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WELCOME TO THE MOST  
SUBJECTIVE, 

INCOMPLETE, 
AND FOLKLORIC 

LECTURE YOU WILL EVER FIND ABOUT 
MUSIC NETWORKS!

(GOOD NEWS: NO EQUATIONS… 
OK, MAY BE ONE OR TWO…)



I.- Creating Music Networks 
II.- Note Networks 

• Context
• Music vs Language

III.- Song Networks 
• Affinity

IV.- Artist Networks 
• Similarity vs Collaboration

V.- User Networks 
• Recommendation

OVERVIEW
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Creating Music Networks               



MUSIC & NETWORKS:  
DO THEY HAVE ANYTHING IN COMMON?

Music is nice. Network theory is nice. Let’s join them! 



ONE POSSIBLE CLASSIFICATION OF MUSIC 
NETWORKS

There is a diversity of networks related to music.  According 
to the nature of the nodes, one possible classification is:

Other kind of classifications are possible, e.g. based on the nature of the links 

• Note Networks 

• Song Networks

• Artist Networks

• User Networks



NOTE NETWORKS
In this kind of music networks, the notes are the nodes, 
which are linked by proximity:

note-duration 

note-note 

interval-interval 

score 



NOTE NETWORKS
Let’s see an example; a note-duration network: 
(guess artist and song!)

On the left: a note-duration network. On the right, the same network organized by notes. 
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SONG NETWORKS
In this kind of music networks, songs are the nodes, which 
may be linked according to different relations:

In this example, songs are 
extracted from a playlist 
Dataset. Only the top 
M=5 co-ocurrences are 
displayed, leading to a 
weighted and directed 
network.

12 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Figure 8. Example of a recommendation network obtained from the affinity
matrix. Only the part of the network surrounding the song ‘Where is my mind?’
is shown. Numbers correspond to the ranking of affinity of the outgoing links.

the set of its neighbour songs bi as those that appear with a in any playlist of the network. For
each neighbour, we count the number of co-occurrences with a, which corresponds to the weight
of the link connecting both nodes wabi

. Given that na and nbi
are, respectively, the number of

appearances of a song a and its neighbour bi in the whole network, we can define the ratio
0 ! wabi

nanbi

! 1 as the affinity between a and bi. Note that in a network of N songs we can include
all affinities in an affinity matrix A, which will be a N × N symmetric matrix with the diagonal
equal to zero.

Since line i of matrix A measures the affinity of song i with all other songs of the network,
it can be used as a recommendation database. Once a user selects a certain input song i, they can
be pointed to songs with the highest values in the affinity matrix. Furthermore, we can project
the affinity matrix into a a recommendation network. By ranking the affinities of a certain song
a we can select the M songs with highest affinities and create a network by linking only this set
of songs. We can also include a low threshold where a minimum number of co-occurrences has
to be fulfilled. Following this procedure we can create different affinity networks, where links
are directed and have a certain rank. Figure 8 shows an example of a recommendation network
obtained from the affinity matrix. We have considered M = 5, i.e., the five songs with highest
affinity, and set the minimum number of occurrences to ten. In figure 8 we show the part of the
network surrounding the song ‘Where is my mind?’ by The Pixies. From this starting node, we
can navigate through the network, knowing at each song the order of the outgoing links that
point to the songs with the highest affinity. This kind of network is suitable for implementation

New Journal of Physics 9 (2007) 172 (http://www.njp.org/)

From "The complex network of 
musical tastes", J.M. Buldú, P. Cano, M. 
Koppenberger, J.A. Almendral and S. 
Boccaletti, New J. Phys. 9, 172 (2007).



ARTIST NETWORKS
In this kind of music networks, musical artists are the 
nodes, who may be linked according to different relations:

Links?
• Similarity
• Collaboration
• Affinity
• …. 



USER NETWORKS
In this kind of music networks, users that have consumed a 
musical product are the nodes:

A 

1 

C B D F 

2 3 4 5 

A: (0,1,1,0,0) 
B: (1,1,0,0,0) 
... 

 

Network Projection 

This kind of networks are extremely useful for designing recommendation systems.

Users

Music
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Note Networks               



ZIP'S LAW IN MUSICAL SEQUENCES

First, let’s have a look at language:

Depend on the context
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Figure 1: Zipf’s plot (number of occurrences n versus rank r) for Dickens’s David
Copperfield. The number of different words is V = 13, 884, and the total num-
ber of words is T = 362, 892. In this double-logarithmic plot the straight line
manifests the power-law dependence of n(r) for large r. The dotted curve is a
least-square fitting with the prediction of Simon’s model, equation (1).

