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Lecture 1 
Essentials of probability

• Motivations 

• Definitions 

• Probability 
Distributions 

• Basic probability 
operations 

• Some analytic 
distributions 

• Bayes Theorem 

• Models & Parameter 
Spaces 

• How scientists can use 
probability



Motivations
• Learn as much as possible 

from our (expensive) data 

• Constrain parameters 
in models 

• Test & compare 
models 

• Characterize collections of 
numbers

H0 = (72± 8) km s�1Mpc�1



Probability Distributions: 
Definitions

• Assign real number P ≥ 0 to each 
member of a sample space 
(discrete or continuous, finite or infinite) 

• P=probability density function (PDF) or 
probability mass function (PMF) 

• This set represents possible outcomes 
of an experiment/game/event/situation 

• e.g. possible results tossing two coins, 
height of next person to walk through 
door
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• This set represents possible outcomes 
of an experiment/game/event/situation 

• e.g. possible results tossing two coins, 
height of next person to walk through 
door



Probability Distributions: 
Definitions

• A random variable X is any value subject 
to randomness, e.g.: 

• was first toss heads?  
was the sequence Heads-Tails?  
were both tosses the same? 

• Discrete X:  P is a list of values 

• Continuous X:  P is a function, PDF, (which 
we have to integrate to answer questions)



Probability Distributions: 
Basic properties

• Since X must have exactly one value: 

• Discrete: 

• Continuous: 

• P(X=x) = f(x) 
Usually just write P(X) = f(x) 

• 0 ≤ P(x) ≤ 1

X

x2X

P (x) = 1

Z

x2X

P (x)dx = 1



Probability Distributions: 
Combining Probabilities

• Joint probability  
    P(XY) 
    P(X=x and Y=y) 
    P(X∩Y) 

• Union 
    P(X=x or Y=y)  
    P(X∪Y)



Probability Distributions: 
Combining Probabilities

• Conditional 
    P(X=x given Y=y) 
    P(X|Y)  

• Independence: 

• P(X|Y) = P(X) 

• X independent of  Y



Probability Distributions: 
Identities

• P(not X) = 1-P(X) 

• P(XY) = P(X|Y) P(Y) 

• P(XY) = P(X)+P(Y)-P(X∩Y)



Probability Distributions: 
Expectations

• The expectation (or mean) of a random variable X 
is given by: 

!

• Or a function of it by:

E(X) =
X

P (X)X E(X) =

Z
P (X)XdX

E(f(X)) =

Z
P (X)f(X)dXE(f(X)) =

X
P (X)f(X)



Probability Distributions: 
Expectations

• Expectations are one 
measure if centrality, and 
not always a good one. 

• Mode and median also 
exist 

• All just ways of reducing 
or characterizing a 
distribution

MODE

MEAN



Probability Distributions: 
Marginalizing

• Discrete: 

!

• Continuous: 

!

• If you don’t care about something, marginalize over it

P (x) =

Z
P (x|y)P (y)dy

P (x) =
X

i

P (x|yi)P (yi)



Probability Distributions: 
Changing variables

• Probability mass 
must be conserved, 
not density 

• Relate with a 
Jacobian 

• Be especially careful 
in more dimensions

u = f(x)

P (u)du = P (x)dx

P (u) = P (x)
dx

du

= P (x)/
du

dx
= P (x)/f 0(x)



Probability Distributions: 
Drawing samples

• Generate values of X with probability specified by 
P(X) 

• Draw enough samples: histogram looks like PDF 

• See lecture 3



Probability Distributions: 
Analytic examples

• Wikipedia is brilliant for this 

• Uniform 

• Delta function 

• Gaussian (normal) 

• Exponential 

• Poisson
P (x) =

1

b� a

, x 2 [a, b]
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• Uniform 

• Delta function 
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• Exponential 
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P (x) = �(x� x0)



