe): 

                        H2 = 8pGr1/3 – k/a2 

• Then d = (r1 – r)/r = (k/a2)/(8pGr/3) 

• For small d we have d  a (matter dominated) 
but d  a2 (radiation dominated) 



• Consider two modes, l1 and l2 < l1 , which entered at 
a1/a2 = l1/l2 while radiation dominated 

• Their amplitudes will be (a1/a2)2 = (k2/k1)2 so expect 
suppression of power  k-2 at k>keq (i.e. for the short 
wavelength modes which entered earlier) 

• After entering horizon, dark matter grows only 
logarithmically until matter domination, after which it 
grows  a 

• Baryons oscillate (i.e. don’t grow) until decoupling, 
after which they fall into the deeper wells defined by 
the dark matter 

 

 

Putting it together 



If there were no 
DM wells to fall 
into, baryon 
fluctuations 
today would be 
much smaller; 
observed 
clustering 
strength → DM 
must exist! 



Transfer function:  T(k)  1/(1+k2) 

P(k)  k T2(k) 

TWDM(k) ≈ TCDM(k) [1 + (ak)2]-5  



Same, but 
position- 
(rather 
than k-) 
space 

s2 (r) = (2p)-3 ∫dk 4pk2 P(k) W2(kr)    W(x) ~ (3/x) j1(x) 



Cosmology from the same 
physics imprinted in the galaxy 

distribution at different redshifts: 
  

Baryon Acoustic Oscillations  



CMB from interaction between 
photons and baryons when 
Universe was 3,000 degrees 

(about 300,000 years old) 

• Do galaxies which formed much later carry 
a memory of this epoch  of last scattering?   



Photons ‘drag’ baryons for 300,000 years… 
300,000 light years ~ 100,000 pc ~ 100 kpc 

Expansion of Universe since then stretches 
this to  (3000/2.725) ×100 kpc ~ 100 Mpc  



Eisenstein, Seo, White 2007 



Expect to see a feature in the Baryon distribution 
on scales of 100 Mpc today 

But this feature is like a standard rod:   
We see it in the CMB itself at z~1000 

Should see it in the galaxy distribution at other z 



Cartoon of expected effect 



Baryon Oscillations in the Galaxy 
Distribution 



Spike in real space x(r) 
means sin(krBAO)/krBAO 
oscillations in Fourier 
space P(k) 

In fact, spike is not delta 
function because 
surface of last scattering 
not instantaneous:  
e-(k/kSilk)1.4 sin(krBAO)/krBAO  



BAO in CMB photons 
on last scattering 

surface … 



… should/are seen in matter distribution at later times 



…we need a tracer of the baryons 

• Luminous Red Galaxies 

– Luminous, so visible out to large distances 

– Red, presumably because they are old, so 
probably single burst population, so evolution 
relatively simple 

– Large luminosity suggests large mass, so 
probably strongly clustered, so signal easier to 
measure 

– Linear bias on large scales, so length of rod not 
affected by galaxy tracer! 



(M. White 2010) 





SD
SS

 



Can see baryons that are not in stars … 

High redshift structures constrain neutrino mass 



BAO in Ly-a forest at z~2.4 

• Signal from cross-correlating different lines of 
sight 

Slosar, Irsic et al. 2013 



• The baryon distribution today ‘remembers’ 
the time of decoupling/last scattering; can 
use this to build a ‘standard rod’  

 

• Next decade will bring observations of this 
standard rod out to redshifts z ~ 1. 
Constraints on model parameters from 10% 
to 1% 