Simon’s model can be refined by assuming that, as observed in real texts, the

rate of appearance of new words decreases as the text becomes longer (Monte-

murro and Zanette, 2002; Zanette and Montemurro, 2004). Specifically, if the

number V of different words varies with the length T of the text as V ∼ T ν ,

with 0 < ν < 1, it turns out that w(n) ∼ 1/n1+ν . Assuming moreover that there

exists an upper limit n0 for the number of occurrences of any single word, it is

possible to show that the number of occurrences as a function of the rank is

n(r) =
1

(a + br)z
(1)

with z = 1/ν. The constants a and b are given in terms of n0 and V as a = 1/nν
0

and b = (1−1/nν
0)/V . The upper limit n0 is turn connected to V and T through

the relation T/V = ν(n1−ν

0 −1)/(1−ν)(1−1/nν
0). For sufficiently large ranks, the

form of n(r) given in equation (1) reproduces the expected “Zipfian” behaviour

n(r) ∼ 1/rz. The dotted curve in figure 1 is a least-square fitting of the data
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Simon model: “as words are 
successively added to the text, a 
context is created. As the context 
emerges, it favors the later 
appearance of certain words –in 
particular, those that have already 
appeared– and inhibits the use of 
others. ”

that the number of words w(n) which occur exactly n times in a language cor-

pus varies with n as w(n) ∼ 1/nγ , where the exponent γ is close to 2. This

rule establishes that the number of words with exactly n occurrences decreases

approximately as the inverse square of n. Zipf’s law can also be formulated as

follows. Suppose that the words in the corpus are ranked according to their num-

ber of occurrences, with rank r = 1 corresponding to the most frequent word,

rank r = 2 to the second most frequent word, and so on. Then, for large ranks,

the number of occurrences n(r) of the word of rank r is given by n(r) ∼ 1/rz,

with z close to 1. The number of occurrences of a word, therefore, is inversely

proportional to its rank. For instance, the 100-th most frequent word is expected

to occur roughly 10 times more frequently than the 1000-th most frequent word.

Figure 1 illustrates Zipf’s law for Charles Dickens’s David Copperfield. All its

different words have been ranked, the number of occurrences n of each word has

been determined, and n has been plotted against the rank r. In this double-

logarithmic plot, straight lines correspond to the power-law dependence between

n and r reported by Zipf.

Zipf himself advanced a qualitative explanation for the relation between word

frequency and rank, based on the balanced compromise between the efforts in-

vested by the sender and the receiver in a communication process (Zipf, 1949).

A quantitative derivation of Zipf’s law was later provided by H. A. Simon, in

the form of a model for text generation (Simon, 1955). The basic assumption

underlying Simon’s model is that, as words are successively added to the text,

a context is created. As the context emerges, it favours the later appearance of

certain words –in particular, those that have already appeared– and inhibits the

use of others. In its simplest form, Simon’s model postulates that, during the

process of text generation, those words that have not yet been used are added

at a constant rate, while a word that has already appeared is used again with a

frequency proportional to the number of its previous occurrences. These simple

rules are enough to prove that, in a sufficiently long text, the number w(n) of

words with exactly n occurrences is, as noticed by Zipf, w(n) ∼ 1/nγ . The expo-

nent γ is determined by the rate at which new words are added, and takes the

observed value γ ≈ 2 when that rate is close to zero.

3

Zip’s law: the ranking of words follows a power law

Depends on semantics

Zanette, Musicae Scientiae 10, 3-18 (2006)



ZIP'S LAW IN MUSICAL SEQUENCES
In music, context is determined by a hierarchy of intermingled patterns occurring 
at different time scales (harmonic progressions, melody, tone, rhythm…):

Does the Simon model apply 
to the musical context?
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Zipf’s law and the creation of musical context

Damián H. Zanette
Consejo Nacional de Investigaciones Cient́ıficas y Técnicas
Instituto Balseiro, 8400 Bariloche, Rı́o Negro, Argentina

February 1, 2008

Abstract

This article discusses the extension of the notion of context from linguis-
tics to the domain of music. In language, the statistical regularity known
as Zipf’s law –which concerns the frequency of usage of different words–
has been quantitatively related to the process of text generation. This con-
nection is established by Simon’s model, on the basis of a few assumptions
regarding the accompanying creation of context. Here, it is shown that the
statistics of note usage in musical compositions are compatible with the pre-
dictions of Simon’s model. This result, which gives objective support to the
conceptual likeness of context in language and music, is obtained through
automatic analysis of the digital versions of several compositions. As a by-
product, a quantitative measure of context definiteness is introduced and
used to compare tonal and atonal works.

1 Introduction

The appealing affinity between the cognitive processes associated with music

and language has always motivated considerable interest in comparative research

(Patel, 2003). Both music and language are highly structured human univer-

sals related to communication, whose acquisition, generation, and perception are

believed to share at least some basic neural mechanisms (Maess et al., 2001).

The analysis of these concurrent aspects has naturally lead to the attempt of ex-

tending concepts and methods of linguistics to the domain of musical expression.

