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Quick Preliminaries

I will assume that everyone has been exposed to Quantum Field Theory
and some Particle Physics in the past. These lectures are aimed at helping
us understand the consequences of non-zero neutrino masses for particle
physics and what might lie beyond the Standard Model.

Some good references include:

• “Introduction to Quantum Field Theory,” Peskin and Schroeder;

• “Gauge Theories of the Strong, Weak, and Electromagnetic Interactions,”

Quigg;

• Dynamics of the Standard Model,” Donoghue, Golowich, Holstein;

• S. Willenbrock, TASI 2004 Lectures, arXiv:hep-ph/0410370.
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Tentative Outline for the Five Lectures

• SM Overview and QFT Basics;

• The Fundamental Fields, including Weyl, Dirac and Majorana fermions;

• Gauge Symmetries and SM Interactions;

• Spontaneous Symmetry Breaking and the Origin of Mass;

• Evidence for New Physics;

• Neutrino Masses.
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21st Century

Periodic Table

(Now with Higgs boson!)

http://www.particlezoo.net
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• Result of over 60 years of particle physics theoretical and
experimental research.

• Theoretical formalism based on the marriage of Quantum Mechanics
and Special Relativity – Relativistic Quantum Field Theory.

• Very Powerful – once we specify the model ingredients: field content
(matter particles) and the internal symmetries (interactions), the
dynamics of the system is uniquely specified by a finite set of free
parameters.
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[courtesy of Pilar Hernández]
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Quantum Field Theory in a (Tiny) Nutshell

The objects we care about are quantum fields, real or complex functions of
space-time. They are operator-value objects. In the case of free fields, the
differential equation that describes the different fields are solvable. These
act on a Fock-space, and create and destroy free-particles with well-defined
energy and momentum (including a dispersion relation: E2 − |~p|2 = m2).

In the presence of interactions, the differential equations that describe the
operators are non-linear and, in general, cannot be solved exactly. We
make use of perturbation theory in order to compute useful observables.
Mostly, we care about scattering: distinct asymptotic states in t = ±∞,
and the matrix elements that connect them (e.g.,
S =+∞ 〈µ(pµ)ν̄(pν)|π(pπ)〉−∞). These asymptotic states are treated as if
they were destroyed and created by the free fields.

[When perturbation theory is not effective, we need to get smarter. I
won’t talk about this at all!]
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[courtesy of Pilar Hernández]
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Lorentz Invariance

We only care about QFTs which are Lorentz Invariant (unlike, say, folks
in condensed matter physics). This is because, of course, Nature seems to
like Lorentz invariance, at least at “small” distances and in the limit
where we can ignore gravitational interactions. We will always ignore
gravity, for two reasons. (i) Gravitational interactions are really weak
compared to all other interactions for the types of processes we care
about, and (ii) we don’t know how to write down a mathematically
well-defined QFT for the gravitational interactions.

Lorentz invariance dictates the objects (fields) we are allowed to use as
ingredients. They are

• Massive fields with spin 0, 1/2, 1, 3/2, 2, etc

• Massless fields with spin 0, 1/2, 1, 3/2, 2, etc
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Lorentz Invariance

If we want the theory to be renormalizable, we must stick to the following
“types” of fundamental fields:

• Real Scalar. One degree of freedom.

• Complex Scalar. Two degrees of freedom.

• Spin 1/2 Fermion. Two degrees of freedom (Weyl and Majorana
fermions) or four degrees of freedom (Dirac fermion). More on this
later.

• Vector field. Two degrees of freedom when massless, three when
massive. The latter are problematic. More on this later.

This is it! [Composite objects can be more complicated. As you know, the
∆++,∆+,∆0,∆− baryons have spin-3/2, the f2 mesons have spin 2, etc.
Check out the Particle Data Book(let) if you want to be impressed!]
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Weyl, Majorana, and Dirac Fermions

The generators of the Lorentz group are the rotations, Ji, and the boosts,
Ki. They satisfy the algebra

[Ji, Jj ] = iεijkJk

[Ki,Kj ] = −iεijkJk
[Ji,Kj ] = iεijkKk .

The Ji are Hermitian, and the Ki are anti-Hermitian. The Ji satisfy the
algebra of the rotation group, SU(2). The last commutation relation
expresses the fact that a boost transforms as a three-vector under
rotations.
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André de Gouvêa Northwestern

To disentangle the algebra, define the Hermitian generators

Ai =
1
2

(Ji + iKi)

Bi =
1
2

(Ji − iKi) .

It is easy to show (try it!) that the Ai and Bi satisfy the algebra

[Ai, Aj ] = iεijkAk

[Bi, Bj ] = iεijkBk

[Ai, Bj ] = 0 .

Ai and the Bi: algebra of two independent SU(2).

