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We study some non-perturbative aspects of N =2 supersymmetric quantum field theories
(both superconformal and massive deformations thereof). We show that the metric for the
supersymmetric ground states, which in the conformal limit is essentially the same as Zamolod-
chikov’s metric, is pseudo-topological and can be viewed as a result of fusion of the topological
version of N =2 theory with its conjugate. For special marginal /relevant deformations (corre-
sponding to theories with factorizable S-matrix), the ground state metric satisfies classical
Toda/Affine Toda equations as a function of perturbation parameters. The unique consistent
boundary conditions for these differential equations seem to predict the normalized OPE of
chiral fields at the conformal point. Also the subset of N =2 theories whose chiral ring is
isomorphic to SU(N), Verlinde ring turns out to lead to affine Toda equations of SU(N) type
satisfied by the ground state metric.

1. Introduction

N =2 supersymmetric quantum field theories have recently undergone an
intensive investigation from many different points of view: From the string point of
view N = 2 superconformal models in 2 dimensions constitute the building blocks
of N =1 space-time supersymmetric string vacua [1]. From the point of view of
classification of conformal theories, they are in a sense the simplest type to classify,
and a nice subset of them, supersymmetric Landau—-Ginzburg theories, is related
to catastrophe theory [2-5]. From the point of view of topological characterization
of the theory, they have a finite ring of operators (chiral primary fields) [4] which is
believed to basically characterize them. There is a “twisted” version of these
theories [6], the topological version, which has as its physical degree of freedom
only these operators. These topological theories have been studied from the view
point of 2d superconformal [7] and topological Landau—Ginzburg theories [8], and
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from the viewpoint of their properties under coupling to topological gravity in
[9-11].

From a slightly different point of view, N =2 supergravity theories has also
been studied in four dimensions, and it was found that for the construction of the
theory a very special type of Kihler geometry is needed [12]. This in turn is related
to the fact that in the type Il superstring compactification, leading to 2-dimen-
sional N = 2 superconformal theories, the metric on moduli space of a three-fold
Calabi-Yau has special properties, and is basically characterized by a holomor-
phic, topological object (pre-potential) [13,14). This geometry is called “special
geometry”. The metric on moduli space of Calabi-Yau is the same as the
Zamolodchikov metric of the underlying N =2 SCFT, thus relating geometry with
SCFT correlation functions.

In the topological description of N = 2 theories, one of the two supersymmetry
charges plays the role of a BRST operator and the physical operators of the theory
get truncated to the chiral ring. In this way the computations can be performed in
a more or less closed form. The topological correlation functions are basically
combinatorial objects, holomorphic functions of moduli. In the case of special
geometry these topological correlation functions serve as coefficients of differential
equations characterizing Zamolodchikov’s metric on moduli space, which thus
makes the Zamolodchikov’s metric pseudo-topological. The Zamolodchikov metric
which appears for example in the low-energy dynamics of the effective field theory
description of strings is thus characterized by purely kinematical / combinatorial
topological data. In these cases one finds that the Zamolodchikov (Weil-Peters-
son) metric is Kahler and the Kiahler potential is written as a finite sum of
holomorphic and anti-holomorphic “blocks” (periods) in the moduli of target
space.

In the context of supersymmetric quantum mechanics related to LG theories it
was found in ref. [14] that the same system of differential equations that character-
izes the ground state metric (basically the Zamolodchikov metric) at the conformal
point and gave rise to special geometry are also valid off the conformal point. That
naturally raises a question of whether there is a generalization of special geometry
off the conformal point as well.

One of the aims of this paper is to uncover the special geometry for massive (i.e.
non-conformal) theories as well, and explain the rationale for finding a pseudo-
topological metric from the topological viewpoint for both massless and massive
theories. Basically what we find is, that if one fuses a topological theory with itself,
one ends up with topological objects such as the holomorphic pre-potential which
arise in special geometry. If on the other hand we fuse a topological theory with its
conjugate, which we call anti-topological, we end up with pseudo-topological
objects such as Zamolodchikov’s metric. The generalized notion of special geome-
try simply encodes this relation between topological-topological fusion versus
topological-anti-topological fusion and their variation with respect to moduli. We
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show from this viewpoint in precisely what sense they are topological and derive
the equations that characterize them, thus generalizing the results derived in ref.
[14] for Landau-Ginzburg theories to arbitrary N = 2 QFTs. In this way we find a
generalized special geometry to be equally valid on- or off-criticality. Even though
the equations are the same in the two cases, we find a sharp difference between
the solutions to these equations on- and off-criticality. In both cases we find the
metric to be a sum over a finite block of objects, but in the critical theory these
objects (periods) are holomorphic while in the off-critical theory these objects (the
generalized periods) are not holomorphic functions of moduli and are generically
far too complicated to give in closed form. From the viewpoint of chiral rings the
main reason for complication of solutions to special geometry in the massive case
is that in this case the ring is not nilpotent.

These ideas are made more concrete using many explicit examples of massive
deformations of N =2 LG theories, which is the main reason for the unusual
length of the present work. The special examples that we obtain, which are of the
form of generalized affine Toda equations, bring a completely orthogonal direction
of interest to the present work. Namely, many of our examples provide interesting
non-singular solutions to some affine Toda equations in terms of correlations (the
metrics) of N = 2 theories. In this way we can use the methods available to us from
the N =2 theories, to gain insight into the solutions of (self-similar) affine Toda
equations, which one generally does not have a good handle on. Along the way we
are able to reproduce some deep mathematical results for solutions to Painlevé 111
[15] and Bullough-Dodd [16], which had been obtained using isomonodromic
deformation technique and generalize them to other affine Toda theories. We
basically find that the OPEs of SCFT solve the boundary conditions needed for a
non-singular solution to (self-similar) affine Toda equations.

As 1s the case with many works on integrable systems there are many mysteries
which need explanation. We find a number of intriguing results which beg for a
deeper understanding. In particular many of our N =2 massive supersymmetric
theories are themselves described by quantum affine Toda theories (some non-su-
persymmetric and some N = 2 supersymmetric affine Toda lagrangians). In these
cases we find that the ground state metric, which could be viewed as some
particular correlation functions in these theories, as a function of the overall
coupling (temperature or scale parameter) satisfy ordinary classical affine Toda
equations of the same type (or reductions thereof). This is somewhat reminiscent of
the space-time-target duality obtained for critical N = 2 strings [17]. The magic is
even more mysterious: some of the cases corresponding to N = 2 supersymmetric
affine Toda lagrangians (the SU(N) case) turn out to be related to Verlinde’s ring
for SU(N), RCFT [18].

The structure of this paper is as follows: In sect. 2 we review some topological
aspects of N =2 theories, and introduce the idea of topological—anti-topological
fusion. In sect. 3 we derive some equations satisfied by the ground state metric by
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considering a family of N = 2 theories. We also discuss some general properties of
the metric. In sect. 4 we discuss the relation to renormalization group flows, the
c-function and Zamolodchikov metric. In sect. 5 we discuss the reductions to SQM
and in particular derive a rule which allows us to relate different models by
non-invertible change of variables. Moreover we find a “period” decomposition of
the metric which generalizes the known result at the conformal point to the
massive theories. In sect. 6 we discuss some Lie-algebraic aspects of our equations,
which are very helpful in a classification of their solutions. In sect. 7 we consider
some examples related to minimal models and some special massive perturbations
of them. In sect. 8 we consider a few of the examples discussed in sect. 7 in more
detail, using properties of the solutions to Painlevé 111 and Bullough-Dodd [15,16].
In sects. 9 and 10 we study more tricky models related to Verlinde rings. In sect. 11
we present our conclusions. In appendices A and B the properties of the metric in
the UV and IR are discussed respectively. Finally in appendix C the relationship
with the “special coordinates™ of special geometry is uncovered.

2. Topological aspects of N = 2 theories

In this section we review some of the background work which is needed for this
paper. Our main interest for most of the paper is N = 2 Landau-Ginzburg theory,
but many of our constructions are more general, and so in this section we will not
commit ourselves to the Landau-Ginzburg theory, and consider the more general
class of N =2 quantum field theories. Moreover we do not make the assumption
that the quantum field theory is conformal, and our treatment applies to both
massive and massless (conformal) cases. We will be mostly interested in the 1- and
2-dimensional descriptions, but some of what we say generalizes in a simple way to
higher dimensions (and in particular to Donaldson theory [19]).

In an N =2 theory, there are two supersymmetry charges, which we label by
Q% and Q~. The main property of these supersymmetry charges is that

(0"’ =(Q)’=0, {Q",07}=H, (0" =0, (2.1)

where H is the hamiltonian. Topological theory is obtained by declaring Q* to be
a BRST operator [6] and by identifying the BRST cohomology of Q* with the
physical Hilbert space (note that in the context of two-dimensional theories, this
means that we put periodic boundary conditions on the circle in order to have a
supersymmetry operator, i.e. we are in the Ramond sector)

Q% 1y>=0, 1) ~Ig)+Q0"|p).

We can fix the ambiguity of the topological theory in identifying the state, by using
the O~ operator and demanding that the physical states be also annihilated by
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Q~. This is the analog of picking a harmonic representative in the standard
cohomology. As is clear from the standard arguments, this fixes the ambiguity of
adding Q *-exact states to the ground state. In fact using (2.1) we can identify the
topological states with the ground states of the supersymmetric theory.
The topological operators ¢, are defined to be operators which commute with
07, ie.
[Q+» (b,] =0. (2-2)

These fields are called chiral fields. A field which itself is a Q *-commutator acts
trivially on the Hilbert space. It is obvious that chiral fields form a ring, because of
OPE of two of them is Q *-closed and so can be expanded in terms of chiral fields.
But most of the elements that appear in the product are themselves Q*-commuta-
tors, and thus are trivial operators in the topological theory. Since the translation
operator is itself a Q7'-commutator (following from supersymmetry) the chiral
fields and their translations differ by Q*-trivial operators. Thus we see that in
order to obtain the topological product of two chiral fields at different points it is
sufficient to take their product at the same point. This will differ from the fields at
different points by fields which are Q*-commutators. So to specify this ring we do
not have to specify the points at which we put the fields. If we choose a basis ¢,
for the physical chiral fields, we get a ring

¢, = Cfd, + Q*-commutator terms.

This ring is in generic cases a finite ring. In the context of critical theory this ring,
the chiral primary ring, was defined and studied in ref. [4].

The question arises as to whether there is a natural identification of the states
with the operators in the topological theory. This would be obvious if we can
identify a unique vacuum state in the topological theory which we denote by |0).
Once we have such a state then we simply identify the states by the operation of ¢,
on the vacuum

$:10) = [i).

The property (2.2) guarantees that the resulting state is O *-closed and is thus itself
a topological state. So the main question is how we identify the vacuum state. In
general there are a number of ground states which all have zero energy (in the LG
case the number is equal to Witten’s index) and it might at first sound impossible
to pick a “preferred” one. If we were dealing with the SCFT there is a canonical
choice. Namely in that case we have two U(1) charges (the left and right charges)
which labels the vacua and we look for the unique state with minimum (left and
right) charge and identify that as |0). All the other states are obtained from it by
applying the physical fields (chiral primary fields which all have positive U(1)
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charge) on it. Here we have crucially used the properties of the conformal theory,
and in particular the existence of an additional U(1) charge, which is the property
of the critical theory. In the general massive case there is only one U(1) charge and
that counts the fermion number (the difference between the left and right charges
at the conformal point). In particular this is not enough to pick a unique state (for
example in the LG theories all the ground states have equal left and right charges
and thus are neutral under this charge).

One might be led to believe that a canonical choice for the ground state of the
Ramond sector does not exist off criticality, but that turns out not to be so. To see
this we can use the spectral flow to give an alternative definition of the vacuum
state [4]. Consider the Hilbert space based on the NS sector, i.e. circle with
antiperiodic boundary condition for fermions. The spectral flow is obtained by
changing the boundary condition for fermions continuously from antiperiodic to
periodic. This can be done because we do have a conserved fermion number in the
theory even off criticality. In this way we can identify each state in the NS sector
with a unique state in the Ramond sector. In particular the unique vacuum of the
NS sector will flow to a unique ground state of the Ramond sector which we
identify as |0). Note that this description of spectral flow is equally valid whether
or not the theory is conformal. So in this way we see that there is a canonical
isomorphism between the operators in the NS sector and the topological states (in
the Ramond sector).

There is a nice way to implement spectral flow in the path-integral language
which will be very useful for us: Consider a hemisphere with the standard metric
and with some operators inserted on it. The boundary of the hemisphere is a circle
on which we base our Hilbert space. The path integral will give us a state in the
Hilbert space. Now if we were doing the standard N = 2 quantum field theory on
the hemisphere, the fermion spin structure is trivial on it, but that induces an
antiperiodic boundary condition for the fermions on the boundary. So the standard
path-integral, if we do not put spin operators on the hemisphere, will give us a
state in the NS sector as is familiar from the study of SCFTs. The trick is to
consider the topological version of this path-integral. This is equivalent [7] to
putting a background gauge field which couples to fermions number and is set to
be half of the spin connection. In this background, over the sphere the fermion
number is violated by one unit, and over half of the sphere the fermion number is
violated by one half, which is precisely the flow from the NS to R sector. Put
differently, the boundary condition for the fermions at the circle boundary of the
hemisphere is still antiperiodic, but there is a U(1) Wilson line which couples to
fermion number. We can get rid of the Wilson line by changing the boundary
condition of fermions by the holonomy

expli| A| =expli Fl=exp(im)=—1,
p( ‘/;' ) p( j;lemisphere ) ( )
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i.e. it is equivalent to changing the boundary conditions from the NS to the R. This
is the magic of topological theory: it automatically “knows’ about spectral flow.

The topological description guarantees that as long as we put fields which
commute with Q" (i.e. chiral fields) on the hemisphere we get a state at the
boundary which is in the topological Hilbert space, i.e. it is Q "-closed. In fact the
topological nature of the theory guarantees that the topological state that we get
will not depend on the precise metric we put on the hemisphere. Changing the
metric has the effect of shifting the resulting state by the addition of a Q*-closed
state. If we wish to obtain the actual ground state representative we will have to
choose the metric on the hemisphere which makes it look like the standard
hemisphere with an infinite cylinder glued at the boundary to it. In this way the
propagation by exp(— TH) for large T along the infinite cylinder will project the
topological state onto the actual ground state of the hamiltonian.

In this way we see that for each chiral field ¢, we get a state |i) in the Ramond
sector by doing the path integral with that chiral field on the hemisphere. In
particular |0) is the state associated to the identity operator. The topological
nature of the theory will guarantee independence of where we put that field
precisely within the hemisphere. In particular we can move it to the boundary of
the hemisphere, in which case by operator formulation we see that the state is the
same as multiplication of the state by the field ¢,

|i> =¢i'0>,

thus agreeing with the previous definition. Note that in this equation by |i) we
mean the topological class of the state, i.e. |i) may differ from an actual ground
state of the theory by Q7-closed states. Again if we wish to obtain an actual
ground state we should propagate the state along a cylinder for a long time. From
the above we also learn that

é;17)=¢;¢;10>=Cfe, 10) =CFlk), (2.3)

where again the equalities are modulo Q *-trivial states. We can thus represent the
action of the chiral fields in the subsector of vacuum states by the matrix C,

(C)j=Cf

Everything we have said in the above can be repeated replacing everything by its
adjoint. In particular this means replacing Q* by its adjoint Q~, the chiral fields
¢, by their adjoint antichiral fields ¢;, and the chiral ring coefficients C,-j’-< with
their complex conjugate C;f = (Cf)* for the antichiral ring. In the path-integral
definition of the states, we introduce a background gauge field which is now minus
half the spin connection. In this way we get another topological theory which is

simply the conjugate one and we call it the anti-topological theory.
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It turns out to be crucial for us to have a deeper understanding of the relation
between these two topological theories. The crucial link between the two theories
turns out to be the Ramond sector. Namely, the physical states in both theories are
in one to one correspondence with the Ramond vacua, as we have discussed above.
So now let | i) and | j) denote the actual ground states corresponding to the fields
¢, and ¢; respectively. In this way we have found two “preferred” bases for the
Ramond ground states. Of course we can write one in terms of the other, so we
must have

Gl =<IML. (2.4)

The matrix M defined above is referred to as the real structure. It is crucial for us
because it is precisely an intertwiner between the topological theory and its
conjugate. In a sense it allows us to compare a topological theory with its
conjugate. Since the Hilbert space is coming from a quantum field theory we have
a CPT operator which is an anti-unitary operator of order 2. Acting on (2.4) with
this operator and using its anti-unitarity one easily deduces that the real-structure
matrix satisfies

MM* =1, (2.5)

where M * denotes the complex (not hermitian) conjugate matrix to M. In order to
completely understand the structure of our Hilbert space, in addition to the
operator content of the Hilbert space we also need to know its inner product.
Since we have a natural N =2 field theory underlying our constructions we
automatically have an inner produc¢t. That is simply the inner product in the
Ramond ground state. To write it down, we need to choose bases. In particular we
can use the basis where the left and right states are taken to be the chiral basis

or the chiral and antichiral basis

and the complex conjugate of the above inner products. Of course the two metrics
m,;; and g;; are related using the real-structure matrix M

g% =i M. (2.8)

Note that we can deduce from egs. (2.5) and (2.8) the very useful identity which
relates g and 7

n‘lg(n‘lg)*= 1. (2.9)
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The inner product of immediate interest in N = 2 theories is the g metric, because
when we take the inner product of states we take the adjoint of a state on the left
and the adjoint of the state |i) is (7| and not {i|. In particular the metric 7 is not
hermitian whereas g is obviously a hermitian metric. However, as we shall see 7 is
much simpler to compute, and is in fact a purely topological object (it will be clear
as we proceed that n is a symmetric matrix).

To understand the structure of these two metrics better we represent them by
path-integrals. The path-integrals are represented by two hemispheres, one on the
left and the other on the right, joined by an infinitely long cylinder. We need an
infinitely long cylinder to project onto the ground states. In addition we have a
background gauge field, which for the computation of #,; is set equal to half the
spin connection throughout the sphere, and we insert the operator ¢; on the right
hemisphere and the operator ¢; on the left hemisphere. For the computation of
g,;» on the right hemisphere and the right half of the infinite cylinder we have a
background gauge field which is half the spin connection while on the left
hemisphere and the left half of the infinite cylinder we have a background gauge
field which is minus half the spin connection. The fact the the region were the left
and right meet is flat, means that the gauge fields glue smoothly from one to the
other, and we have a well defined gauge field. Also we insert the field ¢; on the
right hemisphere and the field ¢; on the left hemisphere.

From the above path-integral definition it follows that essentially both metrics
are topological, where by topological we mean if we perturb the corresponding
positions of inserted fields or the metric on the hemisphere, as long as there is an
infinitely long intermediate cylinder, with a fixed perimeter 8, the result of the
path-integral does not change. This is due to the fact that local perturbations of
this kind, as noted above, are equivalent to operations by QO or O~ on some
state, and propagation along the cylinder of length T results in exp(—TH)Q*
which goes to zero as T — . However 7 is more topological in the sense that even
if we change the length of the intermediate cylinder or even completely change its
metric, or even move the positions of fields from one hemisphere to the other, the
result will still not change. This follows from the usual definitions of the topologi-
cal theory, as all such variations are Q*-commutators and since the fields commute
with QO we immediately see that the variations do not change the result of
path-integral. Note that since we can exchange the position of the operators
between the two hemispheres 7 is symmetric. The fact that n is purely topological
allows us to give a simple closed form for it in many cases. The result for the LG
theory will be mentioned below. This general notion of topological invariance, i.e.
without necessitating an infinitely long intermediate cylinder, would not work for
g,; because we get both Q* and Q~ variations on the right and left hemispheres
respectively which does not allow us to complete the argument. In this sense 8
which is obtained by “fusing” a topological theory with its complex conjugate is
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only “partially” topological in the sense discussed above *. In particular it depends
on the perimeter of the cylinder 8. It turns out that changing B is equivalent to
changing the scale of the theory, and the one-parameter family of metrics g, ; that
we obtain can be viewed as the trajectory of the metric under RG flow. In the
following we set B =1, and implement the change of scale by flow in the
coupling-constant space of the theory. Even though g looks only pseudo-topologi-
cal, as we shall see later in this paper the purely topological correlations allow us
to completely determine it.

It is also easy to see these constructions in the operator language. In particular
in this way we can show that even though in the above definitions of n and g we
have used the ground states themselves the metric 7;; is independent of which
representative we choose. This follows by noting that changing for example the
representative {i| is equivalent to shifting it by {a | Q™, but this does not affect the
inner product {i|j), because Q* |j> =0 (for any representative of |j)). Note
that the same argument to show independence of g;; of the choice of the
representative would fail and so this quantity does depend on the fact that we have
to actually choose the precise ground states representing the cohomology classes.

