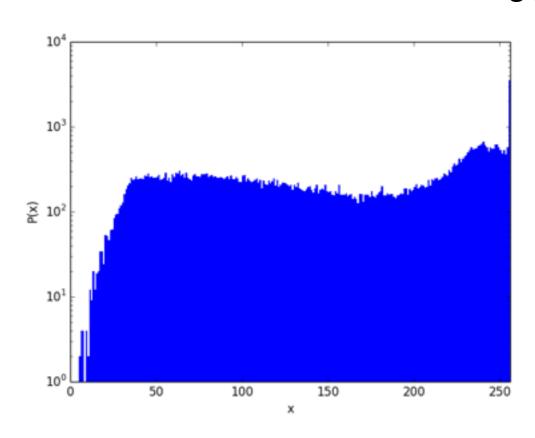
Statistics & Bayesian Inference Lecture 1

Joe Zuntz



Lecture 1 Essentials of probability

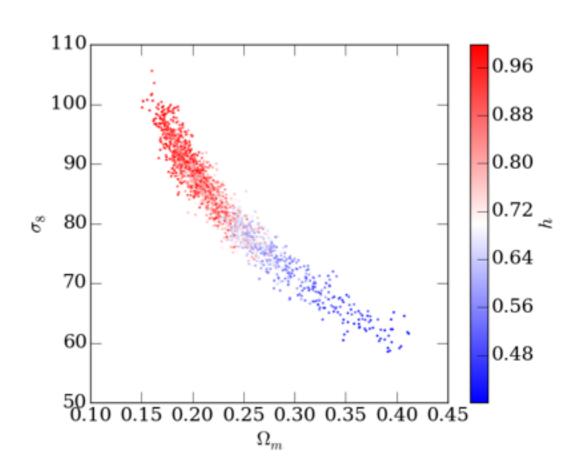
- Motivations
- Definitions
- Probability
 Distributions
- Basic probability operations

- Some analytic distributions
- Bayes Theorem
- Models & Parameter Spaces
- How scientists can use probability

Motivations

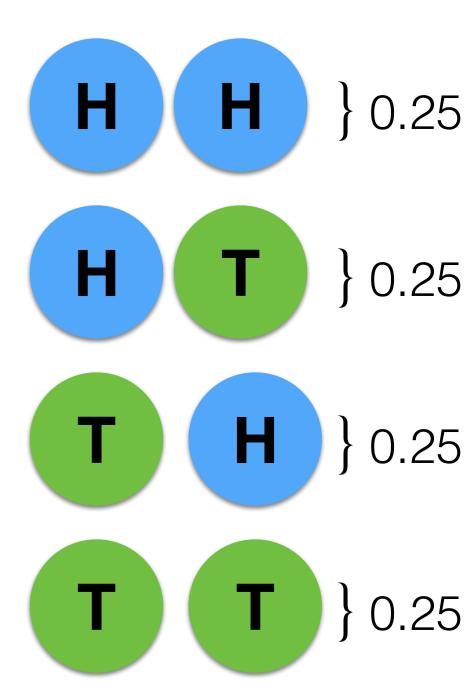
- Learn as much as possible from our (expensive) data
 - Constrain parameters in models
 - Test & compare models
- Characterize collections of numbers

$$H_0 = (72 \pm 8) \text{ km s}^{-1} \text{Mpc}^{-1}$$



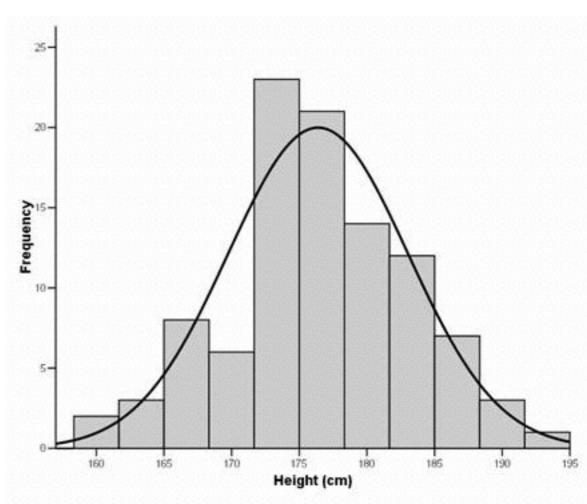
Probability Distributions: Definitions

- Assign real number P ≥ 0 to each member of a sample space (discrete or continuous, finite or infinite)
- P=probability density function (PDF) or probability mass function (PMF)
- This set represents possible outcomes of an experiment/game/event/situation
- e.g. possible results tossing two coins, height of next person to walk through door



Probability Distributions: Definitions

- Assign real number P ≥ 0 to each member of a sample space (discrete or continuous, finite or infinite)
- P=probability density function (PDF) or probability mass function (PMF)
- This set represents possible outcomes of an experiment/game/event/situation
- e.g. possible results tossing two coins, height of next person to walk through door



Probability Distributions: Definitions

- A random variable X is any value subject to randomness, e.g.:
 - was first toss heads?
 was the sequence Heads-Tails?
 were both tosses the same?
- Discrete X: P is a list of values
- Continuous X: P is a function, PDF, (which we have to integrate to answer questions)