Grammar, syntax, and semantics have been discussed in the framework of music

from a variety of linguistically-inspired viewpoints (Bernstein, 1973; Lerdahl and

Jackendorf, 1983; Agawu, 1991; Patel, 2003). This approach, however, does not

always take into account the crucial difference of nature between the information

1

Musicae Scientiae 10, 3-18 (2006)
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Figure 2: Zipf’s plots for single notes in four musical compositions for keyboard.
Their titles, as well as the corresponding value of V and T , are indicated in
each panel. Curves stand for least-square fittings with the prediction of Simon’s
model, equation (1). The resulting exponent ν, which provides a quantitative
measure of context definiteness, is given with each plot.

following Zipf’s prescription. This similarity already suggests the existence of

a common underlying mechanism, determining the relative frequency at which

different notes are used, independent of work length, musical form, tonality, style,

and author.

Note that, in contrast to figure 1, the plots of figure 2 lack the long linear

regime corresponding to the power-law dependence of n(r). This circumstance,

which can be ascribed to the relatively minute values of V and T for musical

compositions as compared with literary corpora, does not preclude the application

of Simon’s model. In fact, according to equation (1), the “Zipfian” regime is

attained for sufficiently large ranks only. The empirical data obtained from Zipf’s

analysis of note usage must be rather compared with the full form of n(r), as given
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midi file

note+duration

network?



ORGANIZATION OF (NOTE) MUSIC NETWORKS

Beyond the existence of a musical context, how are (note 
based) music networks?:
Dataset: Music database consists of over 13000 western contemporary music pieces (in MIDI 
format) covering a broad spectra of music styles. Two different lexicons are defined by means of 
note duplets and note-duration pairs.

note-duration 

note-note 

interval-interval 

score 

P. Cano, M. Kopenberger, unpublished



Let’s have a look of their basic topological properties:

ORGANIZATION OF (NOTE) MUSIC NETWORKS



What about comparing music (note) networks with 
language networks?

  Don Quixote 

music text

We obtain different frequency and probability distributions.

ORGANIZATION OF (NOTE) MUSIC NETWORKS



But, what happens if we have a look at “other scales”?

The distribution changes when the semantics is lost.

Redes-Complejas Re-des-com-ple-jas

ORGANIZATION OF (NOTE) MUSIC NETWORKS



When semantics is lost, frequency and degree distributions 
become similar :

What about the other topological properties?

musictext

ORGANIZATION OF (NOTE) MUSIC NETWORKS



What happens with the degree-degree correlations and 
clustering?:

Music (note) networks are assortative with a particular clustering distribution

music text

ORGANIZATION OF (NOTE) MUSIC NETWORKS



A part of  investigating their properties, we can use music 
networks for other purposes:

This is a Bach’s Sonata. Not joking

ORGANIZATION OF (NOTE) MUSIC NETWORKS

Analyzing and Composing Music with Complex Networks:
Finding Structures in Bach’s, Chopin’s and Mozart’s

Chi K. Tse, Xiaofan Liu and Michael Small

Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hong Kong
URL: http://chaos.eie.polyu.edu.hk

Abstract—In this paper we study the network structure
in music and attempt to compose music artificially. Net-
works are constructed with nodes and edges correspond-
ing to musical notes and their co-occurrences. We analyze
sample compositions from Bach, Mozart, Chopin, as well
as other types of music including our local (Hong Kong)
pop. We observe remarkably similar properties in all net-
works constructed from the selected compositions. Power-
law exponents of degree distributions, mean degrees, clus-
tering coefficients, mean geodesic distances, etc. are re-
ported. With the network constructed, music can be created
by using a biased random walk algorithm, which begins
with a randomly chosen note and selects the subsequent
notes according to a simple set of rules that compares the
weights of the edges and/or the relative degrees of nodes.
The newly created music from Mozart’s network will be
played in the presentation, along with the original piece.

1. Introduction

Music is a form of creative art which is often identified
as a signature of a particular composer, a group of people,
country and culture at different times in history. People
from different parts of the world and in different eras have
their own music. One fundamental question of interest is
whether these different music share similar properties, and
the implication of this question is whether a common pro-
cess/rule exists in the human brain that is responsible for
composing music.
The study of complex networks in physics has aroused

a lot of interest across a multitude of application areas. A
key finding is that most networks involvingman-made cou-
plings and connection of people are naturally connected in
a scalefree manner, which means that the number of con-
nections follows a power-law distribution [1]. Scalefree
power-law distribution is a remarkable property that has
been found across of a variety of connected communities
[2]–[8] and is a key to optimal performance of networked
systems [9].
In this paper we analysis a few distinct types of music,

including classical, Russian folks and our local pop. Our
approach is to treat a piece of music as a complex network
and to evaluate the properties of the resulting network, such
as degree distribution, mean degree, mean distance, clus-
tering coefficient, etc. The purpose is to make an attempt

to find out if different music would display uniformity or
disparity in terms of network structure. Our results demon-
strate, quite surprisingly, that different music types actu-
ally share remarkably similar properties. Our final task
in this paper is to make an attempt to create “reasonably
good” music1 from the network that has been formed from
given compositions such as Bach’s and Mozart’s. We ba-
sically find that if the same network property is retained,
it is possible to compose music artificially and the remain-
ing open problem is the choice of a particular sample from
a large number of possible compositions. In composing a
music, from a system’s viewpoint, our human brain would
have automatically performed a processing step that allows
only compositions that satisfy certain network properties
to emerge and finally pick the best composition according
to the composer’s subjective choice. Of course, we do not
know exactly how the brain does that. As an interim trick,
some rudimentary rules may come into play when selecting
compositions.