So far we have been general. We will now illustrate these ideas in the context of
N =2 LG theories. These models are defined by taking a number of superfields X
in two-dimensional space with two left and two right moving anti-commuting
coordinates denoted by #* and #*. The superficlds are taken to be chiral which
means that

) d —
DX, = +6"—|X,=0=D"X,,
1 ((96+ az) i !

and similarly X, is anti-chiral (and satisfies the above equations with 6" and 6~

i
exchanged). Then one writes down a lagrangian

Z=;[d0 K(X,, X))+ [d*0 W(X,) +hc,

which has N = 2 supersymmetry. This consists of two terms, the term involving K,
the D-term, and the F-term W, the superpotential, which is a holomorphic
function of X,. If we represent the operators corresponding to D * and D= acting
on the Hilbert space as

D*-QfF, D*-Q

Rt

>

* The construction of topological—-anti-topological fusion can be extended to arbitrary genus. We take a
surface consisting of alternating regions, supporting the topological theory and its conjugate respec-
tively, which are separated by infinitely long tubes. However, once we know 7, g and C on the sphere
for arbitrary 8 we can write down the corresponding answer at higher genus using simple ideas of
sewing.
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we can write the two supersymmetry operators Q% discussed above as

0'-0f + 0k

When W is quasi-homogeneous the IR fixed-point of the LG theory is believed to
describe an N =2 superconformal theory [2,3]. Here we will not make these
restrictions, and our discussion is equally valid for the critical as well as the
non-critical (massive) theory. It is easy to find the chiral ring &# for LG models. In
fact the chiral ring is generated by the X, themselves. All we have to do then is
find the relations in this ring, or put differently, which product of the X, is
(O *-closed. These relations will come from the variations of the lagrangian, which
are the equation of motion for this theory. Varying the action with respect to X;

and doing the 6%, 8* integrals in the D-term gives us
W (X;)=-D*D*9,K(X,, X;).

This means that the chiral fields containing d;/ are Q*-commutators and thus are
trivial in the ring. Therefore we learn that the chiral ring of the theory is simply

H#=C[X,]/0W.

An important thing to note here is that W completely determines the ring (known
as the singularity ring of W) and the D-term K does not affect the ring. In
particular the D-term is trivial in the sense of both supercharges Q*. This in
particular implies that the variations of K is trivial in the sense of both the
topological theory and its conjugate. Thus, it will not affect the metrics we defined
above, and so the two metrics just depend on W. The metric n turns out to be
particularly simple to compute and it is simply computable using the techniques of
topological theories. A topological description of LG theories and the computation
of its correlation functions is given in ref. [8]. Alternatively, one can apply
dimensional reduction to supersymmetric quantum mechanics, and compute the

metric i using properties of solutions to the supersymmetric Schrédinger equation
[14]. The answer is

i = ;i Dop.= il j) = Resw[¢,—¢,~]
in terms of the Groothendieck residue symbol Res,,[-] defined by

1 H(X)dX'A ... AdX"

R =
eswle] (2wi)"fr I W, W ...9W

= 2 #(X)H " (2.10)

diw=0

where © denotes the hessian of W: = det 9,0, and we are assuming that the
critical points are non-degenerate in writing the last equality. Note that with the
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above result, under field redefinition, the fields do not transform as scalars. This
“anomalous” behaviour, is connected with the fermion zero-modes in the back-
ground gauge field which we discussed for the topological theory. This anomalous
behaviour will also be explained geometrically below in the context of SQM.

The computation of g;;, or equivalently the real-structure matrix M, turns out
to be far more complicated and the study of its properties is the main focus of this
paper. In order to study these we need to review some techniques developed for
this purpose. This will be done in sect. 3.

3. General properties of the metric and its variation

The basic method to compute the metric g is to study its behaviour under
perturbations which preserve the N =2 supersymmetry. In this setup, using
standard perturbation theory techniques, one can derive differential equations
which are satisfied by g. The coefficients of these differential equations turn out to
be completely fixed by the chiral ring &% and thus, in the case of LG theories, they
only depend on W as they should.

The idea that there should be a differential equation on the coupling-constant
space is not surprising. In fact in the context of non-degenerate perturbation
theory in quantum mechanics it is well known that there is a canonical curvature
on the perturbation space, and the integral of this curvature leads to the Berry
phase [20]. In the case of degenerate perturbation theory, this leads to non-abelian
gauge fields on the coupling space [21]. Our case is generically of this type, with
the added structure that we have a holomorphic parameter space and that gives us
some additional structure.

We will discuss the idea in the general setting. Again, our considerations apply
to conformal and non-conformal cases with equal validity. We consider changing
the action by giving expectation value to chiral and anti-chiral operators. This
means that we vary the action by

AL = fdzﬁ At + c.c.,

where ¢, correspond to the (complex) couplings in the theory. As we change ¢, the
Ramond vacua change. In perturbation theory one usually defines the variation of
the state to be orthogonal to itself (and to the other states with the same energy).
It is however more convenient to first allow an arbitrary basis for the perturbation
and introduce a connection in the space of vacua which projects out the compo-
nents of the perturbed vacua which are not orthogonal to the vacuum states. Let us
denote this covariant derivative by D,. Its basic property is that

(b|D;lay={blé;—A,;|a)=0,
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where a, b label the Ramond vacua in some unspecified basis and (b | denotes the
state adjoint to |b). Put differently, we can define a gauge field A4; on the
coupling constant space given by

A,z=<bld|a). (3.1)

It is easy to see that under a coupling-constant-dependent change of basis for the
vacua, the quantity 4 transforms as a gauge field. Similarly we can define 51‘ and
A;. Let 77 be the space (the vector bundle) of Ramond ground states over
coupling-constant space on which g defines a hermitian metric. Then it is easy to
see that g is covariantly constant with respect to the gauge field we just intro-
duced. In fact, this is how we defined 4. One obtains

Dig.;5 =085 —Ai8ch _Ailg_)gai =0=Dg,

where

_ - Uk
Aiﬁ;:AiaﬁgbC’ Af=(Az) .
It is natural to compute the curvature of these connections. We find *

[D;. D] =|D,, B;] =0,

[D,. D] = -[c..C}. (32)

Moreover one has

D.C,=DC,, DC,=DC, DC,=DC,=0. (3.3)

. where C,; and 6]- are the matrices which represent the action of ¢; and ¢; on the
vacuum states. Since in the topological phase we can moves fields around, it is
clear in addition that

[c..c]=0=][C.C)].

In the conformal limit this system of equations was derived and studied in the
physics literature from many different view points [13,14], and gives rise to what is
called “special geometry”. In fact it has been shown in the context of Landau-
Ginzburg models [14] that these very same equations remain valid even off the
conformal point. The technique used there involves a careful study of the zero-en-

* These equations are a natural generalization of equations studied by Hitchin corresponding to a
reduction of self-dual Yang—Mills equations to two dimensions.



372 S. Cecotti, C. Vafa / Topological - anti-topological fusion

ergy solutions to the Schridinger equation in the context of SQM. As we will see
these turn out to be quite general and apply to arbitrary N = 2 theories, regardless
of whether they come from LG theories and they can be easily derived from the
path-integral viewpoint of fusing the topological theory with the anti-topological
theory.

In the usual non-topological setup, one can derive incorrect “theorems” by a
naive treatment of supersymmetric Ward identities which would lead one to
believe that the metric is constant, independent of the coupling constants. The
“argument” goes as follows:

d
at?

(KlhyL [d*z a0 (klo, 1) =0,

i.e. using the fact that the ground states are annihilated by both Q7F, the
Grassmann integral seems to kill the above term. However, this is incorrect. The
difficulty lies in ignoring contact terms. It fact it is shown in ref. [22] that in the
conformal case such terms are crucial in obtaining the correct Zamolodchikov
metric. In the critical N = 2 SCFT theories (corresponding to strings on Calabi—Yau
manifolds), the contact terms were found to be crucial in getting the correct
answer [23]. However, amazingly the topological theory allows us to be “naive”
about contact terms and ignore them and get the correct answer! This is precisely
because contact terms which are UV singularities have no invariant definitions in
the topological phase, as we can move fields around with no consequence for
correlation functions.

Before turning to the derivation of these equations let us describe their
interpretation. The first line in eq. (3.2) is telling us that the gauge connection is
unitary, and the second is telling us that its curvature is computable using the
commutators of the ring of the topological and anti-topological theory. Combined
with egs. (3.3) one sees that we can introduce “improved” connections which are
actually flat, namely consider *

V=di(D,+C,),
V=di'(D, +C,). (3.4)
Then the new connection V + V is flat,
Vi=Vi=VV+VV=0. (3.5)

V + V is the analog of the Gauss—Manin (GM) connection well known to mathe-
maticians [24] which in the physics language plays a role when we are dealing with

* One could as well consider the dual connection 3’ = D — C, 0’ = D — C which is also flat.
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marginal instead of massive perturbations of conformal theory. Indeed, when the
N =2 theory is a LG theory which has a o-model interpretation, it is the usual GM
connection (see ref. [14] for details).

In order to prove egs. (3.2) and (3.3) our strategy will be as follows: We will first
show that it is possible to choose a holomorphic basis in which a, b run over chiral
indices and with

k _ o kF —
A[] =g A;j;—O.

Once we show this (and similarly the conjugate version of it) the first line in eq.
(3.2) will follow. Similarly, the fact that in this basis C; is holomorphic implies that

D,C,=4,C,=0,

which with its conjugate version will prove the second line of (3.3). For the other
equations we will have to work harder.

Let us start by showing that in the chiral basis we can choose a holomorphic
gauge, i.e. a gauge in which the antiholomorphic components of the gauge field are
zero. As we shall see, the topological path-integral automatically picks this gauge.
By definition of the gauge field we have to compute

Ak =n*(113] ). (3.6)

The matrix element in the above equation can be conveniently represented by a
path-integral: We represent the state |j) by a topological path-integral on a
hemisphere with a long tube attached to it with the field ¢, inserted in it. This
space (with the long tube attached) we call the right-hemisphere Sg. In order to
find 9, j) all we have to do is to insert the operator

[ d?z a%* 5,:] 4’2 D*D* 4,

Sk Sk
in the path integral. To compute the matrix element in (3.6) we can create the
state {/| by a topological path integral on a left-hemisphere S|, with ¢, inserted,

again with a long tube attached, and glue it to the path-integral on the right sphere
Sg- This we will represent symbolically by

L7

Since Q7 is a symmetry of the topological theory and ¢; is closed under it, we can

write this as
<¢, (/SD ¢,-)¢,>.

Aijl = <¢1

Q+
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This vanishes because the topological theory on S; produces a state which is
annihilated by Q%. Thus we have seen that the path integral in the chiral basis
provides a holomorphic basis for the connection in which the anti-chiral compo-
nents of the connection vanish. This concludes the first thing we wished to show.

Now we turn to harder parts of the derivation and show how the second line in
eq. (3.2) can be derived. To do that we have to show that

— 1!
%Ay — A5 = [Ci> C,']k, (3.7)

where we have used that fact that in our basis the anti-holomorphic component of
the connection vanishes, and thus there are no commutator terms on the left-hand
side. In fact we know that even the second term on the left-hand side is identically
zero, but we will keep this as it cancels some of the terms from the first term on
the left-hand side and slightly simplifies our analysis.

Using the path-integral representation of the left-hand side of eq. (3.7) it is easy
to see that, after some obvious cancellation between terms, we get a path integral
on the sphere which symbolically can be represented by

Loy
o mallieealy e

Now we will show that these two terms give —E’jCi and C,.C_‘j respectively (up to
terms which cancel between them). Let us concentrate on the first term

(o3 o7 o)y

Just as discussed before we can move D* to the right where it kills everything
except for D~ acting on ¢, which converts that into 9 (by using the fact that D*
kills ¢; and using the (anti-)commutators of N = 2 algebra). Similarly we can move
D™ to the right and again the net effect on the path-integral on Sy is to replace
D™ with d. So we are left with *

1315

* In order to more D* and D* we have used the fact that there are two topological charges: Q" and

o

afAikl _aiA]kl = <¢k([s D+l—)+$j)
L
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Now we can do the integral of the field on the right hemisphere and get a
contribution on the boundary circle C on the cylinder which separates the two

regions S; . We get
(15| (.00 o)

where d, denotes derivative in the normal direction to the circle C, i.e. in the
infinitely-stretched direction of cylinder. We can replace

d, b, = [H: d’,]

Since | ¢, is the same as the vacuum state |7), it is killed by H and so we can
write the above matrix element as

H 1

(o)

<¢>k ( /. L¢,)
We will divide the integral on the left-hand side to two roughly equal parts each of
which is infinitely stretched, the first part includes the field ¢, and contains the
curved piece of S; with roughly half the infinitely stretched cylinder, while the
second part includes only the other half of the infinite cylinder of S, . The integral
on the part further on the left will not contribute to the above matrix element,
because the state one gets propagates infinitely long on the second part of the
space, and so the net effect is projection on ground state which is accomplished by
the exp(— TH ) for large T, and the final state we get on the circle C is thus killed
by H in the above matrix element. We are thus left with the second part of the
integral on the left which is on a very long cylinder. Let 7 denote the long direction
on this cylinder and let us take it to run from 0 to 7> 1. Meanwhile the empty
first part of the path integral will convert the path integral with the insertion of ¢,
to an actual ground state given by {k|. So we are left with

~Ckl fdr P& (1)H P ¢,11),

where we have written the integral on the cylinder as first running around the
perimeter on the cylinder at a fixed time  and then integrating over all 7. Since
the H Kkills the ground state on the left, we can replace H with its commutator
with ¢$j(7-) which gives us a —875135]. Thus doing the integral over 7 becomes easy
and we get the contributions from the boundaries at 7 = 0, T. The contribution at
7 =T is on the same circle as the one the operator $¢, is inserted and is canceled
by the same term from the second term of eq. (3.8). We are thus left with

— (kI &, exo(—TH )G o, 11,
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where we have to send T — «. This has the effect of projecting the intermediate
states to the ground states of the theory, and we recover the definition of the chiral
ring matrices * and so we get

- (qci)kl

And similarly for the second term in eq. (3.8) we get the same as above with C; and
(7}- exchanged places and with the opposite sign. We thus get the commutator on
the right-hand side, thus completing the proof of the second line eq. (3.2). Using
very similar techniques, which we hope the reader would be able to reproduce, one
can verify the validity of the first line of eq. (3.3).

On closing this section let us note that in this holomorphic basis, we can write
everything in terms of the metric g and the holomorphic chiral ring elements C,;-‘.
Namely from the fact that g is covariantly constant and that the antiholomorphic
component of the gauge field vanishes we have

Ay = _gk](aigil)ﬂ'

Moreover, just from the definition of the basis we have

(T, = (s ),

Putting everything together, the zero-curvature conditions (3.5) become differential
equations for the metric g. We get

3(g0,87") —[C) (€] =0, (3.9)
6,C,—0,C+|g(ag"). ;] - [2(387"). ¢ =0, (3.10)

all other conditions being either trivially satisfied, or consequences of these two
together with known properties of the topological functions ijj and 7,

As we shall see in more detail in subsequent sections these equations have
“magical” properties, making them a natural generalization of the so-called
Special Geometry which plays a key role in understanding the geometry of the
moduli space of N =2 conformal ficld theories (related to CY manifolds). One
important miracle is already evident from this discussion: our non-linear differen-
tial equations are always in the form of a consistency requirement for a set of
linear equations, i.e. they always admit a zero-curvature (Lax) representation.
Instead of eq. (3.9) and (3.10), we can study the associated linear problem

Vip=Vy=0. (3.11)

* We have taken the perimeter of the cylinder 8 to have unit length, otherwise the commutators will be
accompanied with a factor of 82,
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In this abstract sense our equations are always solvable. As we shall see below,
because of this Lax representation, for simple models the equations have a
tendency to reproduce celebrated equations of mathematical physics. More sur-
prisingly, generally speaking, to solvable models in the world-sheet sense, models
which lead to infinitely many conserved currents and connected with factorizable §
matrices, we find solvable (classical) systems for the dependence of ground state
metric as a function of coupling-constant space (the “target” space). Moreover
these equations tend to be of the sample type! (Quantum affine Toda theory as the
world-sheet theory, and classical affine Toda theory of the same type (or its
reductions) as the equations satisfied by the ground state metric!) This bizarre
duality between world-sheet and target phenomena is reminiscent of what one
finds in the case of critical N = 2 string theories [17].

Not all the solution to the above equations can be accepted as ground state
metrics. There are other conditions to be satisfied. First of all, g should be a
positive-definite hermitian matrix. Furthermore the metric should have all the
symmetries of the problem and in particular in the LG case, it inherits all the
(pseudo) symmetries of W. Moreover, as mentioned before we have the “reality
constraint”

E

n”'¢(n 'g) =1.

There are some general properties of the metric which follows from the above
equations. Take the trace of eq. (3.9) which gives us

d:0, log det g =0,
ie.
det g =1f(¢)|> with f(r) holomorphic.

In particular, we can find a holomorphic basis such that det g = 1.

Another general property of g which should be consistent with our equations is
that the metric should not depend on t°, the coupling associated to the operator
1. Indeed, adding a constant to the lagrangian in chiral superspace does not
change the model because the Grassman integration over superspace Kills it. This
is consistent with our equations. In fact, C;= 1 and hence it commutes with
everything. This simple remark has a very useful generalization. Sometimes the
N =2 theory has a (pseudo)-symmetry such that the space of vacua viewed as a
representation of a subring %' of % generated by some ¢; decomposes into
orthogonal representations. Then if in a given irreducible representation some
non-trivial operator reduces to a multiple of unity, {i]j) (]i) in the given
representation) is (essentially) independent of the corresponding coupling.
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At this point a natural question arises. Are these conditions sufficient to
uniquely determine the metric or not? A priori, one would think that the above
differential equation should be supplemented with boundary conditions in order to
predict g. However, the analogy with the geometrical case (the variational Schot-
tky problem) which is the geometrical interpretation of these in the context of
marginal operators of conformal theories suggests that generically the above
conditions already lead to a very overdetermined problem. Then just one boundary
condition would give a solution satisfying all the requirements simultaneously. In
this sense, the equations predict their own boundary conditions. Although we do
not have a general proof of this statement *, below we shall show in many explicit
models how the equations are strong enough to predict their highly non-trivial
boundary conditions. In particular the OPE of conformal theories are predicted by
consistency alone and they agree with the results previously obtained. As a
by-product we shall also reproduce some deep mathematical results in the context
of isomonodromic deformation theory (together with some generalizations).

4. RG flow, Zamolodchikov metric and c-function

In the context of perturbing quantum field theories one usually defines a one
parameter family of quantum field theories related to each other by a change in
scale. This defines a “flow” on the space of quantum field theories which is known
as the renormalization group flow. Conformal theories are precisely the fixed
points of this flow. For a given theory characterized by a point on the coupling
constant space, one defines an UV (ultra-violet) and an IR (infra-red) fixed point
defined as the short-distance, and long-distance limits of that given theory.
Generically one starts with a theory which is obtained by relevant perturbations of
conformal theory so that the UV fixed point is the theory we started with. The
infrared fixed points are generically infinitely massive theories; however, if one
chooses the perturbation of the quantum ficld theory judiciously, one can end up
with another conformal field theory as an IR fixed point. The study of this kind of
situation in 2-dimensional quantum field theories was given a big boost by the
work of Zamolodchikov [25]. In that work a function was defined on the parameter
space, the “c-function”, which has the beautiful property of decreasing along the
renormalization group flows, and whose critical points correspond to fixed points
of RG flow, i.e. CFTs. Moreover Zamolodchikov defined a metric on the parame-
ter space, using the two-point function of perturbing operators on the plane at a
fixed distance.

As we have been studying perturbed N = 2 SCFTs in this paper, it is natural to
ask how the RG flows look in this context. Some aspects of this has been studied

* Even in the geometrical (conformal) case there is no general proof.
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[26]. We will focus on the case of Landau—Ginzburg theories. The non-renormal-
ization theorems of N = 2 theory come to our aid in the study of RG flows. These
state that the superpotential W of N = 2 theories does not get corrected perturba-
tively. We will take this to be true non-perturbatively. In fact it appears that the
non-perturbative non-renormalization theorem can be proven along the following
line of argument. In flat space, where the spin-connection vanishes, the functional
measure for the LG model is identical to that of the topological theory with a
certain gauge-fixing term. The topological theory is not renormalized just because
there are no local degrees of freedom *. Then its quantum effective action I’
should have the form

=T, +sArl,

where s is the topological Slavnov operator. In the LG context this equation is
interpreted as the N = 2 non-renormalization theorem. Indeed, the usual super-
diagrammatic proof of this result [27] consists of a loop expansion of this equation.
For other viewpoints, see sect. 4 of ref. [5]. Anyhow, some evidence for the validity
of this kind of conjecture is the correctness of some of its consequences [2,3]. To
be more precise, even though we take W not to change, the action will pick up the
supervolume factor. If we take z > Az, 8 > A~ /20 we get

Jd*z a0 w(x) -2 [d*z d°0 W(X).

This overall factor of A can be gotten rid of in the leading terms of W (the highest
degrees of fields) by a field redefinition with the effect of rescaling the rest of the
couplings. In this way the rescaling of W by A generates a flow. The IR limit is
when A -« and UV is obtained when A — 0. This we take as our working
hypothesis as to what the RG flow is for us. Needless to say the D-terms are
expected to get corrected in a much more severe way, but as we have seen in
previous sections, luckily our computations for the ground state metrics are
independent of that **.

Now it is natural to see whether we can compute the form of the metric g in the
UV and IR limits. These will also be a kind of “boundary condition” for the
differential equations we have discussed, egs. (3.9), (3.10). In the UV, as A — 0, we
start from a conformal theory. In other words, in this limit we can take W to be
quasi-homogeneous by rescaling of the fields. For N = 2 LG theories, this problem
has been solved in ref. [14] which shows how the differential equations (3.9) and
(3.10) and other basic properties of the metric discussed above lead to the answer.

* The topological Green functions are computable. From their explicit form the non-renormalization
is obvious.