The Lorentz group, SO(3, 1), is locally isomorphic to SU(2)× SU(2).
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Representations of SU(2) are familiar from the representations of the
rotation group: each representation is label by “spin,” which can have
integer or half-integer values.

Representations of the Lorentz group are labeled (a, b), where
a, b = 1/2, 1, 3/2, .... The simplest representation is (0, 0), which
corresponds to a scalar field. The simplest nontrivial representation is
(1/2, 0), which corresponds to a Weyl spinor, χ.

A Weyl spinor is a 2-component object that transforms under rotations
and boosts as

χ → e−
i
2σ·θχ

χ → e−
1
2σ·ηχ

where η is the rapidity, which is related to the velocity by β = tanh η.
The transformation under rotations shows that a Weyl spinor carries spin
1/2.
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André de Gouvêa Northwestern

Massive Weyl Spinor

L ⊃ 1
2
m(χT εχ+ h.c.)

where ε ≡ iσ2 is the 2× 2 antisymmetric matrix. This is Lorentz invariant.

(Proof: Denote a Lorentz transformation acting on χ by the matrix M , where

M = e−
i
2σ·θ or e−

1
2σ·η .

Thus under a Lorentz transformation,

χT εχ→ χTMT εMχ .

Displaying indices,

(MT )αβεβγMγδ = εβγMβαMγδ = εαδ detM = εαδ

where the last step uses the fact that detM = 1. Thus MT εM = ε, which completes

the proof in This also shows that the Lorentz group is locally isomorphic to SL(2, C),
the group of 2× 2 complex matrices of unit determinant. )
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Although a Majorana mass is less familiar than a Dirac mass, it is
actually a more basic quantity, constructed from a single Weyl spinor. In
this sense a Majorana mass is the simplest fermion mass term. However, if
χ carries an unbroken global or local U(1) charge, a Majorana mass is
forbidden, since it would violate this symmetry.

None of the fermions of the standard model (except neutrinos – much
more on this later!) can have a Majorana mass, since they carry electric
charge. This is why we often don’t hear about them.
[More generally, if χ transforms under a complex or pseudoreal representation of an

unbroken global or local internal symmetry, a Majorana mass is forbidden. Let

χ→ Uχ

where U is a unitary transformation acting on a set of Weyl spinors. The Majorana

mass term transforms as

χT εχ→ χTUT εUχ = χT εUTUχ

This is invariant only if UTU = 1, which is true only if the unitary transformation U is

real (U∗ = U).]
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Physically, a fermion with a Majorana mass is its own antiparticle. It is
referred to as a Majorana fermion. It cannot carry an unbroken global or
local U(1) charge (or, more generally, transform under a complex or
pseudoreal representation) because a particle and an antiparticle must
carry opposite charge.

Exercise - Gluinos are hypothetical Majorana fermions that are the

superpartners of gluons. Why can they carry color charge?

Exercise - Consider a Weyl fermion that transforms under the defining

representation of an unbroken SU(2) group. Show that the Majorana mass term

L =
1

2
m(εabχ

aT εχb + h.c.)

is invariant under the SU(2) symmetry. However, show that this term vanishes.
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If a Weyl fermion transforms under a complex or pseudoreal representation
of an unbroken global or local symmetry, then we need to introduce a
second Weyl fermion that transforms under the complex-conjugate
representation in order to construct a mass term. This is a Dirac mass.
Let χ, ξ transform under the (1/2, 0) representation of the Lorentz group,
and transform under some unbroken global or local symmetry as

χ → Uχ

ξ → U∗ξ .

Then a Lorentz-invariant mass term may be formed which respects the
unbroken symmetry,

L = m(ξT εχ+ h.c.)

since
ξT εχ→ ξTU†εUχ = ξT εχ .

Thus it takes two Weyl spinors to construct a Dirac mass. A fermion
with a Dirac mass is called a Dirac fermion.
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The Dirac Spinor (The One With Which Everyone is Familiar)

Dirac spinor, which is a four-component object constructed from a pair of
(1/2, 0) Weyl spinors χ, ξ via

ψ =

 χ

εξ∗

 .

In terms of a Dirac spinor, a Dirac mass is written in the familiar form

L = −mψ̄ψ = −m
(
χ†,−ξT ε

) 0 1

1 0

 χ

εξ∗


= m(ξT εχ− χ†εξ∗).
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We are using the so-called Weyl or chiral basis for the gamma matrices,

γ0 =

0@ 0 1

1 0

1A γi =

0@ 0 σi

−σi 0

1A γ5 =

0@ −1 0

0 1

1A ,

where each entry in the above matrices is itself a 2× 2 matrix. In this basis, the

chiral projection operator (1± γ5)/2 projects out the Weyl spinors,

ψ =
1− γ5

2
ψ +

1 + γ5

2
ψ = ψL + ψR

where

ψL =

0@ χ

0

1A
ψR =

0@ 0

εξ∗

1A .

