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Motivations

e Learn as much as possible
from our (expensive) data

e Constrain parameters
INn models

* Jest & compare
models

e Characterize collections of
numbers
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Probability Distributions:

Definitions
Assign real number P > 0 to each
member of a sample space } 0.25
(discrete or continuous, finite or infinite)
O -
T
00 -

P=probability density function (PDF) or
probability mass function (PMF)

This set represents possible outcomes
of an experiment/game/event/situation

e.g. possible results tossing two coins,
height of next person to walk through
door
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Probability Distributions:
Definitions

A random variable X is any value subject
to randomness, e.Q.:

e was first toss heads?
was the sequence Heads-Tails?
were both tosses the same”?

e Discrete X: P is a list of values

e Continuous X: P is a function, PDF, (which
we have to integrate to answer questions)



Probability Distributions:
Basic properties

e Since X must have exactly one value:

e Discrete: Y Px)=1

re X

e Continuous: / P(z)dz = 1

cX

e P(X=Xx) = f(x)
Usually just write P(X) = f(x)

e 0<P(x)<1



Probability Distributions:
Combining Probabillities

e Joint probabillity

P(XY)
P(X=x and Y=vy)
P(XnY)

e Union

P(X=x or Y=vy)
P(XuY)



Probability Distributions:
Combining Probabillities

e Conditional

P(X=x given Y=y)
P(X[Y)

* |Independence:

* PX[Y) = P(X)

e Xindependentof Y



Probability Distributions:
|[dentities

+ P(not X) = 1-P(X)

. P(XY) = P(X|]Y) P

e P(XY) = P(X)+P(Y)-P(XnY)



Probability Distributions:
EXpectations

* [he expectation (or mean) of a random variable X
IS glven by:

E(X)=) PX)X E(X) = / P(X)XdX

e Or afunction of it by:

E(f(X) = S P(X)f(X)  E(f(X)) = / P(X)f(X)dX



Probability Distributions:
EXpectations

 EXxpectations are one

MODE
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measure it centrality, and
not always a good one.

0.015

e Mode and median also
ex|st

0.005

* All just ways of reducing
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Probability Distributions:
Marginalizing

e Discrete:

P(r) = ZP(x‘yi)P(yi>

e Continuous:

P(z) = / P(aly)P(y)dy

* |t you don't care about something, marginalize over it



Probability Distributions:
Changing variables

* Probability mass u= f()
must be conserved,  P(u)du = P(x)dx
not density do
| P(u) = P(x)@
* Relate with a du
Jacobian — P(x)/a
= P(2)/f'(z)

* Be especially careful
IN More dimensions



Probability Distributions:
Drawing samples

* (Generate values of X with probability specified by
P(X)

 Draw enough samples: histogram looks like PDF

e See lecture 3



Probability Distributions:
Analytic examples

* Wikipedia is brilliant for this

. f(x)

 Uniform
1
* Delta function b-a
* (Gaussian (normal)
* Exponential . - b
 Poisson 1
P(x) = , T € |a,b]




* Exponential

Probability Distributions:
Analytic examples

* Wikipedia is brilliant for this

e Uniform o | .
» Delta function os |

* (Gaussian (normal)

lllllllllllllllllllllllllllllllllllllll

e Poisson



* Exponential

Probability Distributions:

Analytic examples

* Wikipedia is brilliant for this

e Uniform Lo]

08

e Delta function

~ 06
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0.0

e Poisson
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Probability Distributions:
Analytic examples

Wikipedia is brilliant for this

Uniform

Delta function
Gaussian (normal)
Exponential

Poisson
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Probability Distributions:
Analytic examples

Wikipedia is brilliant for this

Uniform

Delta function
Gaussian (normal)
Exponential

Poisson
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Bayes [heorem
and Inference

d|pM)P(p|M)

Plplan) = T

NN — )
Likelihood x P(d|pM)P(p|M)

N

Observed data Parameters



Bayes [heorem
and Inference

What you know after looking at the data =

what you knew before
+ what the data told you



Models & Parameters

e A model is the mathematical
theory that describes how your -

data arose.

20
e |tis not a theory of how

what you wanted to 15l
measure arose.

10}

* Non-trivial models include some
deterministic and some |
stochastic parts.

 Noise IS one stochastic;
many (most?) astrophysical

models also have others too



Models & Parameters

 Parameters are any unknown numerical values in
your model

A parameter can have probability
distributions

* You need (and have) some prior (background)
information about all your parameters

* This may be subjective!



Parameter Spaces

» Can use continuous
parameters as dimensions
IN an abstract space

e Probabllities become

functions of many variables:
P(UVWXYZ)

e As the dimension of this
space increases your
INntuition becomes worse



Descriptive Statistics

 Reduce samples or distribution to set of
characteristic numbers

* |n a analytic cases this is all you need to
describe a distribution

e Statistics of samples
= estimators/approximations to underlying
distribution stats



Descriptive Statistics:
Mean

e Distribution mean

(2

E[X] = / XP(X)dX
P ¢

 Sample mean X =

N



Descriptive Statistics:
Mean

1.0

0.8}

e Means can be
misleading! 06

e Most distributions are *
asymmetric

0.2}

0.0
10 15 20 25 30 35 40



Descriptive Statistics:
Variance

e Distribution variance

e Sample variance

* Population variance

Var(X) = E[(X — X)?]