** In the formulation of topological-anti-topological fusion of sect. 2, the perimeter 8 of the
intermediate cylinder can be identified with A.
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It turns out that the answer can be written in a simple closed form that we will now
discuss. Let ¢,(X) be a basis for the chiral primary fields of the LG theory. Then
the metric can be given by finite-dimensional integrals over the variables X;. For
instance, if ¢(X,) is relevant (i.e. q(¢,) < 1) one has the very compact formula

T <¢i$j> = f I_IXm d)—(l ¢i(Xk)$j()?k) exp(W — W)- (4.1)

We have to be a little careful with this integral. For one thing for large values of
fields it is typically a highly oscillatory integral. Of course our intuition says that
these highly oscillatory parts should not contribute appreciably to the integral. This
intuition can be made more precise by defining the above integral using surfaces of
constant W. Alternatively, we can define the above integrals by demanding
Riemann bilinear identities to hold: Let BT¥C C” denote the asymptotic regions in
C" where Re W — +w. Here n denotes the number of variables. Let y,* label a
basis of equivalence class of the n-chains in C”, whose boundary dy,* CB¥, in
other words they define a basis of the relative homology classes

y* €H,(C", BY).
Moreover, let C; i denote the intersection matrix between these cycles
Ci=v" Ny -
Then applying the idea of the Riemann bilinear identity to the above integral we

come up with the following result *:

gij|

relev.

= [ ¢ X) exp(W)C™ [ §,(X,) exo(~W). (4.2)

Ym

The residue can also be described in this way. One has
nu=f7¢,»(Xk) eXp(W)C”"f+¢,.(X,() exp(—W)
Yi Yo

for q(¢;) +q(¢;)<c/3
=0 otherwise. (4.3)

Note that the above integrals are well defined by the choice of the cycles on which
we integrate them. In appendix A we derive these formulas, by showing why they
provide solutions to egs. (3.9) and (3.10). It is important to notice that eq. (4.2) is

* Technically speaking, the symbols y,* represent locally-constant families of homology cycles rather
than given cycles. This remark applies throughout the paper.
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valid only at the conformal point where W is quasi-homogeneous. For more
general W the story is far more complicated and cannot be described by such a
simple integral. However, using SOM, even in those cases one can write similar
expressions but one has to replace the fields in the above by the exact solutions to
Schrodinger equation. This will be discussed in sect. 5. Instead eq. (4.3) is valid for
arbitrary W’s. More precisely, the general formula is

1= [ 6 X) exp(W)C™ [ 6,(X,) exp(=W). (4.4)

i Ym

However here there is a subtlety. Whereas both sides of these equations transform
the same way under a change of basis in %, they transform differently under a
change of the representative of BRST-classes

b X)) > (X)) + Zhi(Xk) W.
!

Then eq. (4.4) holds only for special representatives. The special operators ¢, are
those associated to the special coordinates of TFT [10,28]. These coordinates are
discussed in appendix C. There eq. (4.4) is proven. With generic representatives,
the r.h.s. of eq. (4.4) would differ from 7 because of spurious mixings of the
operators of charge g with those of charge g — k (k a positive integer). Modifying
the definition as in eq. (4.3) we disentangle this mixing. Then eq. (4.3) holds for all
choices of the operators ¢,. See also ref. [29].

In the case that W =0 defines a Calabi—Yau manifold in weighted projective
space these results are all consistent with what is known as special geometry. In
fact the integral representation of the metric (4.1) is very reminiscent of the period
integrals of special geometry, but now in the context of general LG theory. We will
see more connections below.

We can vary W by marginal operators, and remain in the class of conformal
theories. Then it is natural to ask what is the relation between the g we have
computed, and Zamolodchikov’s definition, which gives a natural metric on moduli
space of conformal theory. As we have discussed spectral flow relates chiral
operators to the ground states, and so the metrics that we have computed must be
related to the metric that Zamolodchikov defines. This relation is quite precise in
the case that the perturbations are marginal and preserve the conformal properties
of the theory. In particular using conformal Ward identities it is easy to show that
what we have computed in this case is

2= (6,(0),(1))

evaluated on the sphere. This is not precisely the metric that Zamolodchikov
defines for two reason: The important reason is that ¢, and ¢, are not themselves
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the perturbing operators, but rather [ d’6¢, and the complex conjugate of it are
the perturbing operators. That is easy to implement, as again the superconformal
Ward identities relate these to the above computation by multiplication by a factor
of g7 where q; is the U(1) charge of the field ¢; (which we assume to have equal
left and right charge — otherwise we would get g;, g, ). Note in particular that the
identity operator gets projected out once integration over Grassmann coordinates
is performed. For marginal operators the charges are all 1 and so this does not
affect the above metric at all. The other point to bear in mind is that Zamolod-
chikov’s definition is the expectation value of two operators, and we need to
choose a correct normalization for the vacuum by dividing out by (0]0). So for
conformal deformations we see that the Zamolodchikov metric G is related to our
g simply by (the index 0 labels the identity operator)

G,;=8i;/8m> (4.5)

where i, j run over the marginal directions.

It turns out that quite generally, one can show that the metric G for the metric
on moduli space of N =2 SCFTs is Kihler. This is in fact true for arbitrary N =2
SCFTs and not just LG theories. In the conformal limit we have an extra U(1)
symmetry, with respect to which all chiral primary states, except for the identity
operator which is neutral, have positive charge. Then by charge conservation we
have

g();=gkﬁ=0 for k?ﬁo,

(gClg7"), =0 for k=+0.

Let the indices i, j correspond to marginal perturbations, i.e. chiral primary fields
of charge g = 1. Then from (3.9) we find

—3;0, 10g{010) = [af(gaz‘gﬁl)]oo = (Ci)okgkiq%]gm =8ii/8w = Gijs

where we used that C,f=C/ =8F. Let |p) be the Ramond state of maximal
charge dual to |0) with respect to the pairing ;. Using eq. (2.9) we see that

30, logp|p) = — 39, log00).
So we get
G,; = d,0; log(pl pr

Thus we find that in the N = 2 case the Zamolodchikov metric (along the marginal
directions) is Kihler with potential K =log{p|p). This is a result due to Periwal
and Strominger [30].
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In the case of LG theories the integral representation of the metric (4.1) implies
that we can write the Kahler potential as an integral

g =eX= [TTdX, dX, exp(W ~ ). (4.6)

In the case that W is of a form to be directly related to Calabi—Yau manifolds [31],
i.e. with integer é and the number of variables n = ¢ + 2, then doing the integral
above with respect to one of the variables (with a suitable change of variables)
results in 8(W) in the integrand. It was observed by Greene that if one continues
this formal integration one more step one ends up with fw A @, where o is the
representative of the (&, 0)-form on the manifold W =0 defined in weighted
projective space. So in this case we have

C‘K=_/‘a)/\6,

which is a well-known result due to Tian [32]. One should emphasize that (4.6) is
valid regardless of a Calabi-Yau interpretation of the LG theory. From the other
equations in (3.9) we get additional constraints on this Kéhler potential. It is easy
to show that they reproduce the conditions valid for a variation of Hodge structure
on the algebraic hypersurface W =0 in weighted projective space, which may or
may not be a CY manifolds. This was discussed at length in ref. [14].

All we have said so far is only valid at the conformal point, i.e. the limit where
A — 0. Now we wish to discuss what is the form of the metric in the IR, i.e. when
A — o, In such a case the critical points of W, i.e. dW =0 which are the minima of
energy, become infinitely separated from each other, and to leading order do not
see ecach other. In other words to leading order the metric becomes diagonal in
basis of chiral fields corresponding to excitations near the vacua. So we can base
our physical vacuum by shifting fields to correspond to each one of the vacua we
wish to study. If the critical point is not a simple zero of dW, then the field
configurations near that critical point will still describe a (massless) conformal
theory and what we said above about the computation of g remains valid for this
part of the metric. However at the critical points of W for which dW has a simple
zero, we end up with a massive theory. In the limit that A — o the mass goes to
infinity proportional to A. Again in this case the metric is trivial to compute using
free massive field theory.

These vacua will not completely decouple from each other, in the sense that
there are instanton corrections which tunnel from one vacuum to another and
provide off-diagonal elements for the metric which are exponentially small as
A — . In order to describe this situation, let us take the case where all the critical
points of W are simple, i.e. that they all give rise to massive theories. It is
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convenient to use the “point” basis for .%#. Two holomorphic functions f,(X) and
f>(X) represent the same element in % iff

FX) =F(Xe) VX,

where X are the critical points; this follows from the residue formula (2.10). So
we can label each equivalence class by its values at the critical points. We denote
by ¢, the class such that we get 1 at X, and 0 at X, (h # k). In this basis, as
A — 0 we get

B
8= To(x) 1

where 9 denotes the hessian of AW evaluated at the critical point. In the case of
one field, one can also give a general form for the first correction to this classical
limit. One finds that if there is a primitive soliton connecting the two vacua, the
condition for the existence of which has been studied in ref. [33], one obtains a
correction of the form
Exn ~1/2
——77 = (47 Zs) exp[—2z,,] k+h, (4.7)
(817 8&n7)

where
Zi, = A W(X) —W(X,) I,

and «,; is a phase factor. Here 2z,, is equal to the mass of the soliton connecting
the two vacua. This result is discussed in appendix B.

Having discussed the two limiting cases of UV and IR, it is natural to ask what
can be said in general about the properties of the flow in between. In particular,
does there exist a natural “c-function” for us? What is the relation of Zamolod-
chikov’s metric to our ground state metric g away from the conformal point? We
will now address these questions in turn.

The central charge of the SCFT is proportional to the maximum charge in the
ring of chiral primary fields [2,4]. Indeed

¢/3=C=qpu-
In the Ramond sector the charges are shifted by —¢ /2, and they are symmetrically
distributed between —¢/2 to /2. 1t is natural to try to define this charge, even off
criticality, and view it as a “c-function”. We should in fact be able to do more: The
charges g, of the chiral primary fields are all on the same footing from an abstract
point of view. So we must be able as well to define g-functions corresponding to
the charges of all these operators. In fact there is a theorem in Singularity Theory
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[34] stating that all these functions would satisfy a “c-theorem”. More precisely,
suppose we perturb a singularity (which corresponds to a given N =2 critical
theory) in order to get a simpler singularity (which is interpreted as the corre-
sponding IR fixed point). Let A denote the number of chiral primary fields. Order
the charges of the chiral primary operators in a non-decreasing sequence

0=¢g,<q,< ... <qs=¢/3,
then one has
A <qp+4(c—¢") <qys, (4.8)

where the primed quantities refer to the IR fixed point and § =4 — A’ is the
difference of Witten indices between the UV and the IR theories.

Motivated by these observations one naturally looks for a definition of a
“charge” matrix. Note that by a change of phase of the Grassmann variables, we
see that the phase of A is not a physical degree of freedom and all quantities
depend on |A]. Let

A=¢e".

In other words, the metric and all the other physical quantities depend on 7
through its real part 7 + 7. Now we are to define a notion of a charge matrix, using
the only quantity available to us, namely the ground state metric g. Near a
conformal point g becomes diagonal in a basis of ground state vacua with definite
charge. One can easily see using the Ward identities that, in the basis defined by
our path integral, as A - 0 g behaves as *
- —q;—n/2

8i~ (AA) ’
where here g, denotes the charge of the ith Ramond vacuum. We thus see that
near the critical point the matrix

g8 —n/2

is a diagonal matrix with eigenvalue equal to the charges of the Ramond vacua. In
particular the maximum eigenvalue of this matrix reproduces c¢/6 =¢/2 near
criticality. So let us define the Ramond charge matrix g as

q=g0,8" "' —n/2, (4.9)
i.e. the “gauge connection” in the direction of flow minus the ‘“anomalous” part.

* The shift of g, by n /2 is related to the behaviour of  under a rescaling of W (which is a kind of
“anomaly” arising from the Fermi zero modes). Indeed, from eqgs. (2.9) and (2.10) we have
detlg]= Idetln]l ~ |A] "4
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This g has a simple field-theoretical interpretation. Since nothing depends on
the D-terms, we fix them to be the “standard” ones

K=Y XX,.

If W is quasi-homogeneous we have a conserved U(1) current J,, and we must
have

= k1P Jo(0) do|h).
Noether’s theorem gives the following expression * for J,:
J, =J,f +Ul,,

where

J: =7 % Z {/’—ﬁ,ﬁsd/ia

U=Y qXX,.
Since U | 4, is a Q-commutator, we have

ayz = <kIJy | by = RIG I3 1.

Consider now a generic superpotential W. The current J: is still partially con-
served. Indeed, it is only softly broken by the superpotential W

—9 i =ifdorw—i[d0 W (4.10)

Hence it makes sense to consider its matrix elements. Then the natural definition
of the off-critical charge is

aue=<KIP I3 1.
This definition agrees with the previous one, eq. (4.9). To see this we compare

(4.10) with the path-integral definition of the connection. In our context, eq. (4.10)
should be modified. Indeed, in order to produce the correct vacuum state we have

* U] 4, means the vector component of the superfield U.
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introduced a background gauge field in the right hemisphere. Then the axial
current develops an anomaly

~3,J5=i[d6 W —i[d W+ (n/2m)F.

Consider the connection along the flow
Agp=<h10 k) =<C(r1(3,—3;) k).

It has the following functional representation:

i<¢h|(fs D*T)*W—fs D‘E‘W)qbk)

I

—<¢>h|(fs [aﬂJ:+(n/2v)F])¢k>

I

_<¢h |¢J§ |¢k> - %n<¢hl¢k>,

which shows that the two definitions agree. This also guarantees the “gauge
independence” of the eigenvalues of g, which is not manifest from eq. (4.9). Under
a “gauge transformation” the variation of the anomalous term compensates the
change in the connection. From the QFT viewpoint it is manifest that the spectrum
of g is real and symmetric about zero. This follows most clearly in a basis where
n =n*=mn"' Then from eq. (2.9) we see that

qn = —nd4g.

Now we can show that the criticality of ¢ as a function of couplings occurs only at
the conformal points. This is an easy consequence of eq. (3.9), namely we have *

glq = [C7—7 gC[Tgil] >

and at the conformal point the matrix C_ is represented by multiplication by W,
and since at the conformal point W is quasi-homogeneous, it follows that W itself
is in the ideal generated by dW and thus is trivial in #. Therefore C, = 0 precisely
at the conformal point and thus from the above equation we see that g is critical
precisely at these points. This is also true the other way around, namely, C_=0
implies W is quasi-homogeneous [35]. This is the algebraic characterization of a
fixed point, in the sense that when this happens the chiral ring has the properties

* Because of reality of the eigenvalues it is enough to check stationarity with respect to the couplings 7,.
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prescribed for a critical point. Whether it is actually a fixed point is a more tricky
question depending, of course, on the D-term too.
At criticality eq. (3.10) reduces to

[Ci.a]=C,

which merely states that only perturbations by operators of charge 1 are compati-
ble with conformal invariance.

From this definition of the g-function it is not obvious that this quantity satisfies
a “c-theorem”. This should be globally true, in the sense that the inequalities (4.8)
between the eigenvalues at the UV and IR points hold true. What is not manifest,
is that pointwise along the “RG-trajectory” the derivative of these quantities has a
definite sign. However, experience with concrete models suggests this is also true.
Moreover, using the connection with Special Geometry it is easy to show that ¢ is
non-positive near a critical point. So, at least our version of the “c-theorem” holds
in perturbation theory.

There is another way of getting the g-function which is more convenient since it
holds in an arbitrary basis (provided the operators ¢, do not depend explicitly on
the t’s) without need of a compensating “anomalous” term. Consider the matrix

QL =Go (G )Ihv

where G is the above normalized metric. It is easy to see that near the critical
point this definition of charge Q gives the list of the charge of chiral primary fields
and in particular the range of the eigenvalues goes from 0 to ¢ /3 = ¢. Three times
the maximal eigenvalue is then a candidate c-function. Obviously, the two defini-
tions agree. We will refer to this function as algebraic c-function. 1t would be
interesting to sce what is the precise relationship of this c-function with that of
Zamolodchikov.

Now we turn to the question of the relation between the Zamolodchikov metric
off criticality with the ground state metric g. If we wished to write the Zamolod-
chikov metric for both marginal and relevant perturbations, at the conformal point
all we have to do is to multiple G by factors of charge mentioned above. It is now
clear that we cannot expect a simple relation between our metric g and Zamolod-
chikov’s metric G off-criticality, because we already see that even near criticality
we have to know the charges of fields in order to relate the two, and the notion of
U(1) charges of fields is well defined only at criticality. It is natural to suspect that
given the off-critical definition of charge discussed above there might be a way to
define a natural metric which is related to Zamolodchikov’s definition. Even
though there are some obvious guesses, we leave a carefully study of this for the
future.
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5. Reduction to SQM

There are other useful points of view about the ground-state metric. In ref. [5] it
was shown that g can be computed by dimensional reduction to one dimension
(i.e. in Supersymmetric Quantum Mechanics). Roughly, this follows from the fact
that one can find a susy (but not Lorentz) invariant D-term which suppresses all
the non-zero modes in the Fourier expansion of the fields. Thus, independence
from the dimensions is a special instance of independence from the Kihler
potential. Although the computations can be done directly in 2 dimensions, the
reduction to SQM is useful for two reasons: first of all, here one has an explicit
construction for the isomorphism of primary fields and states in the Ramond
sector in terms of the wave functions of the SQM vacua. This also naturally
encodes in a geometric way the “anomalous” transformation under field redefini-
tions, which as we mentioned is related to the violation of fermion numbers in the
topological description of the theory. The second reason is that we can give a
general solution to the linear problem (3.11) in terms of the vacuum wave
functions. This also turns out to be very closely related to the generalization of
special geometry in the context of massive theories. As customarily, we identify
SOQM wave functions with differential forms via

451'1,;.4.:‘,%1F2...P‘(Xj)‘!/i' --~¢i’$z‘ ---EZZ'" (0>

i w1 ( X)) dXTA L AdXT A AR AL dXR

Iyiy... 0,k

- @
Then in the Schrédinger representation, QF is represented as
Of =d+dWw A
and @, is represented as
Qr =d+dW A

The isomorphism between the realizations of W-cohomology on fields and states
becomes

1
(ﬁkﬂmd)k dXI/\/\an‘}'Qagk

Note that this isomorphism takes into account the topological violation of fermions
number mentioned before. In fact from the path-integral description of sect. 2 it
should be clear that once we see why the identity operator can be represented
cohomologically by d X' A ... AdX" the above follows, and that representation of
the identity operator can be shown by taking a very tiny hemisphere, represented
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by a little disc and perform the topological path integral. In the language of SOM
it is manifest that under a field redefinition the Ramond state representing ¢,
should transform as a (n, ))-form rather than as scalar. This is the origin of the
“anomalous” jacobian. Clearly,

Q=0 +0x =exp| -W(X) - W(X)] dexp[W(X) + W(X)],

where d is the exterior differential. Since the vacuum wave-forms w, are annihi-
lated by Q and its adjoint QF, the modified forms

b= exp|W(X) + W(X)] oy,
@ =exp| —W(X) - W(X)] * w,

are d-closed. They represent some kind of cohomology of the d-operator. Obvi-
ously this cannot be the usual deRham one, since for C” it is trivial. In fact, these
forms are representative of relative deRham classes. For @, the relevant cohomol-
ogy is H*(C", B), where B c C” is the region where Re W is greater than a certain
(large) value. The &, correspond to the dual cohomology space. This dual space *
can be identified with (equivalence classes of) n-chains y;” such that on dy," we
have Re W = + o, We put

= . (5.1)

One checks that IT] is finite and det[II]# 0. From ref. [14] one sees that there
exists A, such that
Diw, = (@ +dW A)A, 4,
where
(8+dW A, , = We, — (C) gy
Then one gets
DIlp= = (C)lL, Dt = ~(T). 11},
that is

VII=VII=0. (5.2)

* This dual space can be viewed as providing an integral basis for the vacua.
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The matrix II gives the general solution to the linear problem (3.11). These
remarks give a simple description of the geometry of the bundle over the parame-
ter space discussed in sect. 3. Indeed, we see that the vacuum wave-forms, after
projection into the relevant relative homology, represent sections of the bundle
discussed there.

The real-structure matrix M{ has a simple meaning in SQM. The Schrédinger
equation is real, and hence the complex conjugate of a vacuum wave-form w, is
again a vacuum wave-form and should be a linear combination of the w,,. If the w,
corresponds to the basis ¢,, we have

(00" = Mo,
from which the reality constraint is obvious. In particular, we have
Im*=MIl = M=IO*I1"", (5.3)
which gives an alternative way of computing the metric from the solution of the

linear problem.
In SQM, eq. (2.8) follows from the definition of the ground-state metric

Kihy = [+ wf nay, (5.4)
and the cohomological identity

/ * wp Aw, = Resy[d,d,]1=n4, (535)

which is a consequence of the Bochner—Martinelli theorem (see the appendix of
ref. [14] for details). In analogy with (5.1) we write

A .
Hk—/_wk,
Y

where y;~ are cycles with Re W= —o at the boundary. Using the fact that
DIi=c,Ii, DII=C]II,

one can easily show, using the uniqueness of solutions to linear differential
equations, that

A o h
I = mp,p™ (1T 1):,
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where p” is some pairing * of the above cycles which is independent of the
couplings ¢’. Then (5.3) gives

n=Ipll",  g=IpIl",

which are a kind of Riemann bilinear identities for the integrals (5.4) and (5.5).

This SQM viewpoint is quite suggestive of the geometry of a variation of Hodge
structure (special geometry in the physics languages). Indeed, the matrix I is just
the period map for the relative classes w,. Note though, the similarities are
somewhat misleading in that the period matrix which is holomorphic in the case of
special geometry (or variation of Hodge structure) has the distinctive property of
not being holomorphic in terms of couplings ¢, And even though we have an
integral representation for the metrics in terms of solutions of Schrédinger
equation, it is not possible to give a closed form answer for them as integrals of
simple objects, as it was the case in the quasi-homogeneous (conformal) case
discussed in the previous section. In this sense the problem is much more difficult
to solve in the massive case. We have already mentioned that d can be identified
with the Gauss—Manin connection. In fact eq. (5.2) can be seen as the defining
property of the GM connection in terms of periods. So, the structure arising out of
N = 2 susy is a generalization of special geometry.