Probability Distributions: Basic properties

Since X must have exactly one value:

$$\sum_{x \in X} P(x) = 1$$

• Continuous:

$$\int_{x \in X} P(x) \mathrm{d}x = 1$$

P(X=x) = f(x)
 Usually just write P(X) = f(x)

•
$$0 \le P(x) \le 1$$

Probability Distributions: Combining Probabilities

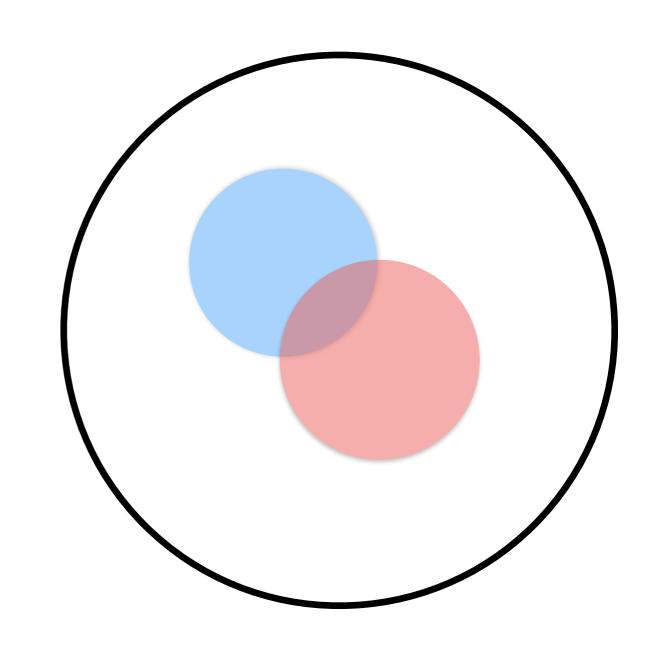
Joint probability

UnionP(X=x or Y=y)P(XuY)



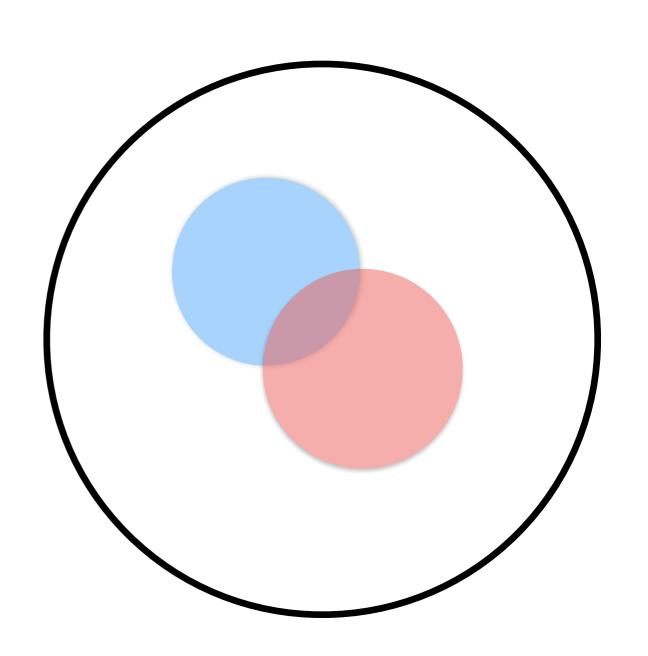
Probability Distributions: Combining Probabilities

- Conditional
 P(X=x given Y=y)
 P(X|Y)
- Independence:
 - P(X|Y) = P(X)
 - X independent of Y



Probability Distributions: Identities

- P(not X) = 1-P(X)
- P(XY) = P(X|Y) P(Y)
- $P(XY) = P(X) + P(Y) P(X \cap Y)$



Probability Distributions: Expectations

The expectation (or mean) of a random variable X is given by:

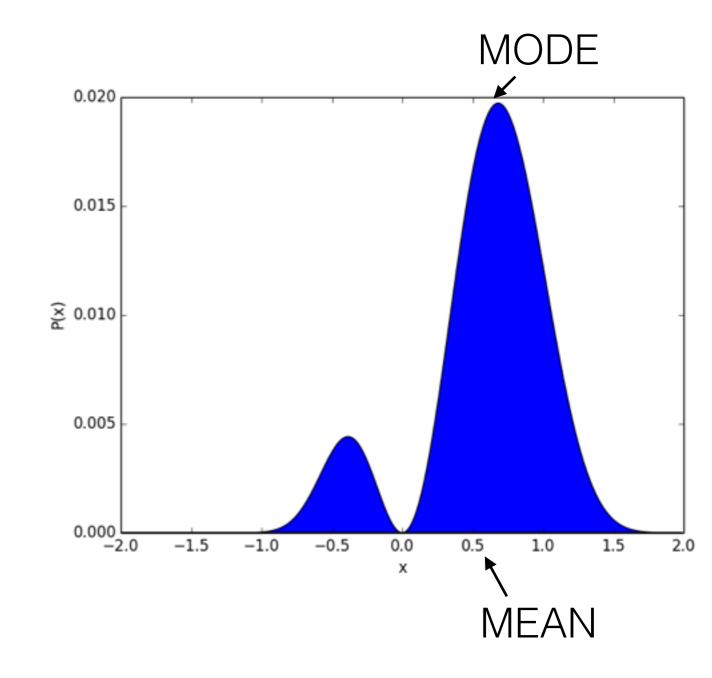
$$E(X) = \sum P(X)X$$
 $E(X) = \int P(X)X dX$