2 _ > (X — X)?
X N
2 = > (X — X)?




Descriptive Statistics:
Covariance

Cov(X,Y) = E[(X — X)(Y — Y)]

= / (X — X)(Y — Y)P(XY)dXdY

e Covariance

> (X = X)(Y; —Y)
N

OXY —




Descriptive Statistics:
Covariance

UXY>O oxy <0




(aussians:
The Basics

One dimensional

continuous PDF P(x; p,0) =
0.5
Two parameters:
Mean U 04

Standard deviation o 0.3l

PDF

Symmetric

0.1}

Common! But often an

: Py : 0.0
over-simplification.

1

V2o

exp

0.2}

-4 -3 -2 -1 O




(Gaussians:
Sigma numbers

e Distance from mean defined
iNn number of standard

deviations sigma 0.5

* Probability mass: 04

0.3}

e 68% within 10

PDF

0.2}

e 95% within 2 O 0.1}

0.0

* 99.7% within 30 -4 3 -2 -1 0123

X



(aussians:

Properties

 Error function is
cumulative
integral of
Gaussian

e Sigma numbers
can be read off

1.00
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(aussians:
Properties

e Sum of Gaussians has simple form:

X NN(II’Liv7O—£)
YNN(/Ly,O'g)
— X +Y ~N(pa + py,00 +0,)

» Especially useful for sum of identical Gaussians,
and leads to formula that error on the mean ~ n1/2



(aussians:
Properties

e Central limit theorem:
Given a collection of random variables X;:

S_Z :Uz %N(O 1)

* Provided that: .
- » E[(X = )] =0



(aussians:
Properties

e Central limit theorem:

Single

distribution - Mean of 2

Mean of 3 | Mean of 4



(aussians:
Multivariate
1 1

P(x; p,C) = 2 E 0] &P _—5@ —p) CH(z - g):

e C is the covariance matrix - describes correlations
between quantities

* For example: data points often have correlated
errors



INnterpretations of Probability

Frequentists Bayesians

Use probabilities to ...

Think model

parameters are ...

Think data is ...

Call their work ...

Make statements
about ...

Have ...

describe frequencies

fixed unknowns

a repeatable random
variable

“Statistics’

Intervals covering the truth
X% of the time

many approaches with
lots of implicit choices

quantify information

random variables with
probabilities

observed and therefore
fixed

“Inference”

constraints on model
parameters

one approach with
explicit choices



Why Bayesian probability
for science?
* Answers the right question

* We want facts about the world, not about
hypothetical ensembles of experiments

* [he ideal process is always clear
* Practical implementations more ditficult

* Problems and guestions are more explicit



Interpretations of Probabillity

* Frequentist approach:

e Construct an estimator, a single number
derived from your data points

* Simulate data under different models and
hypotheses and see how often measured
estimator value appears



Interpretations of Probabillity

 Bayesian approach:

« Construct a probability of the parameters given
the data

 Compute that probability for various points in
parameter space to see if they are good fits



Interpretations of Probabillity

* Most astronomy data analysis takes neither of
these approaches

 Make up a statistic using rules of thumb and
things you half remember from undergrad



A few maxims

 Don't model your data.
Model the process that led to your data.

* Everything is a distribution.
Distrust point estimates.

* You can't learn anything without making assumptions.
All probabilities are conditional.



Fasy Questions

Show that if X is independent of Y then Y is independent of X

Linda is 31, single, outspoken, and very bright. She majored in philosophy
In college. As a student, she was deeply concerned with racial
discrimination and other social issues, and participated in anti-nuclear
demonstrations. Estimate the probability of these things being true:

(1) Linda is active in the feminist movement.
(2) Linda is a bank teller.
(3) Linda is a bank teller and active in the feminist movement.

Show that P(XY) < P(X) and P(XY) < P(Y)

It a roll a twenty-sided dice and cube the number shown, what is the
expectation of the result?



Medium Question

e Photons arrive at a detector with a Poisson distribution
with A =1 photon/s

Each photon has an energy drawn from a Gaussian
distribution with g = 1000 eV and 0=100 eV.

Plot the probability distribution of the amount of energy
arriving per second.

The energy of each photon is independent of the
number that arrive.



Hard Question

 On my journey to work | can see the bus stop for the last
3 minutes of my walk towards it.

On my first day | saw one bus go past it before | got
there. How long did | think | would have to wait for the
next bus?

* You can assume that buses obey Poisson statistics. This
IS reasonable for British buses.

e |f you need to make any other assumptions then
describe and justity them.