The SQM viewpoint is very useful from another view point, and that arises
when one considers changes of variables. Indeed it turns out that one can do
non-invertible field redefinitions and still be able to relate the metrics between the
two models. That this is possible is essentially why the formal arguments in ref. [31]
relating LG theories to geometry of CY can be justified — at least as far as the
metrics on the moduli space is concerned [14]. Moreover this will also justify, to
the extent of getting the same moduli metric, the more recent work on relating
different LG theories with each other by non-invertible changes of variables [36]. It
turns out that for many of the applications that we will consider this is a very
important technique.

The simplest way to understand how it works is in the language of SQOM. We
will use a mathematical language as it is most convenient to describe it in that
setting, where we sometimes refer to the nice properties of non-invertible changes
of variables as “functoriality with respect to branched coverings”. Let w, (k=
1,...,4) be the vacuum wave-forms for some superpotential W(X). In this
superpotential we make a substitution

X; =fi(Y;‘)7

* Just as in the conformal case, p'/ is simply the inverse of the intersection matrix ¥, Ny . It is
possible to show this by multiplying the integrand in eq. (5.4) by one represented by exp(W +
W) exp(— W — W), and using the Riemann bilinear identity.



S. Cecotti, C. Vafa / Topological - anti-topological fusion 393

where the map f is holomorphic but not globally invertible (otherwise we would
get just an irrelevant field redefinition). Then consider the new superpotential

W(¥;) = W(£(¥,) =F*W.
For the supercharges one has

Q;{’f=5+ dW,; A =f*Qg,

QL =0+dW,A =f*Qr,
so that the forms f *w, satisfy

QE,ff fo, = Qf,ff fw, =0.

IN the case of just one field, these equations imply that f*w, (k=1,...,4) are
vacuum wave-forms for the superpotential W;. (Recall that if n =1 the wave forms
are independent of K as form, not just as cohomology classes). In the general case,
the new wave functions are

O, =f*w, + QE,fQ['f@_lAf*wk.

where the dependence on the Kihler metric is hidden in A and ©. The £2,’s are
manifestly cohomologous to the pullbacks of the forms w,. Indeed, if W is not
degenerate, ! is a continuous operator in the (n — 2)-form sector. Of course,
these functions are just a subset of all vacuum wave-forms for W, since 4 P> A for
a branched cover. Now for n = 1, one has simply

K1y, = [ * FFo nf*a,

= (deg f) [ * A w, = (deg )T Ih)lw. (5.6)

(for n =1, the Hodge dual * on 1-forms depends on the complex structure only).
The equality is true for the general case as well, the only difference being that in
order to prove it one has to use the full machinery of the cohomological computa-
tion for overlap integrals, see ref. [14]. Alternatively, functoriality follows from the
(conjectural) uniqueness of the solution to our equations. Indeed, the topological
functions n;; and C; Jk are trivially functorial, and hence the equations themselves
behave as expected under non-invertible change of variables. Therefore, if we
know the ground-state metric for W, we can get the metric for W just by
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restricting ourselves to the cohomology classes ¢, dY' A ... AdY" (with ¢, S
which can be written as

b dY'A LAY =f* (g, dX' AL ADXT), Y ER. (5.7)

Note that in this way we automatically reproduce the “anomalous” jacobian.

The presence of a jacobian in the transformation has another implication.
Suppose that both W and f are quasi-homogeneous. Then so is W;. Both models
are critical and we can speak of their central charge. Then using the fact that
hessian is the maximum charged element in the ring with charge ¢/3, eq. (5.7)
implies

c=c;—06q,(J), (5.8)
where g((J) is the U(1) charge of the jacobian
det[df,/0Y;| €%,

The insertion of the jacobian just soaks up the excess of vacuum charge of the
branched model with respect to the original one. Note that we can use this
technique to relate different conformal theories even with different central charges,
as far as the metric on chiral primary fields are concerned. It would be interesting
to investigate the precise relation between the full conformal theories in such
cases.

6. Lie-algebraic aspects

Our equations have an interesting group-theoretical meaning. This is well
known in the conformal case where W is quasi-homogeneous, where it is related
to the Lie-algebraic aspects of the period map of the corresponding hypersurface
(or the Lie-algebraic structure of the Variation of Hodge structure). It turns out
that the Lie-algebraic point of view is very useful even for massive perturbations of
our theories as well and they help us understand the geometrical content of the
equations as well as to actually solve them. Qur discussion here is modelled on the
classical one for the topology of algebraic hypersurfaces (which arises in the
conformal limit). This case we will refer to as the “geometrical case” below.

We begin by discussing the reality condition on the metric (2.9). One can find a
“special” holomorphic basis such that the residue pairing is independent of the
couplings ¢‘ and
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Such special bases have been considered before in the context of topological field
theories [10]. Their existence is a deep property of TFT and they are also
technically convenient. See appendix C for details. In such a basis, the reality
constraint on the metric becomes

gngt=mn,

i.e. g is orthogonal with respect to the real metric n. Then, g dg~' belongs to the
corresponding Lie algebra, namely g(dg~")n is antisymmetric. Thus the first term
in eq. (3.9) is skew-symmetric with respect to n. This is consistent with our
equations. Indeed, the topological 3-point functions le-‘ are n-symmetric (that is,
Ciix = Ciny is symmetric. So is gCfg™' (since nM =(M~")'n*). Then
[C;, gCjg~']is also m-antisymmetric. Note that, without loss of generality, we can
choose n = 1, so g is orthogonal in the standard sense. Of course, g belongs to
the complexified orthogonal group, not to the usual compact form.

To go on with the discussion, it is better to rewrite the linear problem (3.11), in
a more convenient way. Let g =exp[#] and put ¢ = exp[Z/2]. We perform the
gauge transformation

g —el.

Then the linear problem becomes
[0— (de)e ! +e 'Ce]T=0,
[6+e!(de) +eCle™!|T=0. (6.1)

From now on, by T we mean the fundamental solution, i.e. 7 is the matrix
solution such that 7(0) = 1. By adding an irrelevant constant to W, we can assume
that tr C = 0. Then from (6.1) it is manifest that T belongs to SL(A4, R). This is
similar to what one finds in the geometrical case, where however there are
additional algebraic restrictions coming from the topology. They reflect the so-
called Riemann bilinear relations. Under certain circumstances, similar restrictions
apply to the massive case as well. They are quite important, since restricting the
Lie group in which T takes values is a crucial step in solving the equations for
particular models. Let G be this group and H be the subgroup gauges by the
connection for D, D. One had H c K, where K is the maximal compact subgroup
of G (this follows from the fact that the connection is metric — or put differently,
from the eq. (6.1) and recalling that ¢ is hermitian). Of course, g (and ¢) belong to
H (i.e. they are complex gauge transformations). The importance of identifying G
and H is best understood by realizing what the equations become for special G and
H.

Suppose we have a family of superpotentials depending on just a single coupling
t. This will be the case of most interest for us in the rest of this paper. The simplest
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case is when H is the maximal torus of G. In this case eqgs. (3.5) are just the usual
Lax-representation of a Toda system (indeed, consistency alone implies that the
matrix C, is the sum of an admissible set of roots for G). Then egs. (3.5) reduce to
the standard equations of Toda field theory.

The Gauss—-Manin equations for the variation of Hodge structure for an
algebraic manifold X (of dimension m) are also of the form (6.1) with

k—1
G=SO0(b}, b7), H=SO(h**) ® U(h" PPy m =2k,
=0
k
G = Sp(b,,, R), H= ® Uh""P) m=2k+1,
p=0

where h”9 (resp. b,,) are the Hodge (resp. Betti) primitive numbers and
b +b,=b,, b, —b,, =t (Hirzebruch signature).

In this case C, is the class in H!(@) of the complex deformation corresponding to
an infinitesimal variation of the parameter t’, seen as the matrix of the endomor-
phism in H™(X) induced by wedge product (where @ represents the tangent
bundle).

In particular, if we have a Hodge (sub-)structure such that for some integer a

h"PP=1 for |m—2pl<a
=( otherwise,

and O,W)*#0 in &, then the GM equations reduce to those of the G-Toda
molecule (i.e. the non-affine version). The simplest example of this state of affairs
is the torus. The o-model on a torus is equivalent to an orbifold of the LG theory
[31] with superpotential

W=X}+X;+X;+tX, X, X;.

in this case A% = 1%! = 1 and hence G = Sp(2, R) and H = U(1). In other words, in
this case the monomial X, X, X, generates a nilpotent subring of order 2, and that
is how we end up with Sp(2, R). Solving the linear problem one gets (for details,
see ref. [37])

dr|?

dr

(g=1/21q=1/2) l
(g=—1/2lg=—1/2) 4|lm +(1)|’
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for some holomorphic function 7(¢). This is precisely the general (real) solution to
the SL(2)-Toda equation, i.e. the Liouville equation

(q=1/21q=1/2)
{g=—-1/21qg=~1/2)

= exP[ D iouviite ]-

However, in the LG language the function 7(¢) is further restricted by the
boundary conditions. It turns out that this function is just equal to the period for
the torus W = 0 as it should from the general correspondence between LG theories
and geometry [2,31]. Indeed, one can use the degeneration structure of the
algebraic surface to find out what 7(¢) exactly is.

This example can be generalized. Take the CY manifolds %, associated to the
superpotentials

W=X'+X0+ .. +X!+1X,X,... X,

and consider the Hodge substructure (i.e. the subset of %) corresponding to the
subspace of H"~%(.%,) invariant under the automorphisms

X, — exp[2mia;/n]| X; Zaj=0 mod n.
J

(It is precisely modding out the LG theory by this symmetry that has been shown to
be a beautiful example of mirror symmetry [38].) The ring invariant under the
above transformation is generated by X ... X,,. In this case the equations one gets
for the metric g is the same as Toda molecule with G =Sp(n — 1, R) (resp.
SO(n/2, n/2 — 1)) for n odd (resp. even). These follow very easily from eq. (3.9).
In particular these Toda theories emerge as a Z, reduction of sl(z — 1) Toda, with

(% %) |(x,...x,)") = exp(a,)

with 0 <r <n — 2, and one identifies the vector v in g, —q,_, = q;v° with a simple
root of sl(n — 1). The Z, reduction follows from (2.9) implying ¢, +¢q,_,_,=0. It
is the nilpotent structure of the ring generated by the symmetric monomial
X,... X, which directly reflects the sl(n — 1) Toda molecule structure in these
equations.

The general case of arbitrary deformations of algebraic hypersurfaces is a very
natural generalization of the Toda molecule. In ref. [14] the ground state metric
for quasihomogeneous superpotentials was written in terms of holomorphic coun-
tour integrals. This explicit representation is just the extension to the more general
case of the standard Leznov-Saveliev algorithm to solve Toda equations [39]. (This
is common knowledge in Algebraic Geometry). Indeed, this algorithm reduces the
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solution of the Toda molecular to finding a triangular holomorphic matrix I7
satisfying

azﬂ-ik = Ct?(t)Hhk'

The period integrals of ref. [14] (after filtration 4 la Griffiths) give the special IT
matrix satisfying the correct boundary condition. Of course, this method works for
all variations of Hodge structure, even if H is not abelian and we have a
multiparameter family.

Now we come back to the more general case of massive perturbations, and wish
to determine G and H. There is a simple method to determine H. Decompose the
vacuum subspace 7” of the Hilbert space into orthogonal subspaces corresponding
to different irreducible representations of the (pseudo)-symmetries of W. A priori
from the above discussion it is clear that H is a subgroup of product of U(Ng)
where N, denotes the dimension of the representations in question. However 7,
which is of order 2, acts on the representations, and because of the eq. (2.9) relates
the U(Np) for each pair and so cuts the number of U(Ng) by half. Also, if n maps
a representation to itself, eq. (2.9) implies that the corresponding H is in SO(Ng).
Put differently, an irreducible representation we call real if it is real with respect
to the real-structure M. Then, a real subspace of dimension N, contributes a
factor SO(N,) to H, and a conjugate pair of complex subspaces of dimension N,
contribute a factor U(N,). Le.

Hc ® U(N,) ® SO(N,).
1

pairs rea

In particular, H is abelian if all complex subspaces have dimension 1 and the real
ones at most dimension 2. In the geometrical case H is given by this recipe with
7= H™(X), the relevant subspaces being H#9(X) and under complex conjugation
D <q.

The problem of determining G is more deep. A typical case when we have
special restrictions on this group is in the presence of a special 7, symmetry P;
this occurs in a theory which has the property that for all values of the coupling ¢,

PW = —WP. (6.2)

Such a symmetry operator P appears in the geometrical case as well and is called
the “Weil operator” [40]. This operator is order 2 as far as the NS is concerned,
but since the vacua are in the Ramond sector and two Ramond states produce an
NS state P? acting on Ramond states can end up being + 1. Since the spectral flow
from NS to NS is equivalent to product of two Ramond vacuum states, and this is
accomplished by the hessian of W, we learn that the phase of P? is simply the
same as the phase of £ under P. Let us write

Pi=(-1".
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Working in the holomorphic basis we represent P by
Plky=P/|h).
Note that we have
nP=(-1)"PTy,

This follows from the fact that a state and its dual with respect to n transform
under P the same way up to the phase (—1)™ which is the way the spectral flow
(given by the hessian) relates them. We thus see that

OV = pikp,J

is symmetric for m even and antisymmetric (a symplectic form) for m odd. Now if
we consider

where ¢ is the solution to the linear problem in the holomorphic basis (3.11), and
note that eq. (6.2) implies that PC;= —C,;P we see that *

IP=00=0 = &=1.

Then for m even (resp. odd) ¢ is orthogonal (resp. symplectic) with respect to the
constant pairing {2. If the signature of £ is (r, s), G € SO(r, 5). The geometrical
case is just of this type, with A =5b,, r=>b' and s =b,, (of course we can rewrite
all these in the other gauge for T).

7. Minimal models perturbed by the most relevant operator and related models

In the remaining sections of the paper we shall discuss particular classes of
Landau-Ginzburg models for which the computation of the ground state metric
can be done explicitly. We do this both for the intrinsic interest of the “solvable”
models in various physical applications and also in order to illustrate the general
phenomena of the previous sections (in particular, the overdeterminate nature of
the problem).

Among the perturbations of conformal theories by relevant operators Zamolod-
chikov [41] found a technique to find which directions give rise to integrable
models. The integrability is in the sense of having factorizable S-matrices for the
massive excitations of the resulting theory. The idea is to look for an infinite

* We are mimicking the geometrical case. In that case the bilinear form {2 is the intersection in H™
(X, R).
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number of conserved currents which survive the perturbations away from the
conformal point. These ideas were applied to N =2 minimal superconformal
theories in ref. [33] where it was found that these models perturbed by the (last
component of the) chiral primary field of lowest (non-trivial) dimension, i.e. most
relevant operator, leads to an integrable theory. Moreover it was found that there
is a beautiful interplay between the structure of the superpotential W and the
solitons and their masses. Then essentially self-consistency alone fixes the S-matrix
in these models. It was shown in ref. [42] how these models (and their generaliza-
tions) can be realized in terms of quantum affine Toda field theories with very
specific couplings. Also, the geometry of solitons and their conservation laws for
specific perturbations of certain Kazama-Suzuki models (and in particular the
grassmannians) has been uncovered in an interesting recent paper [43].

As we will see it turns out that precisely these perturbations (and some natural
generalizations to be mentioned below) which can be described by N =0 quantum
(affine) Toda field theories [42] lead to equations for the ground state metric which
as a function of the perturbing parameter ¢ (which can be identified with RG flow
parameter) satisfy classical (affine) Toda equations of the same type (and their
natural reductions). This is an intriguing connection between the quantum theory
and the correlation functions of that quantum theory, which begs for a deeper
understanding. That we should get Toda equations is already clear from the
discussion of sect. 6. In fact that discussion will help us organize what we should
expect for our equations. The general arguments of sect. 6 can be explicitly verified
in the concrete examples we study in this section. The models of the present
section are basically the ones for which the equations can be recast in a Toda form
by elementary tricks. In sect. 9 and 10 we shall consider other model which are
related to Verlinde rings whose equations are reduced to Today by more sophisti-
cated techniques.

Here we limit ourselves to a discussion of the relevant equations. However, the
real magic of the subject stems from the unique properties of the solutions
corresponding to the actual metric rather than from the fact that the equations
themselves are among the nicer ones in mathematical physics. Part of the magic
will be discussed in some detail in sect. 8.

7.1. THE A, SERIES

In the LG approach, the A, minimal model corresponds to the superpotential
W=X""!/(n+1). The (non-trivial) chiral field of lowest dimension is X. Then
we consider the superpotential

n+1

W(X,t)= —tX, (7.1)

n+1
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and look for the dependence of the ground state metric g on ¢. As a basis on
R=C[X]/(X"—1)

we choose
1, X, X%...,x" "

The vacuum state associated to X* will be denoted by | k).
The model described by (7.1) has the discrete symmetry

X = exp[2mi/n]X, (7.2)

under which the state | k) picks up a phase exp[wi(2k + 1 —n)/n]. Then <k |h)
=0 for k +h, i.e. g is diagonal in this basis (from here till the end of the paper we
have changed our notation and take (k| to be the adjoint of |k)). Therefore the
group H defined in sect. 6 is abelian. From the discussion there it follows that our
equations are of the Toda type. This system is rather peculiar in that the metric
belongs to an abelian group just on symmetry grounds, i.e. before using the reality
constraint to further reduce the number of independent elements of g. Imposing
the reality constraint will lead to a consistent truncation of the Toda system to one
with less degrees of freedom. Such consistent truncations are well known in the
Toda theory [44] and are understood algebraically as foldings of the corresponding
Dynkin diagrams.

To start with, ¢ takes values in SI{#n) and hence the equation for the t-depen-
dence is that of some A, _, Toda system. Which one depends on the admissible
root system to which C, corresponds. Multiplication by operator X is denoted by
the matrix C, given in the above basis of vacuum as

o 1 0 --- 0 O
0 1 - 0 0
C=: Do
o o o0 - 0 1
t 0 0 --- 0 O

i.e. (up to conjugacy) C, is the sum of primitive roots of sl(n) minus the longest
root. Then we get the affine A, _, equation.

To see what the truncated “real”. Today system is, it is better to distinguish
between even and odd n. If # is even (= 2m) we have a “Weil operator” P. This is
just the generator of the symmetry X — —X. This is an element of the group in
(7.2). From the phase a state picks up under such a transformation, we see that
P?= — 1. Then, according to the discussion in sect. 6 we have

G =Sp(2m, R),
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i.e. we get the ém Toda equations (for m =1 this is Al and for m =2 this is ﬁz).
This can be checked explicitly using eq. (3.9) as we will show below.

The situation for n = 2m + 1 odd is less simple. The truncated Toda equations
are associated to a root system (denoted by E_Em) which do not correspond to any
Lie algebra. The corresponding equations are called the generalized Bullough-
Dodd equations, since the first equation in the series is precisely the usual BD
equation.

Let us see how they arise. In our basis, the residue pairing is independent of ¢.
The only non-vanishing entries are

Meon—1-k = 1.
Then the reality constraint reads
CklkXn—1-kln—1—-k)=1.
In particular, if n is odd (n =2m = 1) one has
{m|m)=1 forall ¢.

In this way we reduce to [n/2] unknown functions, namely {k|k) for k=
0,1,...,[n/2]— 1. In particular, for n =2 or 3 we have a single unknown function.
Writing

¢;=logiliy, i=0,....,n—1,
and using the explicit form of C,, eq. (3.9) becomes

5:‘3;% + e(@1790) _ | t | 2 e(P0=@n-1) = 0,

31(9?% + el@iv179) _ a(0imeic1) = 0, i=1,....,n— 2,
3,80, + 1] @0 —gln-1men2 =, (7.3)
To put these equations in standard form, we put (i =0,...,n—1)

2i—n+1 )

¢, =q;+ ———loglt]",
2n
n
7= —t(n+1)/n.
n+1

We extend the definition of g; to all i’s by setting

qi+n=4;-



S. Cecotti, C. Vafa / Topological - anti-topological fusion 403

Then eqs. (7.3) take the standard form for A,_, Toda equations
azafqi 4+ eli+179) — o@i~4i-1) = (), (74)

However, we have still to use the reality constraint which in the new variables
reads

g;+q,_;=0.

If n is even (n = 2m), using this constraint we reduce to the ém Toda theory. To
write it in the canonical form, just write (notations as in ref. [45])

2i+m

S jog2,
2m—1) ¢

q;= —2¢; . +
z = 21/2m =Dy
Then egs. (7.4) become
200, = eXP179) _ 2 g4,
200, = eXbimtin) —eXb1mE)  j=2  m—1.
200¢,, = 2 et — X bn-1=¢m),

For n odd (n =2m + 1), the redefinition

5 1/ i+1 1 1og 2
q;= =2, — 2 m - og
Z_)2—1/2(2m+1)z

puts the reduced equations into the canonical EEm form
200, = X174 — 2 e 741
200¢, = e~ bin) — eXba=)  j=2  om—1,
200¢,, = e2m — eXm-170m),

Of course, not all solutions to the above equations are acceptable as ground
state metrics. At least two additional conditions are needed: first of all, {k| k)
should be real, positive, and regular for all values of the couplings, and second the
solution should not depend on the phase of the coupling ¢ since this phase can be
re-absorbed by the field redefinition

t—e%r, X—oel®/"X, §oe i nthe/2g
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Then only solutions invariant under rotations of z are acceptable. This property
applies to all models we consider in the present section.