2. Review of Networks

A network is usually defined as a collection of “nodes”
connected by “links” or “edges” [2]. If we consider a net-
work of musical notes, then the nodes will be the individ-
ual musical notes and a link between two nodes denotes
that the two musical notes are neighbors in the score. The
number of links emerging from and converging at a node
is called the “degree” of that node, usually denoted by k.
So, we have an average degree for the whole network. The
key concept here is the distribution of k. This concept can
be mathematically presented in terms of probability den-
sity function. Basically, the probability of a node having a
degree k is p(k), and if we plot p(k) against k, we get a dis-
tribution function. This distribution tells us about how this
network of musical notes are connected. Recent research
has provided concrete evidence that networks with man-
made couplings and/or human connections follow power-
law distributions, i.e., p(k) vs k being a straight line whose
gradient is the characteristic exponent [3]–[8]. Such net-
works are termed scalefree networks.

1The authors have listened to the reconstructed music and find some
of them very appealing. Samples to be played at the conference.

2008 International Symposium on Nonlinear Theory and its Applications
NOLTA'08, Budapest, Hungary, September 7-10, 2008

- 5 -

Figure 1: A crochet of middle C is a note (left), and a qua-
ver of middle C is a different note (right). Both are consid-
ered as different nodes in a musical network.

note 7

note 1 

note 5

note 4

node 9

note 2

note 3

note 8note 6

Figure 2: A network for music, where nodes are notes and
edges are connections of two consecutively played notes.
This one corresponds to Bach’s sonatas.

3. Network Construction Based on Co-occurrence

A musical note is defined by its pitch and time value.
For example, a crotchet of the middle C is considered as a
note, and a quaver of the same middle C is a different note.
See Fig. 1. Consider an 88-key piano keyboard. If we limit
each key to have 20 possible time values (e.g., brieve, semi-
brieve, dotted minum, minum, dotted crochet, crochet, dot-
ted quaver, quaver, dotted semi-quaver, semi-quaver, dot-
ted demisemi-quaver, demisemi-quaver, etc. [10]), for in-
stance, there are altogether 1760 possible notes.

For simplicity, we consider single-note scores where
notes are to be played one after another, without simulta-
neous playing of two or more notes like a chord. Then, we
may examine the way in which notes appear in the score for
the purpose of constructing a complex network to represent
the score.

To form a network, we need to define what node and
edge are. For the purpose of constructing a network from
a musical score, we consider notes as nodes as explained
earlier. A piece of music can be considered as a sequence
of notes and hence edges can be defined by connections
from one note to another chronologically. That is, if note i
starts at time T and note j ends at the same time, then an
edge is established from note i to note j.

Suppose there are N nodes. Then, node i is connected to
node j when node i is played and followed by node j, and
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tually, a network is formed with each node connected to
a number of other nodes, as shown in Fig. 2. Of particu-
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Time mark Event Note identity
Tick 1 Start Pitch name 1
Tick 2 Start Pitch name 2
Tick 3 End Pitch name 1
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which is defined as the degree of that node and is denoted
by k. Also, the distance between two nodes, d, which re-
flects how closely two nodes are connected, and the clus-
tering coefficient, C, which reflects on the extent of inter-
connections of nodes, are also of importance. Furthermore,
to probe into the structure of the network, the distribution
of the degree will be considered.

In the following section we will examine the net-
works formed from music composed by Bach, Chopin and
Mozart, as well as from Russian folks and local pop. A
typical network formed using the method described above
is shown in Fig. 3, which corresponds to Bach’s sonatas.
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is used here for representation of music [11]. MIDI allows
music to be stored in digital forms that can facilitate re-
peated performance at later times. Referring to Table 1,
tick n is the time mark which indicates the time an event
occurs. An event is either the start or end of a musical note.
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SONG NETWORKS
In this kind of music networks, the songs are the nodes. 
They are interesting for different reasons:

• For analyzing their structure (paths, modules,…)

• For the detection of the most influential songs

• For classification purposes (labeling) 