Or a function of it by:

$$E(f(X)) = \sum P(X)f(X) \qquad E(f(X)) = \int P(X)f(X)dX$$

Probability Distributions: Expectations

- Expectations are one measure if centrality, and not always a good one.
- Mode and median also exist
- All just ways of reducing or characterizing a distribution



Probability Distributions: Marginalizing

Discrete:

$$P(x) = \sum_{i} P(x|y_i)P(y_i)$$

Continuous:

$$P(x) = \int P(x|y)P(y)dy$$

• If you don't care about something, marginalize over it

Probability Distributions: Changing variables

- Probability mass u = f(x) must be conserved, $P(u)\mathrm{d} u = P(x)\mathrm{d} x$ not density $\mathrm{d} x$
- Relate with a Jacobian
- Be especially careful in more dimensions

$$u = f(x)$$

$$P(u)du = P(x)dx$$

$$P(u) = P(x)\frac{dx}{du}$$

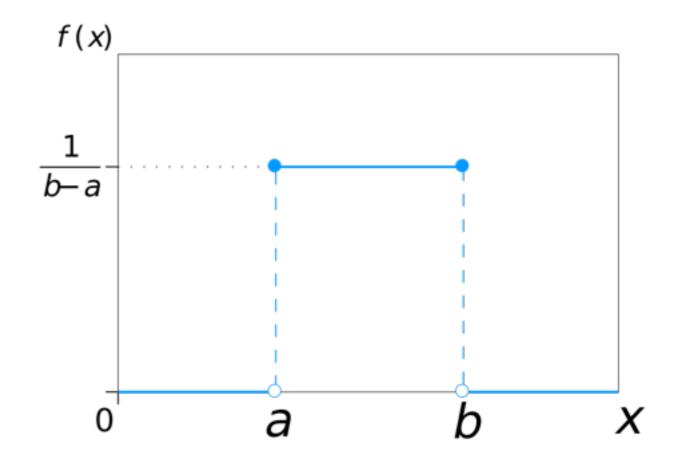
$$= P(x)/\frac{du}{dx}$$

$$= P(x)/f'(x)$$

Probability Distributions: Drawing samples

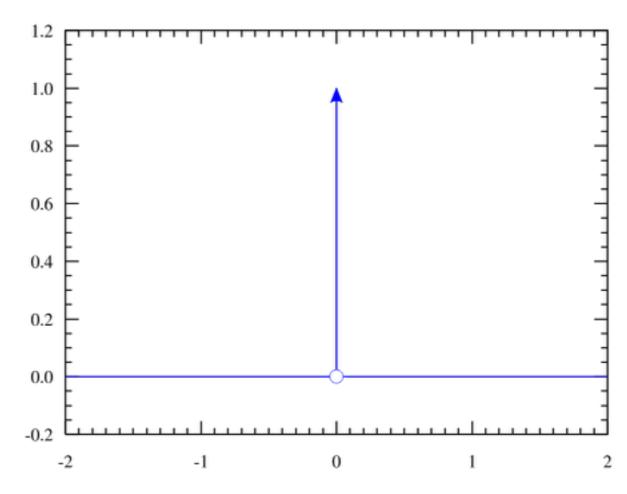
- Generate values of X with probability specified by P(X)
- Draw enough samples: histogram looks like PDF
- See lecture 3

- Wikipedia is brilliant for this
- Uniform
- Delta function
- Gaussian (normal)
- Exponential
- Poisson



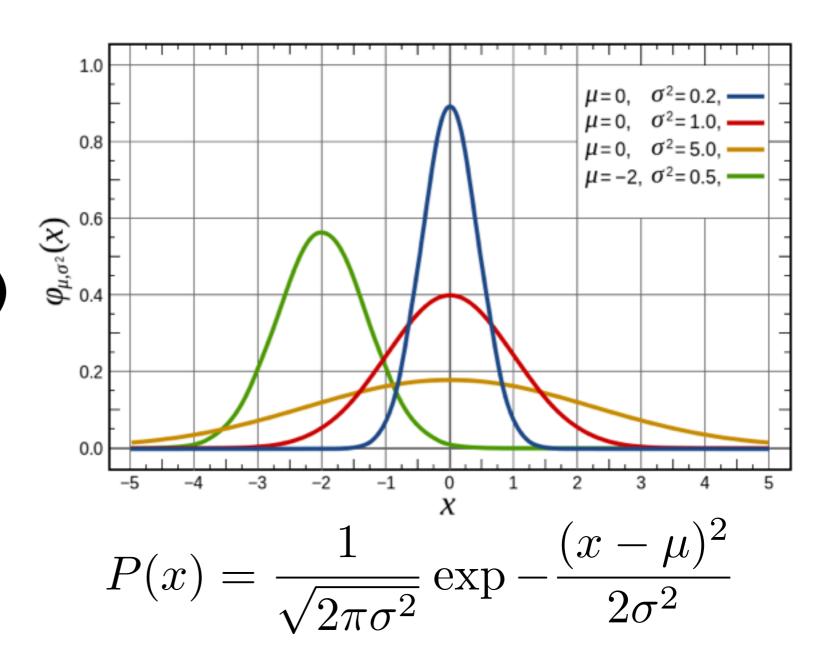
$$P(x) = \frac{1}{b-a}, \ x \in [a,b]$$

- Wikipedia is brilliant for this
- Uniform
- Delta function
- Gaussian (normal)
- Exponential
- Poisson