There is strong evidence that these two conditions uniquely fix the solutions.
This will be discussed in sect. 8.

7.2 THE D, SERIES
In the D, case the most relevant perturbation of superpotential reads

Xn—l
W= +XY?—1tX.
n—1

As basis for # we choose
LY, Y3 X, X%, X" 3
This model has two symmetries, namely
X —exp[2mi/(n—-2)]X Y-Y,
X-X Y- -Y.

It follows, that in this basis the only non-vanishing off-diagonal element of g is
{Y?11). One has

Res[ X¢] = 16 Res[Y?X]=0 for b,c#0,

an—27
Res[Y#*1] =0, Res[Y?]= -1, Res[Y*]=—3t. (7.5)

Then, decomposing % according the representations of these symmetries, for n
even (resp. odd) we have n/2 — 1 (resp. (n — 1)/2 — 1) one-dimensional complex
orthogonal subspaces, 1 (resp. 2) one-dimensional real subspace, and 1 two-dimen-
sional real subspace spanned by (1, Y?). Then (cf. sect. 6)

H=S0(2) ® U(1)!" 277,

is abelian and we get again a Toda system.
If n=2m + 2 is even, the general arguments of sect. 6 uniquely fix the Toda
system our equations correspond to. Indeed, we have a “Weil symmetry” P,
P:X—- —-X.

This time P?= 1. Indeed, the hessian of W is even with respect to P, not odd as
in the A-case. On % (neglecting the “decoupled” state |Y)) the +1 eigenvalue of
P has multiplicity m + 1. Then,

G=S0(m+1, m),

and we have the Bm Toda system. Instead, the Toda for n odd does not correspond
to a root system and cannot be deduced by symmetry arguments alone.
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Explicitly the reality constraint reads
(XO|Xoy(Xrn2ma|n2may =L g =1,...,n-3,
(Y1Yy=3, Y3 =311, (Y?|1)=311),

|t]? X
2(1[1) + 4.

2Y?2|Y?) =

The coefficients C, are
X|X=|X""), a=0,...,n—4,
X|Y)=Xx|Y?) =0,
X| X3 =t|1)+]Y?).

Let n =2m + 2 —s with s =0, 1. The independent entries of g are (X?¢ | X*) for
a=0,1,...,m— 1. In terms of these variables, our equations become

~3,0, 1 (1!1>—M—|t|2<1|1><X|X>
,0; 108 - <1|1> ’
L XAXY XIX)
=00 log( X | X) = S= = <l X0,
_aa l <Xa|Xa>_ <Xa+1 |Xa+l> ~ <Xa|Xa>
(07 108 - <XalXa> <XaA1|Xa~l>’

(a=2,....m—2),

l 1+s <Xm—llxm—l>
2<Xm—l |Xm—1> <Xm—2 |Xm72> :

—8,8; log{ X"~ | X™ 1) =

(7.6)
To put these equations in canonical form, we define
¢, =log{X|X)+loglI1)FF(lt])+(1+£1)log|¢l,
¢, =log( X/ X/ —logd X/ | X7 + F(|t]), (j=2,...,m=2),

Gm1=—(1+5) logd{ X" 1| X" )+ (1+s)(m—1)F(1t])—(1+s) exp |t],

145 B tl+(1+s)B
7=
(22”) 1+(1+s)B’
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where

1
B= 21+ (m—-1)(1+5)]°

and
F(t])=2B[(1+5) log(1t]/2) +log(1+s) —log 2].
Then egs. (7.6) become
P, =2 etr—e?,
ddp, =2 e —ebr—e?-—e?2,
d0p, =2 e —ebe-1—ebr1 (a=2,...,m—3),
30, ,=2ePm2—edm1—(2/(1+5)) etn-1,
30, =2 ebm1—(1+5) edmn2,
In general, the Toda equations can be written in the form [44]
3p, = C,y e,

where C,, is the Cartan matrix of some root system. From the above explicit
formula, we see that for s =0 (n even) we get the Cartan matrix of Bm, as
expected from the general argument. Instead for s=1 (n odd) we get the
transpose Cartan matrix. This is the Toda system denoted by DT(SO(2m + 1)) in
ref. [44].

7.3. THE E-SERIES

The only new model is E, since E; and E4 can be obtained as tensor products
of A minimal models. In the E, case the most relevant perturbation of the
superpotential reads

W=1X%+1XY3—1Y.
As basis in # we take (i=1,...,7)
o, ={1,Y, X,Y? XY, X2, X*Y}. (7.7)
This model has a Z, symmetry

X—eX, Y—e'Y, e =1.
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Under this symmetry no two fields in (7.7) transform the same way, and hence the
metric g is diagonal. So H is abelian and we have again a Toda theory.
In the above basis the residue pairing reads

Ny =(1=48,4)8:4;8
and the reality constraint reads
(iiy(8—il8—iy=1, i+#4,
(414) =3.

Then H = U(1)>. The non-vanishing elements of C, are
Cl=Cl=CP=C/=1, C)=C’=t, C°=-3.

Putting
2¢,=log(3|3) + L log |11+ 3 log 24,
2¢,= —log{1]1) — % log lt|2—10g2+% log 24,

2¢,= —log(2|2) — 2 log | 1|* + log 6 — 2 log 24,

7
2= —=(24)"7437,

8v2

one gets the equations in the form

200,

eXer1—e2) _ 19 6_4901 ,

285¢2

2¢5— 2 -
e(e2—93) _ 2o KPZ)’
235¢3 = e2¢3s _ 62(‘P2—<P3),

which is the BC, Toda in the notations of ref. [45] (i.e. GD(H,) in the language of
(44]).

7.4. THE A, MODELS PERTURBED BY NEXT RELEVANT OPERATOR
Next we consider the models

Xn+1 XZ

—t .
n+1 2
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For &% we use the basis 1, X,..., X"~ !. These models have the discrete symmetry
X—-exp[2mi/(n—1)]X, 6->exp|—wi(n+1)/(n-1)]6.

This implies
{klh)=0 for k+#h exceptfor {(n—1|0) and {0|n—1).

Since the two-dimensional subspace spanned by 1 and X"~ ! is real, H is still
abelian and therefore we get again a Toda system. In fact one has

H=S0(2) ® U(l)[(n—z)/zl'
In the present case the residue pairing is
Men = Ok snm—1 T 184 18p 01>
so the reality constraint becomes
klhYln—-1-kln—1—-k)=1 for k+0,n-1,
0ln—1) =400y, (n—110) = 31010y,
Ik

t
+ ——<010>.

(n—lln—l>=<0|0> 2

If n+1 is even (=2m) the model can be reduced to already solved ones.
Indeed,

W(X) =Wy (X?)

with

i t

Wol¥) =1 3

so the “odd’’ states

12k+1) (k=0,1,...,m—2),

are just the pullbacks of the vacua for the A, | minimal model perturbed by the
most relevant operator. For our purposes, these states decouple from the others
and, by functoriality, the corresponding ground state metric

Qk+112h+ 1)

is the solution to a Sp(m — 1) or a BC

.._ Toda system according to whether m is
odd or even.
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Instead, the metric for the “even” states [2k) is equal to that of the D,
model. This follows from the fact that the D models are the orbifolds of the A,
ones with respect to the symmetry

X- —X.

A

Then for the even states we get B, , or D'(SO(m + 1)) Toda according
whether m is odd or even.

On the contrary, when n is even (= 2m) we have no “Weil operator” and hence
we expect a Toda theory associated to a generalized Cartan matrix. Indeed, let

m+1
q,= —logl2(i =1 12(i—=1)) for i=1,2,..., 5

m+1
=log2(m—1) +112(m ~i)+1) for i= > +1,...,m.

Then the equations become

o 1 —q 1 2 = +
(’)aql =7 eldi—492) _ ﬁltl e (4 ‘Iz)’

= i - 1 s 1 2 qa+
aaqz =g e(‘h q3) _ I e(ql q2) _ ﬁltl e (q, ‘12)’

ddq, = $le a0 — el (i=3,...,m—1),
3dq,, = §1t]% 2m — 1 el@m1=am)

which, after an obvious re-interpretation of the symbols, is the same as egs. (7.6).
Then by a redefinition of the variables it can be recast in the standard DT(SO(2m
+ 1)) Toda form.

7.5. PERTURBED GRASSMANNIAN COSET MODELS

The Landau-Ginzburg description of some of the superconformal models
proposed by Kazama and Suzuki [46] has been found in ref. {4] *. As another
application of our techniques, we will focus on an interesting subclass of such
models given by the level-1 superconformal grassmannian coset models

3nm

#/# =SU(n+m)/SU(m)®U(n),  ¢=-——m,

perturbed by the most relevant operator. Again, these models are solvable as
quantum field theories and related to N = 0 quantum Toda systems [42].

* Actually this has been conjectured for many cases but not proven in full generality yet.
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Let us summarize it in a way convenient for our purposes. We assume, with no
loss of generality, that m > n. We start with » fields Y, (k =1,-- -, n) with charge
g=1/(n+m + 1) and consider the elementary symmetric functions

X, =0/(Y,) = Y Y)Y, .Y, (i+1,....n). (7.8)

1<l <h<...l;xn

i

Then take the function

Wf(Yk) =

ZYkn+m+l.

n+m+17

By the fundamental theorem on symmetric functions, it can be rewritten (in a
unique way) as a quasi-homogeneous polynomial in the g{Y), i.e. in terms of t he
X; one finds

Wi(Y,) =f*W(X),
where the map f is given by eq. (7.8). The function W(x) so obtained is the
superpotential for the grassmannian model. Thus the canonical branched covering
of the grassmannian model is just n copies of the A, ,, minimal model. To check

this picture of coset models, let us compute their central charge, using the formula
for the change of ¢ under covering maps, eq. (5.8). One has

dX,
J = det — A(Y,,....Y,),
ay,

where A(Y;) is the Vandermonde determinant. Then

n(n—1) 3nm
—— 7 5 =
2(n+m+1) n+m+1

Qf(J) =

as it should.
As perturbed superpotential we take

W(X,, t)=W(X,)~X,. (7.9)

By going to the canonical covering, we get

Yn +m+1
W (Y, t)=Ff*W(X,t — —tY, |.
e =rwexon = 5 [T -]
Thus the perturbed model goes over to n copies of the already solved perturbed
A, ., minimal model. The ground state metric for W; is just the product of the
known one for each factor.
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Now the metric for the grassmannian models can be obtained using change of
variables. Let P(X) (r=1,...,(n + M) /nlm!;i=1,..., m) be a set of polynomi-
als making up a basis for the chiral ring % of the models in (7.9). Then eq. (5.6)
gives,

(P,1 By = (1/n1)(AY) P(0(Y)) | A(Y ) P(0,(Y)))s

(here - |- ); denotes the known metric for Wf).
By the same token, we can also solve the grassmannian models perturbed by the
operator (X7 — 2X,). Indeed,

Yn+m+1

— 1Y}

fEW(X) —t(X2-2X,)] = 2_)

n+m+1
and we are reduced to »n copies of the model we solved in subsect. 7.4.
7.6. PARTIALLY ABELIAN MODELS

In addition to the models that can be reduced to Today systems there are those
for which the ground state metric decomposes in two ‘“non-interacting” sectors
one of which can be recast in a Toda form. Many of these models can be related to
theories leading to Toda equations by a simple change of variables. Then the
sector arising as the pull-back of the simpler theory “decouples” and has the Toda
form.

There are however, other more interesting examples. We make no attempt to
completeness, but we merely mention an example to show how it works.

Consider the model

=X4/4+ Y /4 +Z%/4 ~ tXYZ.
It has a Z(4) ® 7(4) discrete symmetry. Using the rules of sect. 6, one finds
H=S0(3) ® U(2)’®50(2)’ ® U(1)".

The part of the metric corresponding to the “abelian” part of H, SO(2)* ® U(1)?,
(corresponding to 12 chiral primary operators out of 27) decouple from the rest,
and hence it is Toda. What is remarkable, is that the ground state metric for these
12 operators is a rational function of the metric for the theory with W= X3 —tX.

8. The magic of the solutions

Up to now we have just discussed how equations take, for special models, the
form of interesting differential systems of mathematical physics, typically Toda
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equations. However, the real magic of the ground state geometry appears only
when we consider the corresponding solutions.

In particular, we want to illustrate how the conditions we have already stated
uniquely fix the metric. Basically, the requirement that g is a non-singular
positive-definite metric will fix it uniquely. Thus, in particular, the boundary
conditions for the differential equations are predicted. These boundary conditions
correspond to the values of the ground state metric for the unperturbed conformal
theory which is well understood. For the models of sect. 7, this implies that the
absolute normalization of the OPE coefficients for, say, the minimal models can be
deduced from our equations as the unique boundary condition allowed by regular-
ity. This will be shown here and, in a more general class of examples, in sect. 9. On
the other hand, the behaviour as |¢| — « should be the semiclassical one, as
described at the end of sect. 4. Thus the equations also encode in a beautiful way
the geometry of solitons in the theory. Finally, the unique solution should also lead
to the correct behaviour for the algebraic c-function.

8.1. THE MODEL W= X3/3— (X

Consider the first model in (7.1). The equation in this case is Al Toda, i.e. the
sinh-Gordon equation. We know that the metric is a function of |z| only. Let
|t]?=x and y(x)=(1]|1). Then the equation becomes

d d1 , X
o lvarton )= 5

Consistency requires that, as ¢ — 0, we get back the result for the A, minimal
model, i.e.

y*(1=0)

L —32/3[——F(2/3)] : (8.1)

~ <00y r(3)
On the other hand, as ¢t — «, the two classical vacua at X = + Vvt decouple.

Denoting by /. the corresponding chiral primary operators (the “point” basis) we
must have

“ey

— +
2[[|1/2

B
Ayl = Wz“/z exp[—2z]+ ...

where

2= W) = W(=VE)l = 410177 = 40774,
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and B is some numerical coefficient. 8 is real by “Weil symmetry”. Its sign would
be predicted by the “c-theorem”. Since

l=0,+1_, X=Vt(l,-1)),

we get
yz(x~°0):\/)7[l—2ﬁ\/§x‘3/8 exp( —3x7/*) + ]
We write
y2(x) =Vx Y (5534, (8.2)
where Y(z) satisfies *
72 ’
o Y o

This is just the special third Painlevé transcendent equation (PIII). The general
form of this equation is

2
(¥Y") Y 1 , 8
Y'=—=—-—+ —(aY*+B8)+yY’ + —,
Y ; tpleY syt g
the special case corresponds to a=B8=0,y= —-6=1.

Our metric y(x) should be regular, real and strictly positive on the positive real
axis. The solutions to this equation without poles on the positive real axis are well
known. Following ref. [15] we introduce the function

u(z)=2log Y(z).

u is a solution to the self-similar sinh-Gordon equation

z

uZ .
u,, + — =4sinh(u).
z

In ref. [15] it is shown that this equation arises from an isomonodromy problem. In
fact, it turns out that the associated isomonodromy (= zero-curvature) problem is
nothing else than our linear problem (3.11), for the model at hand. Indeed, let

1
3
()

4 3.
z=3x¥ A= -3i

* It is assuming that this very same equation is satisfied by the spin—spin correlation functions of the 2d
Ising model off criticality [47].
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and make the “gauge transformation”
o= (1/V2)o5(1 +ioy) eios e by,

In the new variables, the linear problem becomes

P =a,y=0,
with
a zu'(z) z? 1
3, = P +iﬁa3 cosh u(z) — Pslnh u(z),

d
9, = P + %u’(x)a'1 + tizAos,
z

which is the isomonodromy problem discussed in ref. [15]. The relevant mon-
odromy which remains constant is precisely the monodromy of the period-map I
for the SQM vacuum wave-forms introduced in sect. 5. In fact, this is true for the
general case. The linear problem ( the generalized Gauss—Manin connection) is
always an isomonodromy problem for the SOM period map II. Exploiting this
interpretation of the equation, one finds the properties of its solutions [15].

The real solutions (for which the origin is not an accumulation point of poles *)
are classified by their asymptotic behaviour as z — 0

u(z)=rlog z+s+0(z>" ") for|r| <2,
u(z) = +2log z + 2 log[ — (log 3z + C)| + O(z* log’z) (r=+2), (8.4)

(C is the Euler constant). For each pair (#, s) with | 7| < 2 there is a solution. A
real solution is regular (no poles on the positive real axis) if and only if the two
boundary data r and s are related by the equation

/2 = 1IG-a)
2r I(3F3r)’

e (8.5)

So, requiring regularity fixes s as a function of r. Note that a regular solution Y(s)
has no zero on the positive real axis. Indeed, Y~! is also a solution of eq. (8.3),
with just the opposite signs for r and s. Since (8.5) is invariant under this change of
signs, Y~! has no poles and hence Y no zeros.

* By “pole” we mean a pole of the associated Painlevé transcendent of the third kind Y{(z).



S. Cecotti, C. Vafa / Topological - anti-topological fusion 415

The connection formula for PIII states that the asymptotic behaviour of these
real solutions as z — % is

u(z) ~ C:(]—jz)exp[—2z], z >0, (8.6)

where

a(r)=— %sin(;).

From eq. (8.2) one gets
u(z) =2log{ll1)(z) — % log(32).

Since the ground state metric is regular and non-zero as z — 0, we have

s=21log{111)];0— 3 log §.
Using the regularity condition (8.5) one gets

r(s)

r(s)

2

. (1+0(111%)).

(0107

2/3

in agreement with eq. (8.1).

More generally, all the elements of g for the A, minimal models can be
obtained (in fact in many ways) from regularity constraints on the solutions of our
equations.

On the other hand, the asymptotic behaviour predicted by eq. (8.6) precisely
matches with that predicted by semiclassical arguments (cf. appendix B). The sign
of the asymptotic behaviour of ¥ may be surprising at first, since a naive classical
picture might suggest the opposite one. In fact, the intuitive picture would apply to
the leading semiclassical correction, which in this case just vanishes by supersym-
metry. The sub-leading one has a sign which cannot be inferred by classical ideas.
However, the sign is fixed from the point of view of the c¢-theorem. Let us work in
the point basis, normalizing / | so that det g = 1. Then the metric reads

g=-exp[—u(z)o;/2],

By the redefinition X — 372X, we put W in the standard form with an overall
coupling A = 372, Then the charge matrix g introduced in sect. 4 becomes

du(z)
0z

1
q = 7032
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So the algebraic c-function is

du(z)
az

=3
c=—3z

as z—>0,we get c > 1, and as z = », ¢ = 0, as expected. The derivative of ¢ with
respect to the scale is

dc
Pyl — 6z sinh(u).

¢ is stationary only if z=0 or u =0. u =0 implies
<li |l¢> =05

i.e. the “classical” theory. In between, ¢ is obviously monotonic with the scale.
Since for z — = we have ¢ = 0, for large, but finite z, ¢ should be a small positive
number. Using the asymptotic expansion (8.6) we get

c=(3/¥m)z"/? exp[-22] > 0.

If the leading behaviour of u had the opposite sign, ¢ would be negative in this
regime. Thus the c-theorem explains physically the peculiar sign of the “instanton”
correction.

8.2. OTHER MODELS LEADING TO SPECIAL PIII

In the list of models discussed in sect. 7 there are other whose equations can be
reduced to special PIII.
The first one is

W(X X ‘ X2
(X)=7 3%
Again we put x = |¢|% and y(x) =({0|»)~". Then this equation becomes
d d | 1 5 x% 1 g7
d—x("a;"gY)—zy 167 (87
By the redefinition

y=vVzY(z), z=ix

we reduce eq. (8.7) to the standard form of special PIII, (8.3).
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For t = 0 we have

212
2 | —
=570

I~

=0

The soliton mass is
20WWE) = w(0)| = 1]t1?=22.
As in the above model we put
u(z)y=2logY(z)=2log y(z) —log z.
So u(z) is the solution to PIII with
r=—1,
s=2log y(0)=2log2+2log I'(3) — 2 log I'(3).

These numbers satisfy the regularity condition (8.5) (i.e. y?(0) is predicted by
regularity alone). The large-f expansion is

[t] 2 2
Y(|I|’)Z7(1+\/;|t—|exp[—|t|2/2]+

in agreement with the semiclassical analysis.
By the same token as in the previous model, the c-function reads

Jd
c= —%zgu(z). (8.8)
In this case, as z — 0 we get ¢ =3 /2, as we should. The comments above on the
sign of the “instanton’ corrections apply to the present model as well.
Note that the boundary data r is (essentially) the central charge at the UV fixed
point. That is, the UV central charge is a monodromy data (basically, the Stokes
multiplier). The condition |r|{ <2 is just

c <3,

i.e. restricts to the minimal models! Then the PIII regularity condition (8.5) can be
seen as saying that in order to have a regular solution exp[s] should be the OPE
coefficient appropriate for the given central charge. These remarks will become
clear in full generality in sect. 9.

Another model that can be reduced to special PIII is

6

t
W(X)=— - -X2%
(X)=— -3
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The matrix elements
(111> and <{3]3)
can be obtained from the X3/3 — tX model by a change of variable
fi X-Xx% (8.9)
Then there remains a single unknown function

y(x) =0l

which satisfies

At t =0 we must have

5
y3(0) = Ralacd I Ve F(f)
<0|0> t=0 F(E)
Putting
y=y3xY?*(z), z=1x%4

we get again special PIII for Y(z). Then
u(z)=2log Y(z)=log y— 2 log z— % log 3 + log 2.

which gives

r=—

Wl

s=1log y(0) — 3 log 3 + log 2.