• For designing efficient (automatic) recommendation systems



SONG NETWORKS
We are going to overview an example about how songs 
networks are related to musical tastes:T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s
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Abstract. We present an empirical study of the evolution of a social network
constructed under the influence of musical tastes. The network is obtained thanks
to the selfless effort of a broad community of users who share playlists of their
favourite songs with other users. When two songs co-occur in a playlist a link
is created between them, leading to a complex network where songs are the
fundamental nodes. In this representation, songs in the same playlist could belong
to different musical genres, but they are prone to be linked by a certain musical
taste (e.g. if songs A and B co-occur in several playlists, an user who likes A
will probably like also B). Indeed, playlist collections such as the one under
study are the basic material that feeds some commercial music recommendation
engines. Since playlists have an input date, we are able to evaluate the topology
of this particular complex network from scratch, observing how its characteristic
parameters evolve in time. We compare our results with those obtained from an
artificial network defined by means of a null model. This comparison yields some
insight on the evolution and structure of such a network, which could be used as
ground data for the development of proper models. Finally, we gather information
that can be useful for the development of music recommendation engines and give
some hints about how top-hits appear.
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• AoM consists of a website where users 
upload and exchange playlists of their 
favorite music. 

• The songs, somehow, fit in those lists, 
even though they do not need to belong 
to the same country, decade or musical 
genre. 

• In this way, a certain connection results 
between songs of the list, whose origin is 
based on the musical taste of the 
playlist author. 

• We create networks where songs are 
the nodes and co-occurrence in a 
playlist gives rise to links between them. 



SONG NETWORKS
We create networks that, interestingly, evolve in time:
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Figure 1. Network description. Playlist I (three songs) and playlist II (four songs)
are an example of how songs and links are added to the network. All songs within
a playlist are connected in an all-to-all configuration. When a song is repeated
in two playlists (e.g. Johny Cash: Ring of Fire) only one node is considered
(C-F). Note that in this case the repeated song acts as a path between songs of
both playlists, reducing their distance and, therefore, joining songs from different
musical tastes. After new playlists are added to the network, links between two
songs could be repeated, leading to links of different weights.

Figure 1 summarizes, with an example, the procedure of adding nodes and links to the
network. Two playlists of three (playlist I) and four (playlist II) songs are translated into seven
nodes and nine links. Songs of the same playlist form a highly connected community with all
songs linked between them. Note that, since one song co-occurs in both playlists (Ring of Fire
by Johny Cash), a path is created between both communities, reducing the distance between
songs of each playlist. It is worth noting the importance of the co-occurring song, since it acts
as a bridge between two playlists created from different musical tastes. We must clarify that a
playlist is designed under the influence of a certain musical taste, but it does not represent the
musical taste itself. In this sense, two different playlists may have a high percentage of repeated
songs and belong to different musical tastes. This is due to the fact that a single song can not
be associated to a unique musical taste. We will take up again the importance of these ‘bridge’
songs in the next section of the manuscript. The last plot of figure 1 shows the state of part of the
network after ‘n’ steps (considering a step as a playlist addition). We observe how links have a
certain weight associated, which takes into account the number of times that a link between two
songs has been repeated.

Once the mechanism of network creation is explained, it is clear that we are not dealing with
a static network since playlists and, therefore, songs are continuously being added. In this way,
the number of nodes and links increase in time and the network, and its basic characteristics,
may change with its growing. In the following section, we will focus on the network evolution.
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Table 1. Summary of several network parameters as a function of year: number
of nodes n, number of edges m, relative size S of the GCC, precisely, its percentage
among all nodes, mean geodesic path d̄ inside the GCC, diameter dmax of the GCC
and the average clustering coefficient C of the network.

The Art of the Mix

Year 1998 1999 2000 2001 2002 2003 2004 2005

n (nodes) 9450 26 223 60 673 127 519 240 157 360 034 457 660 482 856
m (links) 54 789 204 277 614 644 1 711 053 4 115 893 7 278 256 9 946 715 10 602 036
S of GCC 58.6% 84% 90% 92.9% 93.9% 93.7% 92.8% 92.4%
d̄ (dmax) 6.65 (15) 5.24 (13) 4.70 (11) 4.37 (12) 4.22 (12) 4.13 (13) 4.12 (15) 4.12 (15)
C 0.958 0.906 0.870 0.843 0.828 0.820 0.819 0.819

Together with the growth of the network, the phenomenon of percolation takes place. This
phenomenon is related to the appearance of a big cluster of connected nodes that covers the
majority of the network. In figure 2(c) we measure the relative size S of the giant connected
component (GCC), i.e., the cluster of connected nodes with the biggest size divided by the total
number of nodes. We observe how S saturates to a value close to 0.92, which indicates that 92%
of the nodes can be linked through a path. The value of S is in this case is a good indicator of
the maturity of the network. Note that at year 1998 the GCC only covered 58.6% of the nodes
and it is not until year 2000 that S arrives to a value close to 0.92.