ψL is the four-component Dirac-spinor version of the Weyl spinor χ, and

similarly for ψR and εξ∗.
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Exercise - If ξ transforms under the (1/2, 0) representation of the Lorentz
group, show that εξ∗ transforms under the (0, 1/2) representation. [Hint:
recall MT εM = ε].

A Dirac spinor transforms under the (1/2, 0)⊕ (0, 1/2) representation of
the Lorentz group, corresponding to ψ = ψL + ψR.
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The Majorana Spinor

While a Dirac spinor is composed of two Weyl spinors, a Majorana spinor
is a four-component object composed of a single Weyl spinor,

ψM =

 χ

εχ∗

 .

Thus it is simply a four-component version of a Weyl spinor.

Exercise - Show that

L = −1
2
mψ̄MψM

is a Majorana mass term.
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The charge-conjugation matrix C in the Weyl representation is

C =

0@ −ε 0

0 ε

1A .

Given a Dirac spinor ψ, we can form the conjugate spinor via

ψc ≡ Cγ0ψ∗

=

0@ −ε 0

0 ε

1A 0@ 0 1

1 0

1A 0@ χ∗

εξ

1A
=

0@ ξ

εχ∗

1A .

Thus

ψL =

0@ χ

0

1A

(ψc)L =

0@ ξ

0

1A = (ψR)c .
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Exercise - Show that

L = −m((ψc)TLCψL + h.c.)

is a Dirac mass.

Exercise - Show that

L = −1
2
m(ψTLCψL + h.c.)

is a Majorana mass. Thus one can write a Majorana mass in terms of a
Dirac spinor.

Exercise - Show that
ψcM = ψM .

This is called the Majorana condition.
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One last point: We can write a Dirac mass in terms of Majorana spinors

Consider a Dirac mass written in terms of a Dirac spinor,

L = −mψ̄ψ = −
1

2
m(ψ̄ψ + ψ̄cψc)

where I’ll let you verify the last equality. Now define the Majorana spinors

ψ1
M ≡

1
√

2
(ψ + ψc)

ψ2
M ≡

1
√

2
(ψ − ψc) .

and

L = −
1

2
m(ψ̄1

Mψ
1
M + ψ̄2

Mψ
2
M ) .

Thus a Dirac fermion is equivalent to two degenerate Majorana fermions. However

(ψ1
M )c =

1
√

2
(ψc + ψ) = ψ1

M

(ψ2
M )c =

1
√

2
(ψc − ψ) = −ψ2

M .

The two Majorana spinors have the opposite sign under charge conjugation.
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spinor Majorana mass Dirac mass

Weyl 1
2m(χT εχ+ h.c.) m(ξT εχ+ h.c.)

Majorana − 1
2mψ̄MψM − 1

2m(ψ̄1
Mψ

1
M + ψ̄2

Mψ
2
M )

Dirac − 1
2m(ψTLCψL + h.c.) −m((ψc)TLCψL + h.c.)

Dirac − 1
2m((ψc)RψL + h.c.) −mψ̄ψ

Table 1: A Majorana mass and a Dirac mass may be constructed from
Weyl, Majorana, or Dirac spinors.

[from S. Willenbrock, arXiv:hep-ph/0410370.]
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Very quickly: Kinetic Energy terms.

χT (σ̄µ)χ, σ̄µ = (1,−~σ) ,

transforms like a four-vector, similar to ψ̄γµψ. In fact, (check this!)

ψ̄γµ∂µψ = χT (σ̄µ∂µ)χ+ ξT (σ̄µ∂µ) ξ

These don’t “mix” χ and ξ. As far as they are concerned, these two
objects are completely unrelated. The same is true of the four-component
ψR and ψL. As far as the kinetic energy terms are concerned, they are
different, unrelated objects.
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Gauge Invariance and the Gauge Interactions

All fundamental interactions – strong, weak, electromagnetic (remember
we pretend gravity does not exist) – except for the so-called Yukawa
interactions, are mediated by vector fields.

We need to be careful when it comes to considering the vector fields. It
turns out that we can only write renormalizable QFTs with vector fields if
we also introduce gauge invariance.

Gauge invariance is not a choice.
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[courtesy of Pilar Hernández]
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[courtesy of Pilar Hernández]
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[courtesy of Pilar Hernández]
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[courtesy of Pilar Hernández]

August 17–21, 2015 SM+ν
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SU(3) SU(2) U(1)Y

Qi =

0@ u

d

1A 0@ c

s

1A 0@ t

b

1A 3 2 1
6

(uc)i = uc cc tc 3̄ 1 − 2
3

(dc)i = dc sc bc 3̄ 1 1
3

Li =

0@ νe

e

1A 0@ νµ

µ

1A 0@ ντ

τ

1A 1 2 − 1
2

(ec)i = ec µc τc 1 1 1

Table 2: All fields can be interpreted as two-component Weyl fermions of
the left-handed type.
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L ⊃ iQ̄iL 6DQiL + i(uc)
i

L 6D(uc)iL + i(dc)
i

L 6D(dc)iL + iL̄iL 6DLiL + i(ec)
i

L 6D(ec)iL .

or

L ⊃ iQ̄iL 6DQiL + iūiR 6DuiR + id̄iR 6DdiR + iL̄iL 6DLiL + iēiR 6DeiR .