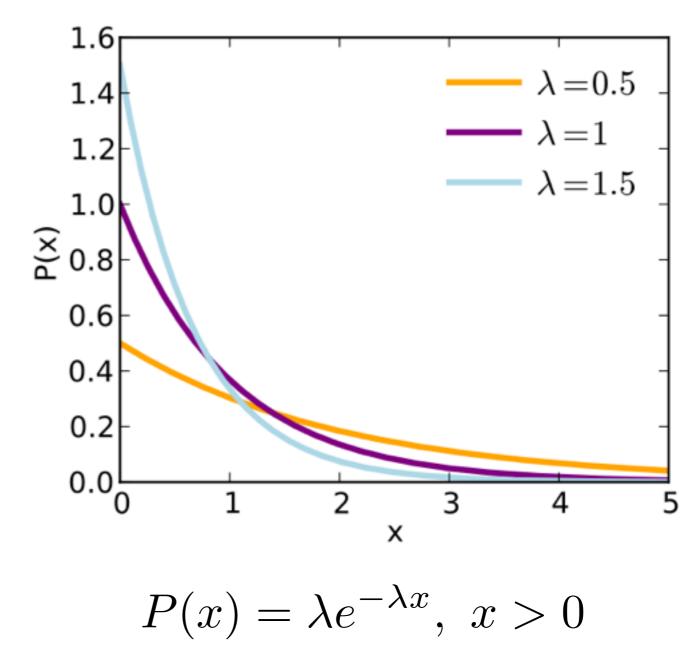


$$P(x) = \delta(x - x_0)$$

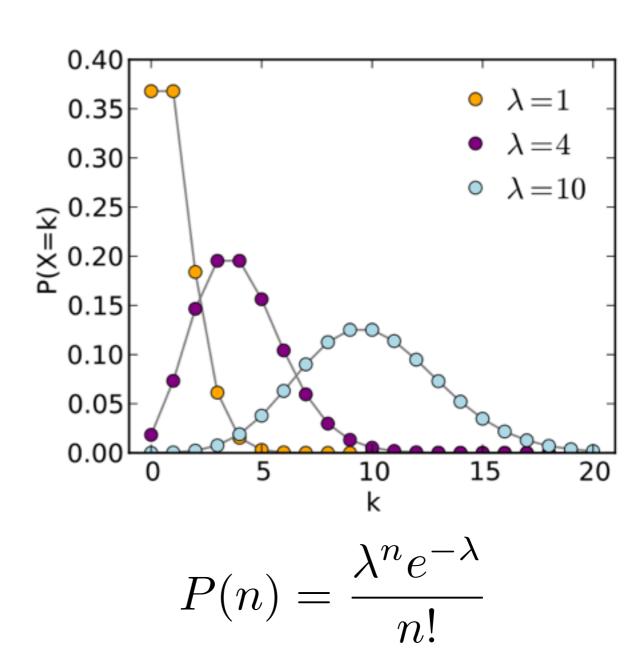
- Wikipedia is brilliant for this
- Uniform
- Delta function
- Gaussian (normal)
- Exponential
- Poisson



- Wikipedia is brilliant for this
- Uniform
- Delta function
- Gaussian (normal)
- Exponential
- Poisson



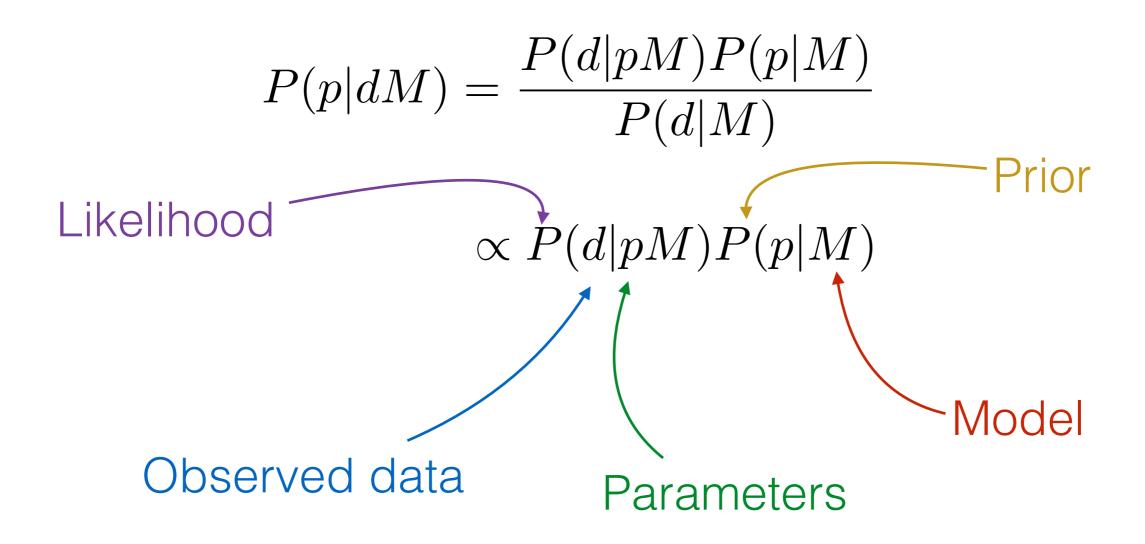
- Wikipedia is brilliant for this
- Uniform
- Delta function
- Gaussian (normal)
- Exponential
- Poisson