Since r is as in the cubic model, Y(s) — if regular — should be the same. Thus
regularity implies an algebraic relation between the two independent elements of
the ground state metric.

One has

Wty —w(0)| =11e17 =z,

so the large-t behaviour is again the correct one.
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By the same argument as above, we have
c=—3z—u(z).
25 4(2)

(The factor 2 with respect to eq. (8.8) is due to the fact that now ({0]0)) ! is
proportional to Y ?(z) rather than Y(z)). So, as a function of z the central charge
is just twice that of the perturbed A, model which, pulled back by the map (8.9),
gives the present model. In particular, for £ =0 we get ¢ = 2, as we should.

There are other models whose equations can be reduced to special PIII. A very
important class will be discussed in sect. 9. There are a few other models that we
omit for brevity. We have explicitly checked that all these models satisfy the
regularity and consistency criteria.

8.3. THE MODEL W= X*/4 - tX

Next we consider the model leading to B_él Toda. Putting y =(2|2) and
x=|1]? we get

2 ’
,o 0y oy
y=———=+—--—-,
y X X y
which is again a special case of the third Painlevé equation, with a = -8 =1,

B =v =0. This is the so-called “degenerate” PIII. Putting
T=12x*? log y=u(r) + 5 log($7), (8.10)

we recast this equation in the form of the self-similar Bullough—-Dodd equation

(TMT)T — eu _ ef2ui

The properties of the asymptotically regular solutions were studied in ref. [16),
again by the isomonodromic deformation method. It turns out that these solutions
are parametrized by four complex numbers g,, g,, &5, and s satisfying

g +8(l—s)+gs=1, gi—g,85=8

so we have a two-dimensional manifold of solutions. From eq. (8.10) we see that
regularity implies that, as 7 — 0,

const.

exp[u] ~ m
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This selects s = 1. In this case, one has

9 C2
explul ~ 3r 27 20,
Gy
where (for s =1)
c, 8 I@)

C, 3Ty
ri=83—& +(1-i)(g —8,).

To fix the residual ambiguity of the solution, we require that, as 7 — «, there are
no exponentially growing terms (i.e. no negative-mass solitons). Then one gets

8:=8,=0, g;=1 = r =1,
and the solution is uniquely fixed.

At this point, both the value of the metric at + =0 and the strength of the
“Instanton” correction are predicted. One gets

)
<2|2>|t=o=2m,

the expected value. The asymptotical expansion for 7 — « is
1/3 —1/4  —23r
exp[u(f)]:1+5 — (371) € + ...
o

This is the correct strong-coupling behaviour, because

, 3V3
ZE‘W(II/B)_W(e2w1/3tl/3)|= 7 |t|4/3=\/3—7'

and the coefficient in front of the exponential agrees with the soliton picture
discussed in appendix B.

Again one has

3 du . du(T)
c(r)=~— zbzz T P

As 71— 0, we get ¢ =3/2, the correct value. To the best of our knowledge, no
mathematician has ever studied in detail the properties of the higher equations in
sect. 7. However, we can easily work the other way around, namely, start from the
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known physical properties of the metric and deduce the corresponding mathemati-
cal theorems, analogous to the above ones for the A, and the E_El cases. In some
sense, this is just what a mathematician would do. In fact, the known results are
obtained by exploiting the isomonodromic method, which is somehow built-in the
physical approach.

9. Models associated to Verlinde rings: the SU(2), case

Recently Gepner [18] has shown that the Verlinde rings of some rational CFTs
have the same algebraic structure as the chiral rings of the N =2 LG models,
namely they are polynomial rings modulo the ideal generated by the derivatives of
a certain superpotential W(X,). This has been considered further recently [48,49].
The main case considered in ref. [18] is that of SU(N ), theories, From the N =2
viewpoint, the corresponding superpotentials correspond to particular (relevant)
perturbations of N =2 coset models. Then it is natural to ask whether, for these
special perturbations, the equations for g (as we vary the RG scale) are “solvable”
in the sense that they can be reduced to Toda. The answer to this question is yes!
Moreover, the trick to solve them is based on the interpretation of the correspond-
ing #’s as fusion rings. In particular, for the model associated to the SU(N),
Verlinde ring the ground state metric is written in terms of & linearly independent *
solutions to the (self-similar) affine SU(N) Toda equations.

In this section we discuss in detail the SU(2), situation, the generalization to
arbitrary N being discussed in sect. 10. In this case, the superpotentials are the
Chebyshev polynomials [18]

W (X)=AT, (X)), where T, (cosY) =cos(mY).

Rescaling the field X, we see that as the coupling A — 0 one gets back the
minimal model A, which is equivalent to the grassmannian model at level 1

SU(k + 1), /U(k).

The fact that one gets Chebyshev polynomials is remarkable, since for these
polynomials the SQM Schrédinger equation is separable, and hence the ground
state metric is computable by brute force. In fact, separability for the SOM
Schrédinger equation (with one field) is equivalent to separability for the 2d
Helmholtz equation (related in turn to SU(2) Toda). However, the corresponding
wave functions are not very managable, so it is more convenient to use the
information coming from separability to simplify our equations, rather than to
compute g directly. It has not yet been shown, in the sense of having infinitely

* However, the reality constraint gives non-linear algebraic relations between these solutions.
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many conserved currents, that the Chebyshev perturbation of minimal models is in
that class, but the fact that we find an affine Toda equation even for this case
suggests that this must be true. In fact for the A, model W=X"*! it has only
been shown that X and X? perturbations are integrable [33,42], and it was
suspected that perturbation by X"~ ! is also integrable. Chebyshev perturbation to
leading order (as A — 0) is of this type. So what we are finding is that this is, to
leading order, integrable but to get it to be fully integrable it must be “dressed” by
lower-dimension operators which make it become precisely the Chebyshev polyno-
mial. It would be very interesting to verify this by studying perturbation theory
near the conformal point.

The method we use for solving the Chebyshev models is again using the change
of variables trick discussed in sect. 5. This will in fact allow to solve them all at
once. We take

W=AT,(X),
f=cos(Y/n)=X,
W,(Y)=AXcos(Y). (9.1)

Then, if we are able to compute the ground-state metric for the N = 2 sine-Gordon
model, W (Y), we get all Chebyshev superpotentials at once by truncation to the
operators ¢, €%, of the form

b(Y) = Py(cos(Y/n)) sin(Y/n),
where P,(X) are polynomials of degree k <n — 2.

9.1. N=2 SINE-GORDON

For the sine-Gordon model we identify an element of % with the set of its
values at the (non-singular) critical points (the “point” basis). For W (X) the
critical points are

X,=wr, rel’z,
and we identify an element ¢ €%, with the sequence

(), =d(mr), rez}.

The ring operations act componentwise on ¢. One has (using definition (2.10))

1 1
Res[¢]=— L (~1)""(#),-

reZ
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We choose as basis in %, the elements a, (k € Z) such that

(ak)r=6kr'

In this basis we have
(k+1) 1
lehz(_l) Xakh’

(Co=(=1) 8L,

The superpotential (9.1) is invariant (up to phase) for

T: Y->Y+m,
P: Y- -Y.
Then, in our basis one has
g1+1,j—1=gtj’
8-i-j= &

Given an integer i, there is a unique decomposition
=iy +2{i}, with {()=0,1.
Using (9.3) we write
g, =&up = {7}):

and introduce its Fourier series
— 1
Burii(0) = gy (r).
r

Next, we consider the 2 X 2 matrix (0 <8 <27)

g5(0)  &qi(0) )

£(6) = (gm(e) )

Eq. (9.3) implies
8os(0) =87(0),

goi(0) = ei0816(0)7

423

(9.2)

(9.3)
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and

8oa(0) =8a( —8),

8:15(0) =e g ;5(—9).
Then we can parametrize the metric as

A(8)  e?/2B(6)

8OV~ om0y aco)

]

where
A(0) =A(—8), B(8) =B(—-0).

The transpose and the conjugate of the ground state metric in terms of the 2 X 2
matrix g(6) read

g"(0)=[g(-0)]", g*(8)=[e(-0)]".
Then
g'(0) = [2(0)]',
and g(6) is hermitian in the 2 X 2 sense. Therefore
A(0) =A(6)",  B(6)=B(8)".

Moreover, A(8) > 0, since the metric is positive.
Finally, we must impose the “real structure” constraint on g(6), namely

17 (6)g(0)(n*) '(6)8*(8) = L. (9.4)
In the 2 X 2 notation, one has
i1 o
”(e)zX( 0 1)’
1 0
o=t 9
So eq. (9.4) reduces to

|X12(A(8)" —B(6)*)=1.
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Therefore, we can parametrize g(8) in terms of a single function of x(= |A]%)
A(x, 8) = (1/Vx) cosh[L(x, 8)],
B(x,8)=(1/Vx)sinh[L(x, 8)].

Putting everything together, we get

g(x, 8) = (1/Vx)U(8) exp[a,L(x, 6)]U(8) ",
where

U(8) = exp(§i00s).
Now,
Izl g 9,87'](8) = —Uo U " 9, 0;L(x, 8),
[G,, G,](8) = —2U0,U~ " sinh[2L(x, 8)],
and the final equation reads
d, L(x, 0)=2sinh[2L(x, 8)],

i.e. for each 6, 2L(x, 6) is a self-similar solution to the sinh-Gordon equation and
we are back with our old friend the special PIII. To put the equation in canonical
form, let

2L(x,0)=u(z,0) where z=2x'?2
For z — 0 we have the asymptotics (cf. sect. 8)
u(z,0)=r(6)log z+s(8)+..., with [r(8)]<2,
that is
L(x,80)=14r(0)log x+3[s(8)+r(8)log2] +...,
whereas for x > « we get (cf. (8.6))

Lix o a(6) exp(—4x'?)  «(9)
(x, )“2‘/5 Pz *2ﬁ|/\|1/ze

—41A]

Notice that the exponent is precisely the soliton mass
214W [ =2| Al |cos(km) —cos((k + 1)m) [ =4[|A],

in agreement with the semiclassical picture.
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To specify completely the metric for N = 2 sine-Gordon, it remains only to fix
the boundary conditions, i.e. the function r(8). This will be done below.
In terms of L(x, 0), the point-basis metric reads

gij(x) = #fozwdf) ei"(j_k)/z{exp[L(x, 0)] + (- 1Y exp[ - L(x, 0)]}
(9.5)
Since g(#) is periodic with period 2, one has
L(x,0+2m)=—L(x,90),
L(x, —0)=L(x,9).

In particular,

L(x,m)=0.

9.2. BACK TO CHEBYSHEV

Now we return to the original Chebyshev superpotentials,
W=AT,(X).
The critical points are
ra

X,=cos(—) r=1,...,n—1.
n

Again we work in the point basis. We denote by [, the chiral field with value 1 at
the rth critical point and zero elsewhere. From each [,, by pull-back, we get a
chiral primary operator in the sine-Gordon theory. Taking into account the
jacobian, we get (j=1,...,n—1)

1 T
f*lj: - ;Sln(-;j) Z [a2nr+j_a2nr—j]’

reZ

where a, is as in (9.2).
Then eq. (9.5) gives

25(0)<1¥1,) = —nl—zsin(—gj) sin(;k)

X Z [g2nr+j,7n5+k - g2nr—j,2ns+k - anr+j,2ns—k + glnr—j,2n5~k]’
r.se”z
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where 26(0) is the degree of the cover. The sums in the r.h.s. can be computed via
the Poisson formula

n-l 2mr
Z anr+j.m 2n \/75(0) Z em—r(k n/n exp L( —)

r.sez n
. 27r
+( —1)(k_]) exp[—L(x, T)]}

Putting everything together, we get the ground state metric for the model W =
AT (X),

<lj*lk>— 3\/_ sm[w ]sm[:k]

n—1 T )
% Z SIH(—rk) Sln(_r])[ Lx2mr/ny | (_1)(1(—/) e—L(x,ZTrr/n)]’ (96)
n

which expresses the metric as a combination of a finite number of solutions to
special PIII. All these solutions are bounded for x — « and regular on the positive
real axis. Taking into account that

L(x,27m—a)=—-L(x, a),

we see that the metric for the 7,-model involves [(n — 1) /2] independent solutions
to PIII. In particular, for # = 2 we have just elementary functions, and for n =3, 4
we have a single Painlevé transcendent. This is in full agreement with previous
work, since T, is equivalent to the free theory, W=X?2/2, T, is equivalent to
W=X3/3—tX,and T, to W=X*/4 — tX?/2. These last two models have already
been solved in sect. 8 in terms of a single Painlevé transcendent. In fact, by going
through the field redefinitions needed to put these superpotentials in the standard
form (paying attention to the “anomalous” jacobian) one checks that for n =2, 3, 4
the above results reproduce the results of sects. 7 and 8. For brevity, we omit the
details of this check.

9.3. REGULARITY VERSUS BOUNDARY CONDITIONS

As in sect. 8, the boundary condition r(8) is fixed by requiring that the metric is
finite and non-zero as A — 0. Then the value of s(8) is predicted by the condition
of no pole on the positive real axis. We recall that for W=Y" the ground state
metric reads

(Y* |Yk>=r(¥)/nr(1— %) (k=0,...,n—-2).  (9.7)
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One has
T(X)=2"""X"+k, , X" *+....
The field redefinition
Y=2(A/2)'"X
puts the superpotential in the form
W=AT,(X)=Y"+O0(X").

Consistency requires that, as A — 0, the Chebyshev metric reproduces (9.7).
The critical points for 7,(X) are X, = cos(kw/n). Then in the point basis the
monomials X* €% read as

n—1 r k
xXk=) [cos(-z)} I, (k=0,1,...,n—2).
n

r=1

Taking into account the jacobian, one has
(Y% |Yhy = [z(A/z ] [2(,\/2)‘/"] xR xhy,

Let us define the sums

nilcos ( r) sin(%r) sin(zrt),

Z( 1) cos ( r) sin(%r) sin(%rt).

Explicitly, one has

1
Ao, = 5”[5(1),1,1 - 5(t),,,2n*1] ’

and, for k #0

Ay = 2k+2 [1-(- Umt)]{(%(k +kt - 1),,) B (%(k +1; + 1)n)}’

where (a),, is a short-hand notation for the unique number 0 < (a), < 2n, which is
congruent to ¢ modulo 2n. Moreover,

Bk,t = Ak,t+n .
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Putting everything together, the metric in the monomial basis reads

1
Al

(h+1)

(YF|YHRy = [2(X/2)”"]k“[2(,\/2)‘/"]

n—1
X Z [Ak,tAh,t e[l,(x,th/n)]+Bk,tBh’t e—[L(x,Z‘rrt/n)]].
t=1

The coefficients A, ,, B, , satisfy the “selection rules” (for 0 <t <n)

A, =0 for t>k+1,

B,,=0 for t<n-1-k, (98)
The first non-vanishing coefficients are
A k+1= _Bk,n~17k=n/2k+l' (99)

A consequence of the selection rules is that (1|1} is equal to (up to trivial
factors) expl L(x, 27 /n)], i.e. it is expressed in terms of a single Painlevé transcen-
dent. More generally, the matrix element (Y* | Y"*) involves, at most, min(k + 1, A
+ 1) transcendents.

The asymptotic behaviour of the diagonal elements of the metric as A = 0 is

<Yk IYk> ~ (1/n3)(2171/2)2k+2 | A|((2k+2)/n)—]

n—1
% Z Ai,r(?- | A ')r(Zm/n)/Z es@mi/n)/2
t=1

n—1
+ 2 B£,I(2|A|)_r(27t/n)/2 eAs(Zﬂr[/n)/z )

t=1

Using the selection rules, the requirement that the r.h.s. has a finite non-zero limit,
gives

r(z_wz)=2(1—%) (t=1,...,n=1). (9.10)

n

Note that in particular |r| <2, as required by regularity. Assuming that the
solutions are regular, we get (8.5)

-t )



430 8. Cecotti, C. Vafa / Topological - anti-topological fusion

This, using (9.9), implies

<Yk |Yk>||M0 - (1/n3)2(n—1)(2k+2)/n[Ai‘k+l +Bk2,n—k—l]2(n_2k_2)/n e[s(217-(k+1)/n)/2]

omle e

in full agreement with eq. (9.7). Moreover, the off-diagonal elements

’

(YR|Y"Y k+h,

go to zero in this limit, as they should. Therefore regularity implies the correct
boundary conditions for Chebyshev superpotentials. It is amusing that all the
normalization coefficients of the A,, minimal models can be deduced from regularity
theorems on Painlevé transcendents of third kind and vice versa.

It remains to specify the boundary conditions for the solution of the N =2
sine-Gordon model. We assume that r(8) is a continuous (albeit not smooth)
function of 6. From eq. (9.10) we know it at all rational values of 6 /7. Then it
should be

0
r(6)=2(1— —) for 0<8<27.
T

Outside this interval, the function is obtained by using
r(8)y=—r(0+2w), r(8)=r(—6).

Then the bound-state metric for the N + 2 sine-Gordon is completely determined.
Note that |r(8)| <2, and that all the regular solutions to special PIII appear in
the metric for the N + 2 sine—~Gordon model. The points § = 27wk where | r(0)| =
2 coincide with the points where r(8) is not smooth. These are also the points
where L(x, 6) even if continuous in § changes its asymptotic behaviour for A — 0
(cf. sect. 8). At the se points one has “logarithmic violations of scaling”. This is
precisely the boundary condition satisfied by the Ising model correlation functions
[47].

9.4. STRONG-COUPLING LIMIT

Let us take the limit A — . in this limit the various vacua at different critical
points, X, = cos(mk/n), decouple (up to exponentially small corrections corre-
sponding to soliton corrections). Then we must have

Ok ajy 1 4

WXl we(x)w (x| V2Ixl

(L) =

’
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for certain constants «/. Since

(—1)k*!

W”(Xk) = Anz
we must get
sin(mk/n) sin(mj/n)

1
¥l ) = o, +a;
Uty 1] (”‘ “* Tl

Using the asymptotics of u(z, ), eq. (8.6), and the identity (valid for j, k =1,...,n
-1

e4“‘+...). (9.11)

1 a1l T ™
—[1 +(—1)(kﬂ)] Y sin(—rk) sin(—rj) =8,
n o n n "

the r.h.s. of eq. (9.6) for large A has the behaviour of eq. (9.11) with

1 ISR (T 2mrs
Q= E[l_(—l)(k 1)] ;1 sm(;sk) Sln(;s])a((}: T)

_ Zni/; [1 —(- 1)(k —j)] 2%301 sin(%sk) sin(%sj) cos(%s)

s=

I

1
- 2‘/; (5j,k+1 + 5k,j+l)’
in agreement with the results of sect. 8 and appendix B.

9.5. THE ¢-FUNCTION

Next we consider the c-function. By the same agreement as in sect. 8, for the T,
model we have (z=2]A])

a
c(z) = %zau(z, 21 /n),

(in particular for n = 2, ¢ is identically zero, and for n = 3, 4 it is just what we got
in sect. 8). This follows from the fact that the Ramond operator associated to 1 is
the one with lowest charge. As z goes to 0, we get for the UV central charge

s (27 2
Cow=3r|—|=311-—|,
n n
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which is the well known result for the A, _; minimal model. The leading correction
to this result is of order |A|*/”, i.e. the modulus square of the perturbation.
The “running” U(1) charges of the Ramond ground state are

a
q,(z) = %z;u(z, 2mk/n) (k=1,2,...,n—1).
z

As z — 0, we get back the result of the A, _, minimal model, whereas as z — «
they all go to zero, as they should since the IR fixed point is trivial.
For the N =2 sine-Gordon theory itself, we have

d
c(z)= %zau(z, 0),

which in the UV limit gives ¢ = 3. However, now the corrections are logarithmic,

3
I W 0.
€(2) 2og z+C) 7

It is tempting to speculate about the relation of this logarithmic scaling violation
with the ones appearing in 2d gravity at ¢ = 1. This is in particular tempting in
view of the conjecture of Li [9] about the relation of topological N =2 minimal
models with 2d quantum gravity.

All the discussion in sect. 8 on the properties of these c¢-functions applies
word-for-word to the present general case.

9.6. VARIATIONS ON THE THEME

One interesting aspect of the equations for g is that they have a tendency to
reproduce nice field equations. For example, above we got the equations of 2d
sinh-Gordon. There are other models leading to even more suggestive equations.
As a divertissement we present a class of model which lead to 3d chiral models.

We consider the multicritical sine-Gordon models. By this we mean a model
which has the same critical points as the sine-Gordon one, but with a multiplicity
u > 1. All the critical points are assumed to have the same multiplicity u. For
simplicity, we assume u to even (= 2m). Then the superpotential is

W(X)=A[sin?"X dX

A (2m)! A ml(—l)’”"‘(

+—2"2;Z

2 .
=22—”’W o (m—k) m)sm[z(m_k)X]’

k
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which has the pseudosymmetries
X->X+km, X—- —X. (9.12)

An element ¢ € F is uniquely specified by its (2m — 1)-jets at the critical points,
i.e. by the set of data

L0 Dg(km) |k ez},

1 1
{¢>(lm), dd(k), 0*(km), ..., @am—1)!

(the “point” basis). Then F is identified with this set of numbers written as a
two-index object

d=(d)r, keZ,r=1,...,2m.

In this notation the ring product reads

2m
((l)(rlf)k,r = Z (¢)k,s(¢/)k,r*s'
s=1

Consider the ground state metric in such a basis g;,.r. From (9.12) we have
gi+1,r;]+1,s = gi,r;ﬁ’
_ (r+s)
g_ir===(—1) 8irys
As above we introduce the Fourier transform

gi,r;jj Egr,f(i —j)7 grf(e) = Zeikagr§(k)‘
k

The 2m X 2m matrix g(8) satisfies

g(—0)=2358(8)2;, (9.13)
where
3, =diag(1, —-1,1, —1,...,1, —1).