All SM gauge interactions are included in the 6D terms. At this point, this is a

theory of chiral, charged massless fermions which interact with massless spin-1

particles.

All fermion fields are completely independent. They are interpreted as follows:

• Q destroys left-handed quark doublets and creates right-handed

anti-quark-doublets.

• uc destroys left-handed anti-up-quarks and creates right-handed up-quarks.

• L destroys left-handed lepton doublets and creates right-handed

anti-lepton-doublets.

• etc
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What is wrong with this picture

• Aren’t the W -boson and the Z-boson massive? Where are the
longitudinal gauge bosons (extra degrees of freedom of the spin-1
massive fields)?

• Where is the photon? Where are the electric charges of all the
different fermion fields?

• Aren’t the fermions massive?

The answer is the introduction of new field(s) and spontaneous gauge
symmetry breaking, as we will discuss momentarily.
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A couple of asides

• Global Symmetries: In the absence of fermion masses, L has a good
deal of (accidental) global symmetry, U(3)5

Qi → U ijQQ
j ,

(uc)i → U iju (uc)j ,

(dc)i → U ijd (dc)j ,

Li → U ijL L
j ,

(ec)i → U ije (ec)j .

• We have what is called a chiral gauge theory. This means that, unlike
electromagnetism, there are no Weyl fermions with opposite charges.
These theories are susceptible to anomalies!
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Anomalies in a Tiny Nutshell

There are circumstances where Lagrangian possesses a classical symmetry
that is broken at the quantum mechanical level.

This is not a problem for global symmetries. Indeed, anomalies help
explain certain low-energy phenomena (π0 → γγ).

This is a disaster for gauge symmetries. If these are anomalous, gauge
invariance is not around to ensure the theory is mathematically consistent.

The “poster child” for potentially anomalous theories are chiral gauge
theories. A.k.a. the SM. It requires anomaly cancellations. This means
one adds up the contributions to the anomaly of all different fields and
hopes that they add up to zero. While this is mysterious, it is stable.

Constraints includeX
i=Q,u,d,L,e

Yi = 0,
X

i=Q,u,d,L,e

Y 3
i = 0,

X
i=Q,u,d

Y 3
i = 0,

X
i=Q,L

Y 3
i = 0.

If you have never seen this before, check it!
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[courtesy of Pilar Hernández]
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Fermion Masses

Given the SU(2) and U(1) charges of the Higgs field and the fermions, Yukawa

interactions are allowed:

−L ⊃ YuQucφ+ YdQd
cφ̃+ YeLe

cφ̃+ h.c.,

where φ̃ ≡ iσ2φ
∗. Using

〈φ〉 =
1√
2

0@ 0

v

1A , 〈φ̃〉 =
1√
2

0@ v

0

1A ,

−L ⊃ (mu)iju
i(uc)j + (md)ijd

i(dc)j + (me)ije
i(ec)j + h.c.,

where mf ≡ Yfv/
√

2.

u+ uc, d+ dc, e+ ec merge into Dirac fermions [note that all these fields have

equal-but-opposite electric charges]. Neutrinos are left unpaired! → neutrinos

are massless. Robust prediction, stable under quantum corrections.

Global Symmetries: U(3)5 explicitly broken down to

U(1)B × U(1)e × U(1)µ × U(1)τ . I will come back to this.
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[courtesy of Pilar Hernández]
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[courtesy of Pilar Hernández]
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How many physically relevant parameters remain after the field
redefinitions are performed?

The number of parameters contained in the complex matrices Yu, Yd is
2× 3× 3× 2 = 36.

The unitary symmetries UQ, Uu, Ud are a subset of the quark field
redefinitions. There are 3× 3× 3 degrees of freedom in these symmetries
(a unitary N ×N matrix has N2 free parameters), so the total number of
parameters that remain in the full Lagrangian after field redefinitions is

2× 3× 3× 2− (3× 3× 3− 1) = 10,

subtracting baryon number from the subset of field redefinitions that are
symmetries of the matter Lagrangian. U(1)B is a symmetry of the
Yukawa Lagrangian, and hence cannot be used to diagonalize the mass
matrices. The ten remaining parameters correspond to the six quark
masses and the four parameters of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix (three mixing angles and one CP -violating phase).
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