Another indicator of the network topology is the clustering coefficient. Precisely, the
distribution C(k) as a function of the node degree k and its mean value C = 1

n

∑
Ci. The

clustering, also known as transitivity, measures the probability that two neighbours of a certain
node are also connected between them. It has been shown that the C in small-world or scale-free
networks is much higher than that of random networks [1, 2], and C(k) usually has a power
law decay in many real networks [19]. In our particular case, the clustering coefficient must
be regarded carefully. Since songs of the same playlist are connected all-to-all, the clustering
coefficient within a playlist is 1. Only when a song appears in different playlists are its neighbours
not necessarily connected among themselves, and the clustering coefficient of that node can be
lower than one. Figure 2(d) shows the evolution of the average clustering coefficient. We observe
how it decreases to a limit value close to C = 0.82 and, as happened with the relative size of
the GCC, it is an indicator of the maturity of the network. It is worth noting that the decrease
of C reveals the appearance of the same songs in different playlists, acting as bridges between
groups of songs that are not connected. The saturation of C indicates that the ratio of appearance
of repeated songs remains constant despite the evolution of the network, but only when the GCC
of the network reaches a critical size.

Table 1 summarizes the characteristic network parameters and its evolution with the network
growth. Apart from those values already commented upon, we have measured the mean geodesic
distance d̄ (i.e., the mean shortest path of any two nodes (songs) in the network) and the
longest geodesic distance dmax. We observe that the network shows, in all cases, the small-
world phenomenon, i.e., despite the high number of nodes, there exists a path between any two
nodes that involves very few connections. Precisely, the mean number of links between two
nodes settles to a value close to four, despite the final number of nodes being around half million.
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Figure 2. Evolution of the network: (a) number of nodes and (b) number
of weighted links per node from 1998 to 2005. In (c) and (d) we compute,
respectively, the relative size of the giant component S and the evolution of the
mean clustering coefficient C.

3. The network evolution

It is remarkable how the collection of playlists of The Art of the Mix has increased since its
creation at the end of 1997. At the middle of 2005, more than 82 000 playlists had been uploaded,
with a mean number of 22 songs per playlist. Parallel to this evolution and six months after the
creation of The Art of the Mix, a seminal paper by Watts and Strogatz [1] started a fruitful period
within complex networks theory, as reflected by the great and sound number of publications
related to this field (see, e.g., [4] and references therein). Nowadays, it is well known that
technological, biological or social networks share common features, and that several statistical
parameters can be evaluated in order to classify and understand the wide spectrum of complex
networks. In what follows we will try to explain the topology and evolution of the network of
musical tastes from the point of view, and with the help, of complex network theory.

First, let us consider how the fundamental units of the network, i.e., nodes and links, increase
in time. Figure 2 shows the evolution of the total number of nodes (a) and links (b) per year. We
must mention that data refers to the period of time between 22/01/1998 to 06/04/2005 and,
therefore, years 1998 and 2005 are not complete. At first sight, it is interesting to note that not
only the number of nodes but also the number of links per node has increased. The latter indicates
that the average number of songs within a playlist has increased up to a limit value, during the
evolution of the network.
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SONG NETWORKS
We can analyze the interplay between songs, quantify co-
occurrences and detect regions of influence:

• The affinity network 
projects co-occurrences into 
a network.

• Each song is linked to the 
other M songs that have co-
occurred the most with it.

• We obtain a weighted 
directed network.

• The analysis of this network, 
at different scales, gives 
in format ion about the 
interplay between songs
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Figure 8. Example of a recommendation network obtained from the affinity
matrix. Only the part of the network surrounding the song ‘Where is my mind?’
is shown. Numbers correspond to the ranking of affinity of the outgoing links.

the set of its neighbour songs bi as those that appear with a in any playlist of the network. For
each neighbour, we count the number of co-occurrences with a, which corresponds to the weight
of the link connecting both nodes wabi

. Given that na and nbi
are, respectively, the number of

appearances of a song a and its neighbour bi in the whole network, we can define the ratio
0 ! wabi

nanbi

! 1 as the affinity between a and bi. Note that in a network of N songs we can include
all affinities in an affinity matrix A, which will be a N × N symmetric matrix with the diagonal
equal to zero.

Since line i of matrix A measures the affinity of song i with all other songs of the network,
it can be used as a recommendation database. Once a user selects a certain input song i, they can
be pointed to songs with the highest values in the affinity matrix. Furthermore, we can project
the affinity matrix into a a recommendation network. By ranking the affinities of a certain song
a we can select the M songs with highest affinities and create a network by linking only this set
of songs. We can also include a low threshold where a minimum number of co-occurrences has
to be fulfilled. Following this procedure we can create different affinity networks, where links
are directed and have a certain rank. Figure 8 shows an example of a recommendation network
obtained from the affinity matrix. We have considered M = 5, i.e., the five songs with highest
affinity, and set the minimum number of occurrences to ten. In figure 8 we show the part of the
network surrounding the song ‘Where is my mind?’ by The Pixies. From this starting node, we
can navigate through the network, knowing at each song the order of the outgoing links that
point to the songs with the highest affinity. This kind of network is suitable for implementation
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SONG NETWORKS
Interestingly, it is also possible to track the evolution of the 
“greatest hits”:13 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT
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Figure 9. Temporal evolution of the three highest connected songs in the whole
network (i.e., that obtained at year 2005), where n is the total number of playlists
at a certain date. In the ordinate axis, we measure the accumulated appearances of
a certain song among all playlists. In the inset, we evaluate the rate of appearance
by measuring the number of appearances per playlist.

in a web-page context, where users click to a certain target song (web-page) and links to other
recommended songs are shown.