$$P(AB) = P(A|B)P(B)$$
$$= P(B|A)P(A)$$

$$P(AB) = P(A|B)P(B)$$
$$= P(B|A)P(A)$$

$$\therefore P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

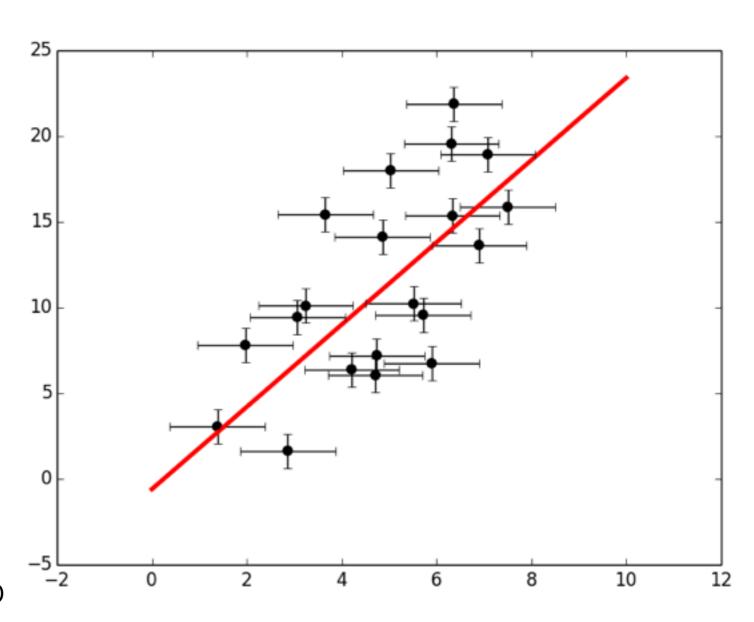


What you know after looking at the data =

what you knew before+ what the data told you

Models & Parameters

- A model is the mathematical theory that describes how your data arose.
 - It is **not** a theory of how what you **wanted** to measure arose.
- Non-trivial models include some deterministic and some stochastic parts.
 - Noise is one stochastic; many (most?) astrophysical models also have others too

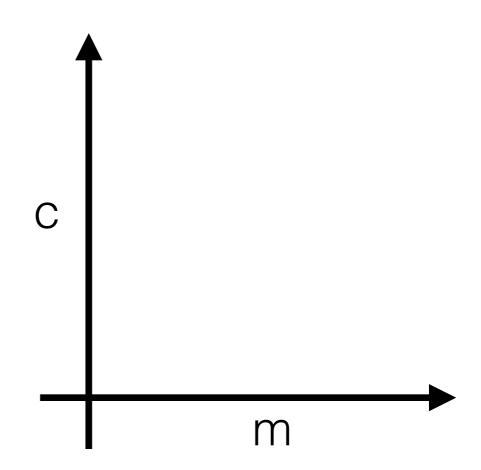


Models & Parameters

- Parameters are any unknown numerical values in your model
 - A parameter can have probability distributions
- You need (and have) some prior (background) information about all your parameters
 - This may be subjective!

Parameter Spaces

- Can use continuous parameters as dimensions in an abstract space
- Probabilities become functions of many variables: P(uvwxyz)
- As the dimension of this space increases your intuition becomes worse



Descriptive Statistics

- Reduce samples or distribution to set of characteristic numbers
 - In a analytic cases this is all you need to describe a distribution
- Statistics of samples
 - = estimators/approximations to underlying distribution stats