In this notation, the residue pairing is

1’1(0) = (1/)‘)21,
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where
(21)1';' = 5i+j,2m+1-

As in the sine-Gordon case, we have

[2(8)]"=2(8).

The reality structure constraint reads

. 1
2.8(0)38(-0) =—1

[Al?
Let £(8) = |A| g(8). Then the above equation becomes
F(0)3,5(-0)" =3,
or, using eq. (9.13),
Z(0)02(6) =10,
where
2= -3,3,
is a symplectic matrix. Hence
£(0) € Sp(2m).
The matrix C, reads

(2n)!
Cir=0——
( /\)k,r kzzm( ')2

ki

or, in the 8 basis,

(2m)! d
lﬂzzm(m!)z gé'

A

To save print we put
(2m)!
22 (m1)?’

Then the equations become

B d d .
6.[#(0) 0.2(6) ]=—w2d—0[g(e)@f(9) ]
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Putting
x,=Re z, x,=Im z, x;=0/2,

and using the fact that & is invariant under rotations in the (1, 2) plane, this
equation is rewritten as (=1, 2, 3)

a,|ge,e7!] =0, zeSp(2m),

which are the field equations of the (complexified) Sp(2m) principal chiral model
in three dimensions. This is the model corresponding to the lagrangian

Z=Ti[6,%8,57"].

Of course, the metric is a very special solution to these field equations. & should
be a positive hermitian matrix, invariant under rotations in the (1, 2) plane,
periodic with respect to translations in the orthogonal direction, and such that

F(xy, X3, —X3) =338(x), x5, X3) 35,

Nevertheless, it is amusing that we get a formal ‘“unification” of the coupling
constant A with @ which labels the different critical points!

10. Generalization to SU(N),

In this section we generalize the results of sect. 9 to arbitrary SU(N),. The
ground state metric of the associated models will be expressed as a finite combina-
tion of (self-similar) solutions to A _, Toda theory.

10.1. N CHEBYSHEV POLYNOMIALS

We start by describing the superpotentials corresponding to SU(N), Verlinde
rings, i.e. the generalization of Chebyshev polynomials to arbitrary N. These
superpotentials are closely related to those for the grassmanian cost models of
sect. 7, and indeed reduce to them in the UV limit.

Following Gepner [18], we introduce the variables ¢, (i=1,..., N). These
variables are subject to the constraint

N
[la;=1. (10.1)
i=1

As in sect. 7, we denote by o,(g;) the rth elementary symmetric function of the g,.
Obviously, o, (g;) = 1.
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The superpotential corresponding to the SU(N), Verlinde ring
WN,k(Xl’ X2"' i XN—I)

is the unique polynomial such that

N

Z qN+k
i 3

=1

Wyi(o(a), ox(q),...,on_(q)) = e

the only difference with respect to the grassmannian case being the constraint
(10.1). Of course, this is a major difference since it spoils quasi-homogeneity.
These polynomials are mutually orthogonal with respect to the L?>-measure defines *
by the weight yA(g,) and obey the recursion relation

(m+NYW, (X)) + Nil (-1 X,(m+N =)W, .y (X)) +(—1)"mW,(X,)=0.

i=1

Let us parametrize g, as (m =N + k)

1
q,-=exp[—(¢,-—d>i1)} i=1,2,...,N,
m

with the understanding that

¢0=¢N:0-

Let f,,, be the map

X, = (fom())), = on(exp[ (¢, — ¢; 1) /m]).
Then,

A N-2
f(:';)Wm= ; et + E e@Pir17%) 4 e~ dN1 ,

i=1

which, up to an obvious field redefinition, is just the N =2 SU(N) Toda superpo-
tential. Then, by a change of variables, to solve the problem for W (X)) it is
enough to compute the ground state for the supersymmetric Toda models. The
jacobian is again A(q;), the Vandermonde determinant.

* As in sect. 7, A(g,) is the Vandermonde determinant.
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10.2. N=2 TODA THEORIES
We are reduced to compute the ground state metric for the N =2 SU(N) Toda

theories,

A N-2
W(di, bay.-s bn_1) = e + Z e®ic1=9) 4 o ~dn-
i=1

This model has two symmetries:

2w
¢r—>¢>,+i7rk+27ril,, with £=0,1,....,.N—-1, [l eZ,

r

and
¢j - d)N—j'

The critical points correspond to the orbit of the origin with respect to the first
symmetry. Then a critical point is labelled by the numbers

(k, I, L. by ), k=0,1,...,N—1, [ €Z.

r

As usual, we denote by g, , the chiral operator with value 1 at the given critical
point and zero elsewhere. The value of W at the critical point (k, [) is

Z‘HkN
Wi,y = >/

So,

(h,my) e2mik /Ng(h,
(C )(kl) = e?mik/ 5( 1'")),

and the residue pairing is

2wik /Ng

TNk dyhmy) = Cye ko yihmg)

Here C, is a numerical constant depending on N only
(Cy) "= (1/N)""" det[C, ],

where C,, is the SU(N) Cartan matrix.
The above symmetries imply the following conditions on the metric

(kLY m)y={(k, I, +a,)|(h, m,+a,)), a,€1Z,

1)

k+p

{k+p}, 1 + {h+p}, m +

<(k,1r)l(h,ms)>=<

| S—
v
S
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(p=0,...,N—1), where {a} is the unique number between 0 and N — 1 which is
congruent to a modulo N. Moreover,

(ks LY IR, my)y) = (ks =k =1y ) (R, =k —my_)).

The first property allows us to introduce the Fourier transform

800, 0y-) = L exp(iX1,0,]<(h, 0)I(K, 1,)).

lL,eZ
Then the other two properties read

8i+1771(0) =845(8) (for0<k, h<N-2),

2e415(8) = exp —izre,]gkm(e),

2o71(0) = exp izre,]gN-l,z(e),

8kn(015 02,...,0y ) =exp| —i(h —k) Zer]gkﬁ(—azvl’ ~Oy_2,.-., = 0,).

To put the equations in the Toda form, we have to diagonalize the N XN
matrix g(0). It has the structure

20i(8) = Ay (0) + exp[—ine,]A(N+hk)(o),

where

gop(0) for A=0,1,...,N—-1
0 otherwise.

A,(0) - {

Given the peculiar structure of g(@), its diagonalization is elementary. We
introduce a new basis in # (k=0,...,N—1)

N-1 ir
i, (0) = rgo exp N(Zﬁk+ ‘és@s)]a,(ﬂ),

a,(0)= Y exp[ileﬂs]a(,J:)-

l.eZ
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In this basis, the ground state metric is diagonal, indeed
N—1 —il
(U(0)|0(8)) = 5(0 = )3, N T exp[T(sz Zses)JA,(e).
=0 s

In the new basis,
Wd’k(ﬁ) = ¢’(k+1)(0)’
ie.
(C,,,):(G) = 5{I;<+1)-
Therefore, for each value of 6,,...,6,_, the ground state metric &,(0),
<¢h(0)|¢k(6’) > =08(0"—0)5,,2,(9),
satisfies the AN—[ Toda equation,

Fusn(®)  F(0)

—0-0, 1 Z(0) = .
N )

However, in this basis the residue pairing is rather involved,

Res[,(0)y,(0)] =5(0' — e)c,\,Nil exp{%[Zﬂ-(k +h+1)+ 2Zs6s]},

r=0

so the reality constraint is not as simple as in sect. 9. Notice that — contrary to the
SU(2) case — the reality constraint gives £(—0) in terms of Z(8) instead of putting
a condition on the metric for fixed 0.

This completes the argument showing that for N =2 quantum SU(N) affine
Toda, associated to SU(N), Verlinde rings, the ground state metric can be written
as a finite combination of solutions to the classical A ,_, (self-similar) affine Toda
equation. Here we see the group SU(N) in operation in three seemingly unrelated
ways!

11. Conclusions

We have seen that the metric on the space of ground state vacua of N =2 QFTs
can in principle be determined by solving certain interesting differential equations
which express the flatness of certain holomorphic and antiholomorphic connec-
tions for the vacuum bundle over the parameter space. Not surprisingly, this
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flatness condition reduces in special cases to well known systems of equations of
mathematical physics (of the Toda type) which are expressible in the Lax form. In
examples which lead to equations which had been studied by mathematicians, we
were able to reproduce some of their results, derived from isomonodromic defor-
mation techniques, from a purely N =2 QFT point of view. The generalizations
that this N =2 point of view would naturally lead to, are yet to be verified using
the isomonodromic deformation techniques.

The system of equations that we have used does not distinguish a “preferred”
direction of perturbation, and in a sense treats all the directions on the same
footing. This is partly a surprise, because only very special directions are integrable
QFT’s in the sense of having infinitely many conserved current *. It is precisely in
these cases that our equations reduce to equations of the Toda type. Nevertheless
it is natural to study the full space of perturbations. In particular it should be
possible to flow from one conformal theory to another conformal theory and see
how the OPE of the two theories are predicted by self-consistency, and in
particular by the absence of singularity in the solution to the differential equations.
The examples leading to affine Toda are always massive at the IR, and unfortu-
nately do not provide any examples of this type.

We have seen that some examples of N = 2 theories whose rings are the same
as the rings of RCFT (SU(N),) lead to affine Toda equations. Is this a general
property? Is it true that each case where Verlinde ring of a RCFT can be
represented by the chiral ring of an N =2 theory the equations we get are
integrable and lead to Toda equations? Is it true that each time our equations are
of the toda type we can interpret the ring as that of a RCFT? These are mysterious
links between a conformal theory (RCFT) and a massive N =2 theory, which
deserve a serious study. Could it be that N = 2 theories lead to knot invariants in
three dimensions through this link? (if this were true singularity theory might be
connected to knot invariants). Do the N =2 theories admit a direct three-dimen-
sional interpretation?

We have seen that the affine Toda equations that characterize the metric
encode a lot of the information about the solitons in the theory. Can one derive
the soliton scattering amplitudes from this viewpoint using the techniques of
thermodynamic Bethe ansatz [51]? The discussion in appendix B points in this
direction.

Many of our constructions work for Donaldson theory and is worth investigat-
ing. This might lead to a simpler derivations of Ward identities in the context of
N = 2 supersymmetric Yang—Mills theories [52]. This would be interesting to study.

* It would be interesting to see if one can imbed this in an integrable setup by infinitely extending the
number of couplings, similar to what one has in matrix models [50]. We would like to thank authors of
the first reference in [50] for discussions on this point.
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It is our distinct feeling that we have only found the tip of an iceberg. There are
too many different things being related in too many seemingly accidental ways for
there not to be a bigger story. We hope that this will motivate further study to find
this bigger story.

We have benefitted from discussions with many people. In particular we wish to
thank L. Bonora, S. Coleman, L. Faddeev, P. Fendley, K. Intriligator, A.R. Its, A.
Kitaev, M. Martellini, S. Mathur, H. Ooguri, V. Periwal, N. Reshetikhin and A.B.
Zamolodchikov. The research of C.V. was supported in part by A.P. Sloan
Foundation, Packard Foundation and NSF grants PHY-89-57162 and PHY-87-
14654.

Appendix A. The ground state metric in the critical regime

At a conformal point W is quasi-homogeneous. In this case one can give explicit
representations of the metric in terms of integrals of holomorphic forms. Basically,
this is the generalization of Gepner’s correspondence for minimal models: at
criticality an N =2 model is related to a o-model and thus can be studied by
complex geometry techniques. There are three (equivalent) formulations of these
integral representations:

(1) In terms of the integrals ({¢,} a holomorphic basis of %)

/= [ eV dX, A AdX,. (A.1)

n
Yi

(ii) In terms of the period integrals for the pure (p, g) components of the
groups

H"2(E\)  H""(E,),
where E; are the (weighted) projective manifolds

E: w(Xx;) =0,
E,: w(X,)+Xx%,,=0. (A2)

(iii) For marginal operators the ground state metric is Kihler. The Kihler
potential has the representation

e X = [d"X d"X exp[W(X) - W(X)], (A.3)
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which can be rewritten as a bilinear form in the integrals of point i) as explained in
sect. 4.

To simplify the arguments notice that (without loss of generality) we can assume
W to be homogeneous. Indeed let the fields X; have U(1) charge g, = r,/d. Then
make the change of variables

x=yn

In terms of the new fields W is homogeneous, and the original ground state metric
is related to the new one as in sect. 5.

A part of the above statements is elementary, Indeed, we known that (for
marginal deformations) the metric is Kihler. Then it is elementary to show that

A
e 3 *
e KD = N Loaxe(t) [ Xa(1p)] s
k=1

where [, is the intersection matrix and x,(z,), x,(t,) are holomorphic. In fact (cf.
sect. 4) exp[—K]=<0]0), and (sect. 5)

%

(010) = thk[[ eWJeronf_W_W * wo] . (A.4)
h,k

Vi Y

Then it remains to show that

feW*Wa)o, fe‘w‘w*wo, (A.5)
bé Y

since (C_)¥=0 by charge conservation. The same argument (using the dual
connection d’) works for the other integral in (A.5).

According to the discussion in sect. 4, to prove eq. (A.3) it remains to show that
in (A.4) one can replace the integrals of the vacuum wave-forms with those of the
corresponding holomorphic forms. The proofs are hidden in ref. [14]. Here we try
to present them in a more “physical” form. We have already mentioned that the
basic flatness equations

A =911 =0, (A.6)

have the same general structure as Toda’s. In the case of (quasi) homogeneous W
they are analogous to the non-affine Toda, and hence can be solved by the usual
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Leznov—-Saveliev method [39]. One starts from the Gauss decomposition of I1,
II=e”4B

(here B is an upper-triangular * matrix, A is a lower-triangular one and D is
block-diagonal). In terms of B one gets simpler equations

dB=0D =0,
(0+e PCeP)B=0. (A7)

The crucial point of the method is that, once we are given an upper-triangular
matrix B satisfying (A.7) (for some D), we can reconstruct the full solution by
Lie-algebraic techniques.

A direct computation gives

(0, +C)w=L,w, (A.8)
with L, zero above the diagonal. Now, consider the Gauss decomposition of w,
w = cPAB.

Eq. (A.8) implies that B is a solution to eq. (A.7) (with D = D). Thus, out of the
periods @ we can reconstruct a solution to our equations. The hard part of the
argument is to show that this solution coincides with the one given by the SQM
“period map” II. We postpone the discussion of this point to the end.

Then one has

HH=erw, (A.9)

with F block-diagonal and holomorphic and .# strictly lower-triangular, i.e.
A =1+ Z, with Z decreasing the charge by one or more units. The first compo-
nent of (A.9) gives

'/’+e—W~W . w0=exp(F0”([))f e WdX, A...AdX
Y

+ n
Yk k

Analogously,
-

f e, = exp(ﬁ(?(t))/ edX, AL AdX,
173 Ve

* By upper-(lower)triangular matrix we mean the identity plus the matrix of an operator which
increases (decreases) the U(1) charge. It is actually block-triangular.
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Then

e K= exp((F(?)* +15(§’) Zpkhf e"dXx, A ...
h.k Yn

*

/\an[f+e'WdX]/\.../\an} . (A.10)

Yk

This, together with the discussion in sect. 4 shows property (iii). (The factor in
front of the sum can be re-absorbed by a Kihler gauge transformation). That p
can be identified with the inverse intersection matrix C*/ can be seen by the same
argument used in appendix C to show eq. (4.4).

A slight generalization of this argument leads to eq. (4.1). Let ¢,(X) be the
relevant chiral operators with U(1) charges ri/d 0< r,<d ). Consider the auxiliary
superpotential

I/Vaux(IYk7 Y’ ta’ si) = W(Xk’ ta) + Yd + Zsj¢j(X)Yd—rj'

J

W,.x is quasi-homogeneous and the couplings s; are moduli. So the above analysis
applies. As s; — 0 the field Y decouples and then

iquydf rjd)in 7rl> aux

where (... ), denotes the metric for the A ;,_, minimal model. On the other hand,
the Lh.s. of eq. (A.11) is equal to

51:0=<$j¢i><?d_r'ydfr">d, (A.11)

- <0 |0>aux agl as, 10g<0 |0>aux

5=0"

Replacing the integral representation (A.3) for (0]0),,x and neglecting terms
which vanish by symmetry reasons, we get

g;= (8,0 = [T1dX, dX, ¢:(X,)$,(X,) exo[W(X) -~ W(X)]. (A.12)

In this form the equality holds only for relevant operators. Let us explain why the
irrelevant ones are different. First of all, it would be contradictory to assume eq.
(A.12) to be true for all fields. In fact, <<$]¢i) =0 if g, # g;, whereas the r.h.s. of
eq. (A.12) does not vanish for g; — g, integral. In other words, the bilinear form in
the r.h.s. mixes operators with charges differing by an integral amount. More
precisely, an operator ¢,; of charge g; gets mixed with operators of lower charge
q;—1, g;—2,.... Only the relevant operators are well defined, whereas the
marginal ones can mix only with the identity. In this last case, the problem is
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solved by taking the “connected” part of the integral in eq. (A.12), i.e. one takes
the logarithm of the integral as Kahler potential. The fundamental reason behind
this mixing is the dependence on the choice of a particular representative for the
classes in %. Under a change of representatives (preserving their U(1) charges)

¢, dX, A...AdX,—>¢; dX; A...AdX, +DwAa,,

the periods @ change as
wowt+tZw,

where the matrix .Z decreases the charge by an integral amount. Then mixing in
unavoidable unless we have a preferred representative to start with. Instead the
SQM period II is unambiguous since it is defined in terms of given forms. A
change of representatives is compensated in eq. (A.9) by a change in the matrix .#".
Restricting to operators with 0 < g < 1, in eq. (A.9) we can replace .# by 1 and
hence effectively identify the period @ with the SQM periods II (F is absorbed in
the conventions). This explain why for relevant/ marginal operators we get nice
formulae and why they do not hold for ¢ > 1. In fact in the general case the metric
can still be written in terms of w though not so explicitly *. The mixing above has
deep mathematical meaning. Some aspects are discussed in ref. [14]. To do better
than this one has to leave the elementary methods. Luckily the mixing ~ which at
the elementary level is a nuisance — at a more sophisticated level turns into a
welcome simplification.

We just sketch the idea of how one can compute the metric for irrelevant
operators out of the periods @. More details can be found in ref. [14]. Basically,
one has to reconstruct the complete solution of the linear problem (A.6) from its
triangular part ¢?B. In the Toda case this is done by Lie-theoretical methods [39].
The same applies here, but since in our case H is not abelian (in general) the
reconstruction is a bit less elementary. It is convenient to present the tricks in a
slightly more abstract language than in the abelian case. From sct. 6 we know that
(¢, 1) is an element of the group G. So it can be seen as a map from coupling-
constant space to the group G. However, it is more convenient to project it to a
map g into the coset space ** G/H. G/H is an open domain in G./B where B is
the group of lower triangular matrices (in our sense). This space is obviously a
homogeneous complex manifold. In fact, it is the classifying space for complex
flags of given type. Over GC /B we have universal tautological bundles correspond-
ing to these flags. They are homogeneous with respect to the action of G and
holomorphic. They have a unique hermitian metric { - |- > which is homogeneous

* However, for operators with ¢ —1< g <¢ one also has nice expressions. Indeed they can be
connected to the relevant ones by the reality constraint. Then for ¢ < 2 elementary methods suffice
to get all g.

** H is assumed to act on the left.
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and such that G acts by isometries. Correspondingly there is a unique universal
connection which can be constructed by Lie-group techniques. Embedding G/H
into G /B enlarges the “gauge group” from H to B. Then ¢ and its triangular part
are related by a gauge transformation, i.e. define the same map *

©: couplings — G, /B.

In the triangular gauge ¢ is holomorphic. Hence the map ¢ is holomorphic. Now,
the crucial point is that the ground state metric is precisely the pullback of the
universal one via the map @. This is a consequence of the fact that the group G
acts homogeneously on the ground state metric and hence g must correspond to
the unique homogeneous one **. Since the universal one is known, we can
reconstruct the full g out of the map ¢. But the triangular part of ¢ is sufficient to
specify the map.

In fact o is not just a holomorphic map, it is also horizontal. By this we mean
that it satisfies eq. (A.7). Horizontal maps are very rigid. Then in various situations
we have uniqueness theorems for the metric g. Using these results one can show,
e.g. that the map ¢ is the direct sum of the periods maps for the projective
manifolds E, and E, defined in (A.2) [14]. Here we want to exploit them to prove
that the map ¢ defined by the SQM period map coincides (at criticality) with the
one defined by the periods w. A typical rigidity theorem for horizontal maps
[24,40] states that two such maps are equal if: (i) they transform the same way
under modular transformations and (ii) they agree at a single point in moduli
space.

Then everything is proven if we can show that: (1) under a modular transforma-
tion the chiral primary fields transform as the periods @ (equivalently, as the
periods for the projective manifolds E;) and (2) that at a particular point in moduli
space we have equality between the ground state metric and the metric computed
out of the above integrals. Point (1) has been discussed in detail for é =1 in ref.
[53]. The general proof is very easy. It is enough to check the equality of the
monodromy action in the topological theory. In the topological case one can
indeed identify the chiral operators with the integrals w (see appendix C). Hence
the equality is manifest. To show (2), we assume W to be homogeneous of degree
d. Then we consider the family

T (X, t;5) =sW(X,, t) + (1 —s) T X

* o is the period map in the Griffiths sense [40].