6. Network’s favourite song

Let us now move to focus on the evolution of those nodes with the highest connectivity, i.e.,
the most repeated songs. The role of these songs in the network is basically to reduce the path
between distant or unconnected songs. They constitute the bridges between musical tastes and
therefore they are of great relevance not only for the structure of the network, but also for its
evolution. We have searched for the five nodes with the highest degrees in the network of year
2005 and have traced back their dynamics in the pristine networks. Figure 9 shows the appearance
of these top-five songs as a function of the number of playlists in the database, which is used
here as an indicator of time.

We can observe that four of them already existed when The Art of the Mix was created
and all show a similar behaviour, which consists of a sharp increase of their rate of appearance
(see inset) until they reach a given value, remaining then nearly constant. This fact indicates that
top-hits, i.e., the most repeated songs, have a transient growth that determines the final value
of their rate of appearance. Once the final value is reached, it seems that a further increase (or
decrease) is prohibited, at least during a certain characteristic time 4. Figure 9 also shows the
evolution of the fifth song (green line). The behaviour of this last song is remarkably different to

4 We believe that a decay in the rate of appearance could be expected after a certain characteristic time. This is an
intriguing point since it could be expected that some ‘classics’ may keep their constant rate of appearance despite
their aging.
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Figure 9. Temporal evolution of the three highest connected songs in the whole
network (i.e., that obtained at year 2005), where n is the total number of playlists
at a certain date. In the ordinate axis, we measure the accumulated appearances of
a certain song among all playlists. In the inset, we evaluate the rate of appearance
by measuring the number of appearances per playlist.

in a web-page context, where users click to a certain target song (web-page) and links to other
recommended songs are shown.

6. Network’s favourite song

Let us now move to focus on the evolution of those nodes with the highest connectivity, i.e.,
the most repeated songs. The role of these songs in the network is basically to reduce the path
between distant or unconnected songs. They constitute the bridges between musical tastes and
therefore they are of great relevance not only for the structure of the network, but also for its
evolution. We have searched for the five nodes with the highest degrees in the network of year
2005 and have traced back their dynamics in the pristine networks. Figure 9 shows the appearance
of these top-five songs as a function of the number of playlists in the database, which is used
here as an indicator of time.

We can observe that four of them already existed when The Art of the Mix was created
and all show a similar behaviour, which consists of a sharp increase of their rate of appearance
(see inset) until they reach a given value, remaining then nearly constant. This fact indicates that
top-hits, i.e., the most repeated songs, have a transient growth that determines the final value
of their rate of appearance. Once the final value is reached, it seems that a further increase (or
decrease) is prohibited, at least during a certain characteristic time 4. Figure 9 also shows the
evolution of the fifth song (green line). The behaviour of this last song is remarkably different to

4 We believe that a decay in the rate of appearance could be expected after a certain characteristic time. This is an
intriguing point since it could be expected that some ‘classics’ may keep their constant rate of appearance despite
their aging.

New Journal of Physics 9 (2007) 172 (http://www.njp.org/)

• It is possible to track the rate 
of appearance of the songs. 

• It is possible to generate 
models describing the evolution 
of these songs.

• We can classify songs according 
to their rate of appearance.

• We can predict the behavior of 
a song and advance its decay.



(IV-V)

Artist Networks               



ARTIST NETWORKS
In this case, musical artists are the nodes, which are linked 
according to a certain interplay between them:

• Similarity: Two artists are linked if the play similar music (links are 
normally created by musical editors).

• Collaboration: Two artists get connected if they have ever played 
together.

• Affinity: Two artist are linked due to a certain affinity, such as appearing 
in the same playlist or having a disc bought by the same person.