Descriptive Statistics: Mean

- Distribution mean
- Sample mean

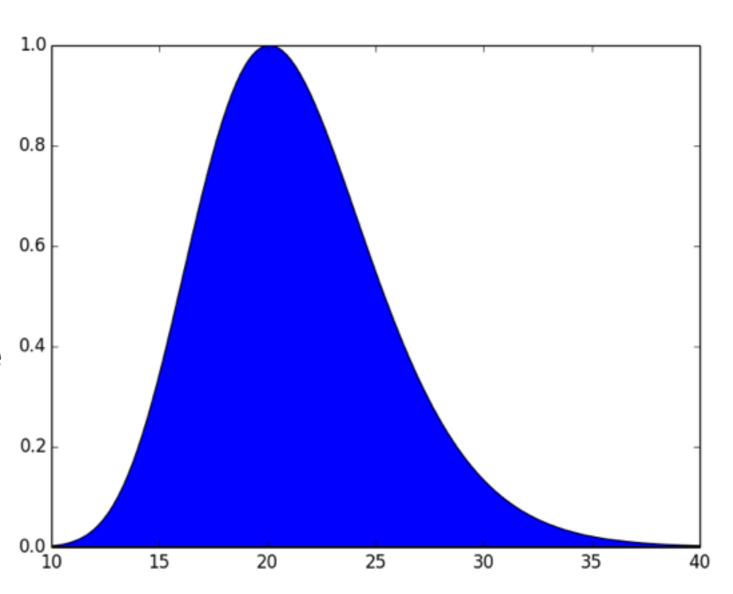
$$E[X] = \int XP(X)dX$$

$$\bar{X} = \frac{\sum X_i}{N}$$

Descriptive Statistics: Mean

Means can be misleading!

 Most distributions are asymmetric



Descriptive Statistics: Variance

Distribution variance

$$Var(X) = E[(X - \bar{X})^2]$$
$$= \int (X - \bar{X})^2 P(X) dX$$

Sample variance

$$\sigma_X^2 = \frac{\sum (X_i - X)^2}{N}$$

Population variance

$$s_X^2 = \frac{\sum (X_i - X)^2}{N - 1}$$

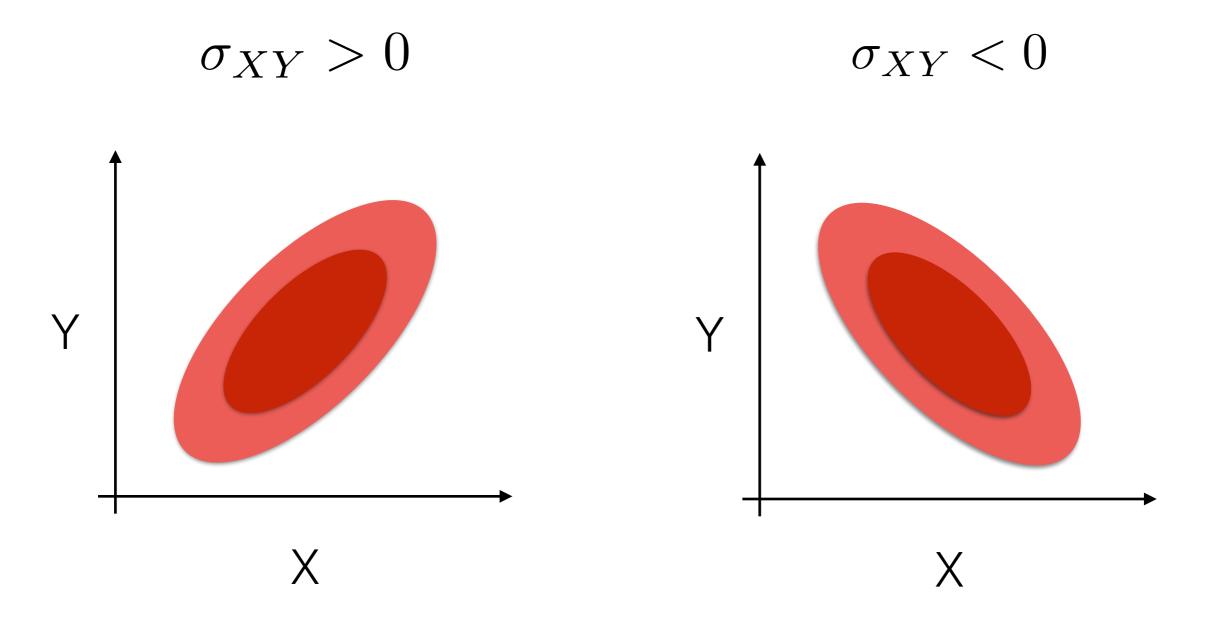
Descriptive Statistics: Covariance

$$Cov(X,Y) = E[(X - \bar{X})(Y - \bar{Y})]$$
$$= \int (X - \bar{X})(Y - \bar{Y})P(XY)dXdY$$