** The reader may wonder about the overall normalization of the metric. It is also fixed. Indeed, we
know already that, restricting to marginal deformations, the metric is the curvature of a certain line
bundle. Then its overall scale is fixed topologically.
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It is enough to check equality at s = 1. In this case we end up with a bunch of
decoupled A, _; minimal models. For the A-series the equality was explicitly
checked in ref. [14].

Appendix B. Semiclassical considerations

In this appendix we discuss the leading semiclassical corrections and show the
result quoted in eq. (4.7). So we are interested in the limit where the superpoten-
tial AW has simple critical points which are very far from each other (in the limit
of large A) and to leading order decouple from one another.

On general grounds one can argue that the leading off-diagonal semiclassical
correction to the metric, which to leading order is diagonal in the basis of critical
points is a “universal” function of the mass of the soliton interpolating between
critical points (in units of inverse length of the cylinder) if there is a soliton
connecting the two points. The mass of the soliton has simple dependence on the
superpotential and is given by

m=2|Al AW ].

In the case of just one field, which we will mainly concentrate on, a precise
statement of this universality is as follows *. Assume there is a convex domain
0 < C containing only two (distinct) critical values W(X ;) and W(X,). Suppose
that there is a simply connected domain {2 C C containing only two critical points
(= classical vacua), X; and X, such the W({2) = . Finally, assume that the two
Milnor vanishing classes associated with these critical points have an intersection
number +1 (i.e. in the Dynkin diagram of the polynomial W(X) the two points
corresponding to X; and X, are connected by a single link). These conditions
imply in particular that there exists a soliton connecting the critical points. As
before let |/;) label the critical point basis of chiral fields, i.e. up to topologically
trivial terms they are eigenstates of X with eigenvalue X,. Then, as A » =

A=W (X)W (X)) )

=U2IAHIW(X,) = W(X;)I) + O(exp[ -l r1]), (B.1)

where

p= min{4 inf [W-W(X,)|,4 inf |W~ W(X,-)I},
Wea Wwean

*

More general arguments are available but, unfortunately, they do not give more detailed results.
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and U(m) is an universal function. Comparing with the known W = X3 — X case,
we get

@ d 1
U(m) = _[—wzm/—Tp-f——_?—exp(_sz +m2) = — ;Ko(m) (B.2)

Then as m — « we have the asymptotical expansion

e (-1D* , 1
= 1+k§1_—k! [(2k — 1)1 Tk

U(m) ~ -

Since # ~ A~ !, the various terms in this expansion can be seen as loop corrections
to the one-instanton (soliton) process. It is remarkable that all the perturbative
corrections are universal.

So stated, universality can be proven in many ways. We will concentrate on
three different ways: The first, and the most direct way, is to use our equation (3.9)
in the asymptotic region. The second, is to use WKB approximation to write down
the overlap of wave functions based at different critical points — this can be done
both in the path-integral language as an instanton sum or in the Schrédinger
equation. The third one is not as rigorous, but has the advantage of giving the
overall normalization in a simple way and suggesting a physical picture of how the
corrections to the metric might be related to a kind of partition function in the
soliton subsector *. This is very much in the spirit of the thermodynamic Bethe
ansatz [54]. We will discuss these three different view points in turn. At the end of
this appendix, as an example, we discuss t he leading correction of the metric for
W=x""1/(n+ 1) —x in the asymptotic region.

We first show how this universality property can be shown starting from our
basic equations (3.9). We present the details of the argument since it can be easily
extended to prove more general “universality theorems” for multi-instanton pro-
cesses. Assume that all the zeros of W' are simple. In this point basis, we rewrite
the metric as

g=n exp[y]n',
where
8

ne= ————J,—T— .
A (X))

At the classical level ¥y =0. As A — =, y is dominated by the (leading) 1-instanton

contribution. Neglecting terms exponentially suppressed with respect to the lead-

*

We wish to thank A.B. Zamolodchikov for encouraging us to take this interpretation seriously.
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ing instanton, we can work to first order in v. In this approximation (3.9) becomes

d (|)\|2 d ) IW(X)—-W(X)I*
d|)\|2 d|/\|27jk J i Yik+
Putting
Yie = Vi 2 ) »
2 =21AIW(X)) - W(X;) 1,
one gets
d (d B3
e -, (B3)

The general solution to this equation (vanishing as z — ) is
Yie = B Ko(26) (B.4)

and universality is proven up to an overall constant 8;,. That this argument does
not fix the overall constant was to be expected. In particular, in this argument we
did not use the fact that there is a soliton connecting the critical points. If there
were no solitons connecting the two critical points, the corresponding B, would
have to vanish. However, in case there exists a soliton connecting the two critical
points we would still like to determine the overall constant and show its universal-
ity. We accomplish this by showing that in such a case the constant Bji 18 the same
we got for the X3 — X model (which does have a soliton connecting the critical
points).
Consider the auxiliary superpotential

W(X; ) =p W, (X) +s[W(X) = wiWi (X)],
where

W, (X)= 1X3— %(Xj+Xk)X2+ (X, X)X,

s = [W(X) = W(X)] /[ Wi (X)) = Wiy (X))].

As s — 1 we get back the original superpotential W(X), whereas for s — 0 we get
a cubic one *. Note that for this superpotential the mass of the soliton 2 | AW(X; s)|
is independent of s.

*

The limit s — 0 is not smooth in general (the Witten index jumps). However, the limit is smooth for
the quantities of interest here.
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Assume that W(X) is such that, for A large enough, we can consistently use the
linearized approximation in the whole range 0 <s < 1 (this in particular means
that there is a soliton in the original theory at s=1). Then the linearized
equations read

d; 8)\'}’,'/( =0y asyjk =0,
or, using eq. (B.4)
as'Bjk = asBjk =0.

Since B, is independent of s, it takes the same value as in the cubic case, namely
Bjx= —1/m. It is easy to check this universality result in the models explicitly
solved in the main body of the paper.

The second method uses WKB approximation. We first sketch the proof using
SQM, omitting technicalities. One writes the restrictions to {2 of the wave
functions associated to the states |/;) as

1
N — S,
i )\W”(Xj)f’ Vot oY,

where ¢, is a certain universal function and f; is a model-dependent field-redefi-
nition. 8¢; is the deviation with respect to exact universality. Then one uses
residue-like techniques to rewrite

EANE fBl 8¢;1% (B any domain in £2),

in terms of the value of the wave function on the boundary of B. To evaluate the
error one makes by replacing the true wave function ; by its universal counter-
part, we can use domains B such that their boundaries remain at a finite distance
from the critical points. Then go to the semiclassical limit, A — . We know that
the WKB approximation to the wave functions is reliable in this limit only as long
as we are away from the critical points. one cannot compute {/;|/,) directly by
WKB methods, since there is a non-negligible contribution to this quantity from
regions of radius O(v# ) around the critical points where WKB is totally unreliable.
However, the tricks above guarantee that we can evaluate the error with respect to
the universal answer using only the values of ¢; away from the critical points.
Therefore in the formula for the error we can use the WKB wave functions. In this
way we get the result stated above. We will now investigate WKB approximation in
more detail from a slightly different viewpoint and show why the leading semiclas-
sical correction is of order

exp[ =21 Al AW 1]

1
O -
V2IAl 1AW |
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(unfortunately, we are not able to get the numerical coefficient in front by this
method). This is a tricky point. Indeed at a first glance one would rather expect a
vanishing result for {/; [/, > (j# k). In fact, from the topological-anti-topological
fusion point of view, ignoring the two hemispheres at the two ends and concentrat-
ing on the infinitely long intermediate cylinder with circumference 8, one would
(naively) identify (lj |1, with

Tr 0 — 1)F exp[ —BH],

the trace being over the soliton sector corresponding to the path integral with
boundary conditions

X(+») =X, X(—»)=X,.

In the soliton subsector all state appear in supersymmetry multiplets (see e.g. ref.
[33] and due to the (—1)¥ in the above expression we scem to be getting zero. So
it seems with this naive interpretation of the topological—anti-topological fusion we
are getting a paradox.

The point is that the identification of {/,) with the vacuum | X;), correspond-
ing to the boundary condition X(r= —)=X,, is correct only at # =0. Indeed,
the “point” basis, which the topological theory gives, is defined as the one which
diagonalizes 4, i.e. for any holomorphic function f

F(X) ) =f(X,)I1;)+ Q7 [something).

There is also an anti-point basis, obtained from the anti-topological theory, which
diagonalizes the Q~-cohomology ring

F(/\—’)‘l;-> =f(/\7j)’l~j> + Q" |something).

For A+ 0 Ifj> #* !lj> because the chiral and anti-chiral rings cannot be diagonal-
ized simultaneously. Instead, the definition of the vacua |Xj> is symmetric
between Q*- and Q -cohomology and hence it is real with respect the real
structure M. In other words, the state | X;) is a “real” admixture of topological
and anti-topological states. The correct identification has the general form (using
results of sect. 5)

%
21 = AW (X)) 1) + (W (x) ) mflnd
+ sub-leading instanton corrections. (B.5)

Susy predicts (X, | X, ) =0 for j # k. This is consistent with eq. (B.5). Indeed

(X1 X0 =3[(erj+ () +28,] + ... =8, +O(v?),
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and hence (at least at the one-instanton level) there is no tunnelling between
distinct classical vacua | X;). Therefore (/;|/,) is non-vanishing not because there
is a “physical” tunnelling process but because the topological states Ilj> are
combinations of different classical vacua.

Despite the fact that (/;]1,) is not an instanton tunnelling amplitude in an
obvious sense its evaluation is quite reminiscent of an instanton computation. We
will now make this connection a little more clear. Our finding supports the idea
that loop corrections in an instanton background is responsible for the leading
semiclassical correction to the metric. For the sake of comparison, we recall what
we would have found in an actual instanton computation. We would get a factor
expl—2[A| | AW |] from the classical action, a factor V4w |A||AW | from the
integration over the position of the center of the instanton, no determinant factor
(by susy) and, unless we soak them up, a factor 0 from the Fermi zero-modes.

For definiteness we consider the model W =(X?/3 — X), and compute </, |l,)
as A — . There are two (equivalent) techniques available, one can use WKB
either in the path integral or in the Schrddinger equation. We choose the second
one since using explicit wave functions the identification of the various vacuum
states in simpler. In this framework, {/, |/,) is just the overlap integral for the two
vacua. However as mentioned above there is a difficulty. In SOM we compute such
overlaps by residue techniques. This requires only the knowledge of the leading
behaviour of the wave functions at the critical points of W. But these are precisely
the points where the WKB approximation breaks down! In other words, for the
vacuum wave functions the limits X — X; and # — 0 do not commute. This is why
making reliable semiclassical computations is very hard. Of course, we can try to
compute the overlap by integrating the WKB wave functions in the region where
they can be trusted but, as we shall see, this will give us only a rough estimate of
the amplitude.

We parametrize the wave form corresponding to [/, as

1 e ~2IAW(X) = WD)

[Ad(X) dW +2¢,(X) dIW].

T am 2IALTW(X) - W(D)]

From the Schrodinger equation we know that the functions ¢(X) have the
properties

o (l+ee?)= g-ialW D2 g=if 4
i : *
bo(1+ec?) = —[$(1+ee?)] +....
Moreover, WKB methods give

l$;1 =1+ 0(1/]A1) (B.6)
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both near the critical point X =1 and in the region where
AW (XY —W(1) ] >1,

provided we are away from the other critical point by at least O(1/|A[). It is
crucial that the 1/| A| corrections in eq. (B.6) cannot vanish identically.
The wave form for [1,) is

1 e~ ZIALIWOO WD)

w, = [AG,(X) dW +Xdy(X) A7 |.

V2m 2 (A IW(X) +W(1)]
by “functoriality”

(X)) =id\(—X), o X)=—id,(—X).

The idea is to evaluate the overlap by integrating only over the intermediate
region between the two critical points where (apart for points very near the critical
ones) the WKB functions are reliable enough. This region dominates the integral.
We must compute

] * @ Aw,=const.|A|
x [|o1d) + b5, ]

" exp[—ZIAI(IW(X) - W) I+IW(X)+Ww()])] Ew
IW(X) = w(1)?]

The argument of the exponential is of order A. Since we are interested in A — o,
we can evaluate this integral by saddle-point methods. In other words, the integral
is dominated by the minima of the ‘“‘action”. It is convenient to work in the
W-plane. In this planc the “action” at a given point is the sum of the distances
from the points W(1) and —W(1), and hence it is minimal along the segment
connecting these two critical values. Then, in doing the d?W integral, we integrate
in d(Re W) between — W(1) and W(1), whereas we use the gaussian approxima-
tion for the integral in d(Im W). To quadratic order in Im W the exponential is

(Im W)?
W(1)’ - (Re W)* |

exp| =4[ AL IW(1)[=2]Al | W(1)]

Integrating over d(Im W) we get

_ wi(l) - ~
const.y/[ AT e 41 1wI [ w(l)[¢r¢ +¢;¢2] d(Re W).
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This formula is consistent with instanton physics. Apart for the factor involving the
¢’s (related to the fermionic part of the wave function and the sub-leading WKB
corrections) this is what we expect: a factor exp[ — S] from the classical action and
a factor ~ \/m from the integration over the collective coordinate. Moreover,
the computation realizes manifestly the idea [33] that the soliton is the segment in
the W-plane connecting the two critical values. The phases of the ¢’s are such that
on this segment one has

bid, + ¢35, =0(1/1A1).

The fact that to leading order this vanishes just reflects the presence of Fermi
zero-modes. However, the sub-leading terms need not vanish (in fact, the Schrodi-
nger equation suggests they are not zero). Then we get

{, |12>=o( e—‘*W'W“)'), (B.7)

as claimed. The constant in front cannot be computed by these methods both
because the sub-leading corrections are poorly understood and because regions
where WKB fails may also give contributions of this magnitude. Anyhow, this
constant is predicted by our differential equations.

The third idea in getting this universal result is suggested by the form (B.2) that
we wrote the universal correction to the metric in. Indeed U(m) is related to the
contribution of a single particle of mass m in two space-time dimensions to
Tr exp(—BH) (where we fix a point in space in taking the trace) *, where m is the
mass of the soliton connecting the two critical points and we have set 8 = 1. Note
that in particular the normalization (up to the phase) is easily predicted in this
way. So this means that the naive picture of soliton partition function, which led to
the paradox mentioned above, is essentially right, but with taking the contribution
of one soliton from each supersymmetry multiplet to Tr{(— 1) exp(—BH)] to
avoid vanishing, Somehow the loop corrections to the instantons are responsible
for giving this “effective” soliton description. It would be worthwhile understand-
ing this connection more clearly. In particular this may allow one to compute the
scattering matrices of solitons from solutions to our equations using the thermody-
namic Bethe ansatz. In fact the asymptotic solution to PIII equation, given in the
second reference in [47] can presumably be interpreted as giving an exact multi-
soliton contribution to the Tr exp(—pH) for the A(X?3/3 — X) model (and simi-
larly for the Chebyshev case). In particular the quantity defined in eq. (1.4a) of that

*

We would like to thank P. Fendley and K. Intriligator for a discussion on this point.
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reference which is simply related to our functions can be viewed as computing the
contribution of soliton in the form

G= Zg2n+1’ (B8)
n=0

where g,,., (after specializing to our case and a suggestive redefinition of
variables) takes the form

2n+1 dpi exp(—\/piz—i—mz) 2n < L n
- 2 m? + JpE + 2) 2;
82n+1 fllz.[l 21’1‘\/174-—]112_ [jl:.[l(\/pj m \/p/+1 m jl:[l(pzl)

s

which should clearly have the interpretation of the contribution of 2n + 1 solitons
whose contribution to the partition function has been modified from the free case
by the presence of “interaction” encoded in the above equation by the term inside
[...]. It would be interesting to connect this to the S matrix of the N = 2 theories
computed in ref. [33], using ideas similar to thermodynamic Bethe ansatz.

As another example let us consider

considered in this paper. Let I[,> denote the critical points of W as r runs from 0
to n — 1 with an appropriate phase factor to cancel the hessian term appearing in
eq. (B.1). Let | x") denote the usual chiral basis for the vacua. Let w = exp(2i /n).
We have

n—1

1 -
|x5>____ r(s+l/2)|lr>_
w5

Using eq. (B.1) we see that the phase of the leading correction to (I |, is i,
and its absolute value is exp(—m)/V2mm , where m is the mass of the soliton
connecting the nearest critical points

m=2|AMW(r+1)-W(r))i =4|A|sin =/n.

Computing g, defined in sect. 7, as logarithm of {x'|x’), we see from the above
that (for n > 2)

|27 T
—2sin| — (i + 3) exp(—4|/\|sin—)
n n

q;~ —
8| A|sin—
n
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It is easy to check that to leading order this satisfies eq. (7.4), where z defined
there is the same as A here.

Appendix C. Special coordinates and all that

In this paper we used a coordinate-independent formulation of generalized
special geometry. However, in the physics literature it is more usual to formulate
this geometry using some special coordinates in which the formulae look quite
simpler. The only drawback of these coordinates is that one has to work hard just
to define them. In this appendix we describe the construction of such coordinates
in our framework and use them to simplify the proof of some technical results we
claimed in the main body of the paper. To avoid all misunderstandings, we use
Greek letters to label the various chiral fields in the model.

The basic formula, arising from SQM perturbation theory, is (cf. subsect. 9.1 of
ref. [5D
D, = 3,05 + Thdy, (C.1)

a

where
0';2 aaW = aaWd)k - Caﬁth’

and T, is the “torsion”. The two terms in the r.h.s. of eq. (C.1) have very different
origins. The first is the true variation of the topological operator whereas the
torsion arises because of the special representatives of BRST-classes one needs to
use in order to get the actual vacuum states *.

T, has the form

T,=1Z,CJ,
with
0,Z=-C,, Zn=nZ".
Hence,
Ty =—nT),  8T,=—[C,, C). (C2)

The first of egs. (C.2) justifies the name torsion for 7,: It is the antisymmetric part

* Here the tricky point is that, since Q@+ depends on t,, the derivative of a Q*-exact state is not
Q *-exact in general. Then computing the derivatives the actual representatives matter. In the
definition of D, they are uniquely fixed by the vacua. This is why a torsion appears.
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(with respect to n) of the connection. The second one shows that our curvature
originates from the torsion. In fact

[aa, Db]¢k =0,( Dy ) = (aﬁTb)khd)h'
Now, consider the connection *
ga:DHMTG (=8a_‘%a)'

With respect to g, &, is not metric any longer. But it is still metric for n. This was
to be expected since from a purely topological point of view the two connections
differ only by a gauge transformation. Next we consider a “curved” basis for %,
i.e. of the form

b, =W
Then one has
oSG0 W= WoW—C oW, (C.3)
thus o, =0, or
ZDyby =Dy

Moreover,
Dby = 0,0, W — 0. W,
which gives
ab =Yg

Thus & is torsionless. Then it is the Christoffel connection of 7. Let us compute
its Riemann curvature. One has

[ga’ ‘gb]d)c:aa(gao-l;]c —gbg';i). (C4)
From eq. (C.3) one has

(gaal;xc _gba-aac)aaw= aa[((ﬁbaaoi' + C da-[?d - (b « a)] H

(dp02 + Clof)o W = ¢, ,b. — (C,Cp) e

* Inref. [5] it was shown that &, is the Gauss—Manin connection in the sense of versal deformations of
a given singularity.
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Then the r.hs. of eq. (C.4) is in the jacobian ideal, and hence the curvature
vanishes. Then we can find (local) coordinates ¢, such that

7 = const. & =0.

This result is a standard mathematical fact [55]. These are the so-called special
coordinates. They are characterized by

d,0,W=24,0% (C5)

with ¢ as in eq. (C.3). Before going to more useful characterizations, let us show
that for n =1 this formula reproduces the results obtained in ref. [10] by KdV
flows considerations.

In the one-field case

o, W' =3 WoW—CLoW,

or

o, Wa W
Oy = ( w' ) ’
4

where (...), means the non-negative part. Then eq. (C.5) becomes

d)ad)b
o= 5,
which is equivalent to eq. (4.45) in ref. [10].
Put
@t =/7eiW6aW dX,A...AdX,. (C.6)
7

Using eq. (C.5) we find
aam; = iCang;—f. (C.7)

This is a characterization of special coordinates which is more convenient for
computations. Since det[w *]# 0, we can define the matrix C/* by

C=(w") nl(=)'] "
Then from eq. (C.7)

3,C = (w*) [nCT - ] [(=)"] " =0.
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Then we have the general formula for the residue pairing
Nab = wat'cjkwb_k (C8)

with C/* a constant matrix. Now we can show that this matrix is precisely the
intersection discussed in sect. 4. In fact, we show it for the “good” cases, where in
the UV limit we get a non-degenerate quasi-homogeneous W, although it is
plausibly true in general. Since C’* does not depend on A, we can limit ourselves
to quasi-homogeneous W, and hence to homogeneous ones. Then we consider the
homogeneous superpotential

P(X, t;8)=sW(X,t)+(1—-5)Y X"

C’* is independem of s. So we can compute it for s =0, i.e. it is enough to show
our statement for Fermat W’s. In this case our periods factorize into the product
of A ,_, minimal model periods. That in this last case C’* is the inverse intersec-
tion matrix can be seen by a direct computation.

We end this appendix by showing that our “perturbative” characterization of
the special coordinates agrees with the mathematical one [28,55]. Indeed, define

I o N
uy(A) = 5= [ dggtwy (),

where

wkj(g)=/ e, dX, A ... AdX,.

(&) "
(w *=w(+)). Eq. (C.7) generalizes to
aafw-b( g) = gcazwc( g) .

Taking the Mellin transform, in terms of u, (1) this becomes eq. (55) of ref. [28].
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