Probability Distributions: 
Analytic examples

• Wikipedia is brilliant for this 

• Uniform 

• Delta function 

• Gaussian (normal) 

• Exponential 

• Poisson
P (x) =

1p
2⇡�

2
exp� (x� µ)

2

2�
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Probability Distributions: 
Analytic examples

• Wikipedia is brilliant for this 

• Uniform 

• Delta function 

• Gaussian (normal) 

• Exponential 

• Poisson

P (x) = �e

��x

, x > 0



Probability Distributions: 
Analytic examples

• Wikipedia is brilliant for this 

• Uniform 

• Delta function 

• Gaussian (normal) 

• Exponential 

• Poisson
P (n) =

�ne��

n!



Bayes Theorem  
and Inference

P (AB) =P (A|B)P (B)

=P (B|A)P (A)



Bayes Theorem  
and Inference

P (AB) =P (A|B)P (B)

=P (B|A)P (A)

) P (A|B) =
P (B|A)P (A)

P (B)



Bayes Theorem  
and Inference

P (p|dM) =
P (d|pM)P (p|M)

P (d|M)

/ P (d|pM)P (p|M)

Observed data Parameters
Model

Likelihood
Prior



Bayes Theorem  
and Inference

What you know after looking at the data =  
 

what you knew before  
+ what the data told you



Models & Parameters
• A model is the mathematical 

theory that describes how your 
data arose. 

• It is not a theory of how 
what you wanted to 
measure arose. 

• Non-trivial models include some 
deterministic and some 
stochastic parts. 

• Noise is one stochastic; 
many (most?) astrophysical 
models also have others too



Models & Parameters
• Parameters are any unknown numerical values in 

your model 

• A parameter can have probability 
distributions 

• You need (and have) some prior (background) 
information about all your parameters 

• This may be subjective!



Parameter Spaces
• Can use continuous 

parameters as dimensions 
in an abstract space 

• Probabilities become 
functions of many variables: 
P(uvwxyz) 

• As the dimension of this 
space increases your 
intuition becomes worse

m

c



Descriptive Statistics
• Reduce samples or distribution to set of 

characteristic numbers 

• In a analytic cases this is all you need to 
describe a distribution 

• Statistics of samples  
= estimators/approximations to underlying 
distribution stats



Descriptive Statistics: 
Mean

• Distribution mean 

• Sample mean

E[X] =

Z
XP (X)dX

X̄ =

P
Xi

N



Descriptive Statistics: 
Mean

• Means can be  
misleading! 

• Most distributions are 
asymmetric



Descriptive Statistics: 
Variance

• Distribution variance 

!

• Sample variance 

!

• Population variance

�2
X =

P
(Xi � X̄)2

N

Var(X) = E[(X � X̄)2]

s2X =

P
(Xi � X̄)2

N � 1

=

Z
(X � X̄)2P (X)dX



Descriptive Statistics: 
Covariance

• Covariance

Cov(X,Y ) = E[(X � ¯X)(Y � ¯Y )]

=

Z
(X � X̄)(Y � Ȳ )P (XY )dXdY

�XY =

P
(Xi � X̄)(Yi � Ȳ )

N



Descriptive Statistics: 
Covariance

X

Y

X

Y

�XY > 0 �XY < 0



Gaussians:  
The Basics

• One dimensional 
continuous PDF 

• Two parameters:  
    Mean μ 
    Standard deviation σ 

• Symmetric 

• Common!  But often an 
over-simplification.

P (x;µ,�) =

1p
2⇡�

exp


� (x� µ)

2

2�

2

�



Gaussians:  
Sigma numbers

• Distance from mean defined 
in number of standard 
deviations sigma 

• Probability mass: 

• 68% within 1σ 

• 95% within 2 σ 

• 99.7% within 3σ

68%

95%

99.7%



Gaussians:  
Properties

• Error function is 
cumulative 
integral of 
Gaussian 

• Sigma numbers 
can be read off



Gaussians:  
Properties

• Sum of Gaussians has simple form: 

!