Covariance

$$\sigma_{XY} = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{N}$$

Descriptive Statistics: Covariance

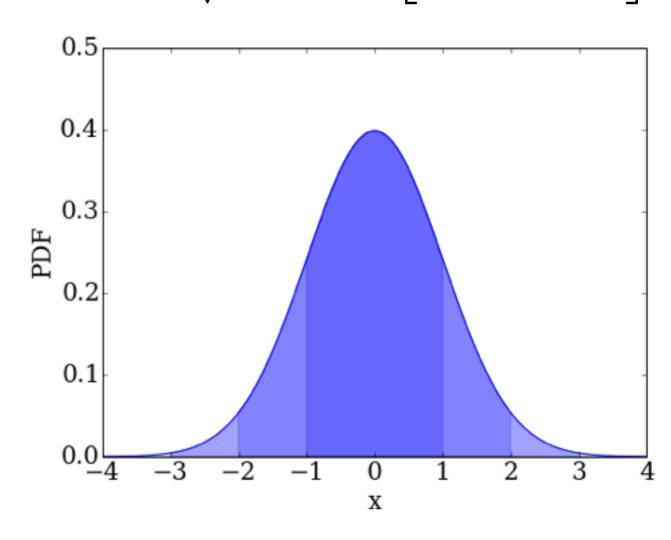


Gaussians: The Basics

One dimensional continuous PDF

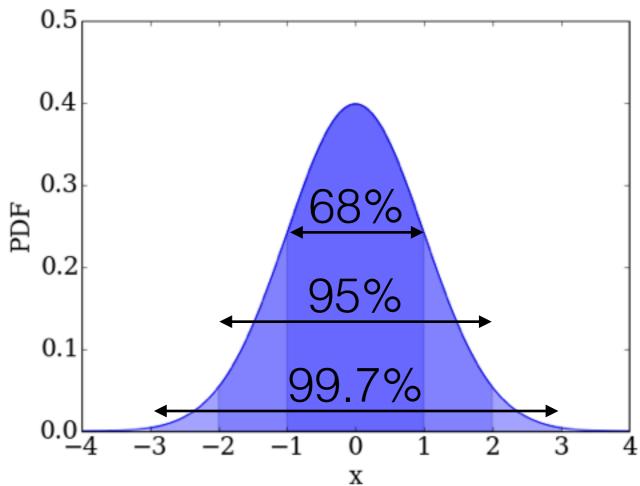
$$P(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

- Two parameters:
 Mean μ
 Standard deviation σ
- Symmetric
- Common! But often an over-simplification.



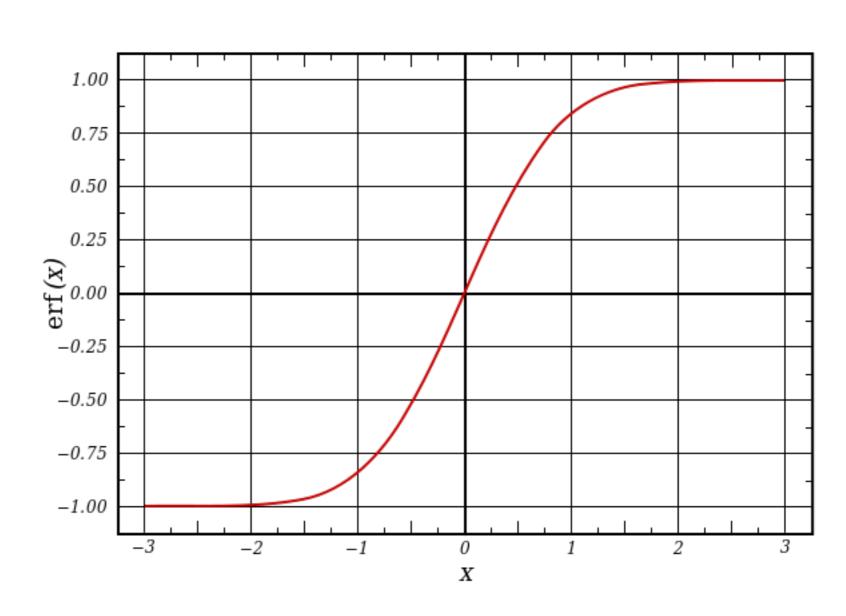
Gaussians: Sigma numbers

- Distance from mean defined in number of standard deviations sigma
- Probability mass:
 - 68% within 1σ
 - 95% within 2 σ
 - 99.7% within 3σ



Gaussians: Properties

- Error function is cumulative integral of Gaussian
- Sigma numbers can be read off



Gaussians: Properties

Sum of Gaussians has simple form:

$$X \sim \mathcal{N}(\mu_x, \sigma_x^2)$$

$$Y \sim \mathcal{N}(\mu_y, \sigma_y^2)$$

$$\implies X + Y \sim \mathcal{N}(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$$

 Especially useful for sum of identical Gaussians, and leads to formula that error on the mean ~ n^{1/2}

Gaussians: Properties

Central limit theorem:

Given a collection of random variables X_i:

$$\frac{1}{s_n} \sum_{i=1}^n (X_i - \mu_i) \to \mathcal{N}(0,1)$$

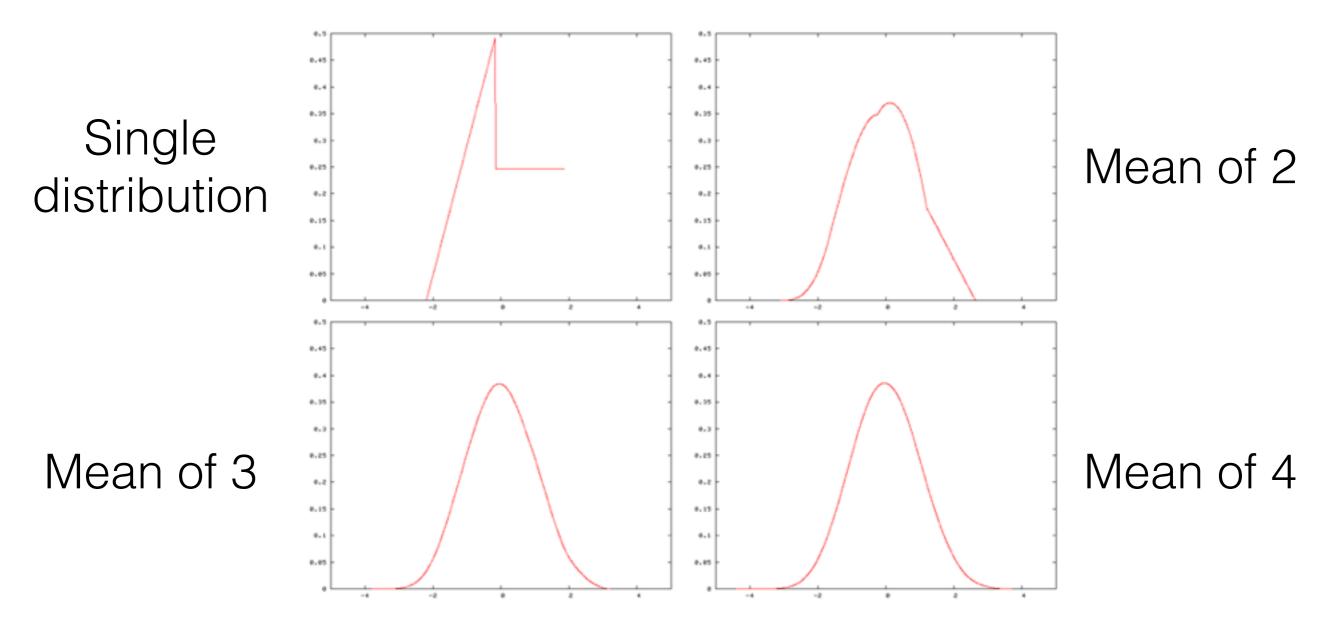
$$s_n^2 = \sum_{i=1}^n \sigma_i^2$$

Provided that:

$$\frac{1}{s_n^2} \sum E\left[(X - \mu_i)^2 \right] \to 0$$

Gaussians: Properties

Central limit theorem:



Gaussians: Multivariate

$$P(\underline{\boldsymbol{x}}; \underline{\boldsymbol{\mu}}, C) = \frac{1}{(2\pi)^{\frac{n}{2}} |C|} \exp\left[-\frac{1}{2} (\underline{\boldsymbol{x}} - \underline{\boldsymbol{\mu}})^T C^{-1} (\underline{\boldsymbol{x}} - \underline{\boldsymbol{\mu}})\right]$$

- C is the covariance matrix describes correlations between quantities
 - For example: data points often have correlated errors

	Frequentists	Bayesians
Use probabilities to	describe frequencies	quantify information
Think model parameters are	fixed unknowns	random variables with probabilities
Think data is	a repeatable random variable	observed and therefore fixed
Call their work	"Statistics"	"Inference"
Make statements about	intervals covering the truth x% of the time	constraints on model parameters
Have	many approaches with lots of implicit choices	one approach with explicit choices

Why Bayesian probability for science?

- Answers the right question
 - We want facts about the world, not about hypothetical ensembles of experiments
- The ideal process is always clear
 - Practical implementations more difficult
- Problems and questions are more explicit

- Frequentist approach:
 - Construct an estimator, a single number derived from your data points
 - Simulate data under different models and hypotheses and see how often measured estimator value appears

- Bayesian approach:
 - Construct a probability of the parameters given the data
 - Compute that probability for various points in parameter space to see if they are good fits

- Most astronomy data analysis takes neither of these approaches
 - Make up a statistic using rules of thumb and things you half remember from undergrad

A few maxims

- Don't model your data.
 Model the process that led to your data.
- Everything is a distribution.
 Distrust point estimates.
- You can't learn anything without making assumptions.
 All probabilities are conditional.

Easy Questions

- Show that if X is independent of Y then Y is independent of X
- Linda is 31, single, outspoken, and very bright. She majored in philosophy in college. As a student, she was deeply concerned with racial discrimination and other social issues, and participated in anti-nuclear demonstrations. Estimate the probability of these things being true:
 - (1) Linda is active in the feminist movement.
 - (2) Linda is a bank teller.
 - (3) Linda is a bank teller and active in the feminist movement.
- Show that $P(XY) \le P(X)$ and $P(XY) \le P(Y)$
- If a roll a twenty-sided dice and cube the number shown, what is the expectation of the result?

Medium Question

• Photons arrive at a detector with a Poisson distribution with $\lambda = 1$ photon/s

Each photon has an energy drawn from a Gaussian distribution with $\mu = 1000$ eV and $\sigma = 100$ eV.

Plot the probability distribution of the amount of energy arriving per second.

The energy of each photon is independent of the number that arrive.

Hard Question

 On my journey to work I can see the bus stop for the last 3 minutes of my walk towards it.

On my first day I saw one bus go past it before I got there. How long did I think I would have to wait for the next bus?

- You can assume that buses obey Poisson statistics. This
 is reasonable for British buses.
- If you need to make any other assumptions then describe and justify them.