!

!

• Especially useful for sum of identical Gaussians, 
and leads to formula that error on the mean ~ n1/2

X ⇠ N (µ
x

,�2
x

)

Y ⇠ N (µ
y

,�2
y

)

=) X + Y ⇠ N (µ
x

+ µ
y

,�2
x

+ �2
y

)



Gaussians:  
Properties

• Central limit theorem: 
Given a collection of random variables Xi: 

!

!

!

• Provided that:

1

sn

nX

i=1

(Xi � µi) ! N (0, 1)

s2n =
nX

i=1

�2
i

1

s2n

X
E
⇥
(X � µi)

2
⇤
! 0



Gaussians:  
Properties

• Central limit theorem:

Single 
distribution Mean of 2

Mean of 3 Mean of 4



Gaussians:  
Multivariate

• C is the covariance matrix - describes correlations 
between quantities 

• For example: data points often have correlated 
errors

P (x;µ, C) =

1

(2⇡)
n
2 |C|

exp


�1

2

(x� µ)

TC�1
(x� µ)

�



Interpretations of Probability
Frequentists Bayesians

Use probabilities to … describe frequencies quantify information

Think model 
parameters are … fixed unknowns random variables with 

probabilities

Think data is … a repeatable random 
variable

observed and therefore 
fixed

Call their work … “Statistics" “Inference"

Make statements  
about …

intervals covering the truth 
x% of the time

constraints on model 
parameters

Have … many approaches with  
lots of implicit choices

one approach with  
explicit choices



Why Bayesian probability  
for science?

• Answers the right question 

• We want facts about the world, not about 
hypothetical ensembles of experiments 

• The ideal process is always clear 

• Practical implementations more difficult 

• Problems and questions are more explicit



Interpretations of Probability

• Frequentist approach: 

• Construct an estimator, a single number 
derived from your data points 

• Simulate data under different models and 
hypotheses and see how often measured 
estimator value appears



Interpretations of Probability

• Bayesian approach: 

• Construct a probability of the parameters given 
the data   

• Compute that probability for various points in 
parameter space to see if they are good fits



Interpretations of Probability

• Most astronomy data analysis takes neither of 
these approaches 

• Make up a statistic using rules of thumb and 
things you half remember from undergrad



A few maxims

• Don’t model your data.  
Model the process that led to your data. 

• Everything is a distribution.  
Distrust point estimates. 

• You can’t learn anything without making assumptions.  
All probabilities are conditional.



Easy Questions
• Show that if X is independent of Y then Y is independent of X 

• Linda is 31, single, outspoken, and very bright. She majored in philosophy 
in college. As a student, she was deeply concerned with racial 
discrimination and other social issues, and participated in anti-nuclear 
demonstrations.  Estimate the probability of these things being true: 
 
    (1) Linda is active in the feminist movement. 
    (2) Linda is a bank teller.  
    (3) Linda is a bank teller and active in the feminist movement.  

• Show that P(XY) ≤ P(X) and P(XY) ≤ P(Y) 

• If a roll a twenty-sided dice and cube the number shown, what is the 
expectation of the result?



Medium Question
• Photons arrive at a detector with a Poisson distribution 

with λ =1 photon/s   
 
Each photon has an energy drawn from a Gaussian 
distribution with μ = 1000 eV and σ=100 eV.  
 
Plot the probability distribution of the amount of energy 
arriving per second.  
 
The energy of each photon is independent of the 
number that arrive.



Hard Question
• On my journey to work I can see the bus stop for the last 

3 minutes of my walk towards it.  
 
On my first day I saw one bus go past it before I got 
there.  How long did I think I would have to wait for the 
next bus? 

• You can assume that buses obey Poisson statistics. This 
is reasonable for British buses. 

• If you need to make any other assumptions then 
describe and justify them.