• Any other you may think about…



ARTIST NETWORKS
Let’s see an example of how to use community detection to 
extract information about (artist) music networks:

B o t h d a t a s e t s a r e o b t a i n e d f r o m 
A l l M u s i c G u i d e d a t a b a s e ( h t t p : / /
www.allmusicguide.com)

Community structures and role detection in music networks
T. Teitelbaum,1 P. Balenzuela,1 P. Cano,2,3 and Javier M. Buldú4
1Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
and CONICET, Buenos Aires, Argentina
2Music Technology Group, Universitat Pompeu Fabra, Barcelona, Spain
3BMAT, Barcelona Music and Audio Technologies, 08018 Llacuna 162, Barcelona, Spain
4Complex Systems Group, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain

!Received 3 July 2008; accepted 3 September 2008; published online 14 October 2008"

We analyze the existence of community structures in two different social networks using data
obtained from similarity and collaborative features between musical artists. Our analysis reveals
some characteristic organizational patterns and provides information about the driving forces be-
hind the growth of the networks. In the similarity network, we find a strong correlation between
clusters of artists and musical genres. On the other hand, the collaboration network shows two
different kinds of communities: rather small structures related to music bands and geographic
zones, and much bigger communities built upon collaborative clusters with a high number of
participants related through the period the artists were active. Finally, we detect the leading artists
inside their corresponding communities and analyze their roles in the network by looking at a few
topological properties of the nodes. © 2008 American Institute of Physics.
#DOI: 10.1063/1.2988285$

Music is one of the richest sources of interaction between
individuals. Besides the usual connections between artists
and listeners, it is possible to have artist-artist and
listener-listener relations. In the current work we analyze
artist-artist interactions and their implications in music
similarity and collaboration. To that end, we construct
two different networks where nodes represent musical
artists: the similarity network, where artists are linked if
a certain similarity exists between them (evaluated by
musical editors), and the collaboration network, where a
link exists between two artists if they have ever per-
formed together. We detect and analyze the internal com-
munities that spontaneously arise in both networks,
which are driven by musical/social “forces,” and show
that the appearance of these communities is strongly re-
lated to the existence of musical genres. Furthermore, we
are able to discriminate the main actors in the formed
structures and extract their role in the network through
the calculation and classification of a few topological
properties of the nodes.

I. INTRODUCTION

Since the seminal paper of Milgram1 investigating the
flow of information through acquaintance networks, social
!complex" networks have attracted the interest of scientists in
a variety of fields.2 Many kinds of social structures arise
when analyzing the different types of interdependency
among individuals !or organizations", such as financial ex-
change, friendship, kinship, sexual relations, or disease trans-
mission. In the current work we focus on those social net-
works where music is the driving force that generates
interaction between individuals. Specifically, we consider
musical artists as the fundamental nodes of the network and
a certain musical relation as the linking rule. Two different

types of networks are obtained: first, the similarity network,
where artists are linked if their music are somewhat similar,
and second, the collaboration network, where artists are
linked if they have ever performed together. The rele-
vance of these kinds of networks does not only rely on a
social science perspective but also in musical aspects, such
as the understanding of musical genres3,4 or music
recommendation.5

Networks are obtained from the All-Music database of
music metadata.6 The content of the database is created by
professional editors and writers. Despite the linking rule be-
ing clear when creating the collaboration network, the simi-
larity between artists is a more complex task. A great deal of
research is devoted towards the development of audio
content-based algorithms capable of quantifying similarity
between musical pieces.7–9 Although great advances have
been made in this field, the criterion of musical experts still
prevails over similarity software. If we translate the problem
from musical pieces to musical artists,10 the evaluation of
musical similarity becomes a subjective task where expert
musical editors have the last say.

The intersection between both networks has been re-
cently analyzed11 from a complex network perspective.12,13

In the current work we go one step further by studying the
structures that arise in the spontaneous organization of these
particular social networks. Specifically, we are interested in
the existence and characterization of communities inside the
network and the driving forces that induce their appearance.
We also see how different kinds of community structures
arise at different partition levels and how they are related to
the existence of musical genres !in the case of the similarity
network" and inter/intra-band collaboration !in the case of
the collaboration network". Figure 1 summarizes the main
parameters of the network together with the cumulative de-

CHAOS 18, 043105 !2008"
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ARTIST NETWORKS
Despite having the same number of nodes, networks do not 
necessary have the same structure:

Social Network of Contemporary Popular Musicians 2

Similarity network Collaboration network
entire intersection entire intersection

n 32 377 8 509 34 724 8 509
m 117 621 24 950 123 122 20 232

size of S0 30 384 (94%) 7 219 (85%) 30 945 (89%) 6 054 (71%)
d̄ (dmax) 6.5 (22) 6.0 (20) 6.4 (23) 6.3 (19)

C 0.185 (18.5%) 0.178 (17.8%) 0.182 (18.2%) 0.171 (17.1%)
131 55 508 143

kmax R.E.M. Eric Clapton P. Da Costa P. Da Costa
R. Van Gelder

highest-betweenness Sting Sting P. Da Costa P. Da Costa
artist

TABLE I: Summary of several network characteristics of similarity, collaboration, and intersection subnetworks: number of
vertices n, number of edges m, number of vertices in the largest component S0 and its percentage among all vertices, mean
geodesic path d̄ in S0, diameter dmax of S0, global clustering coefficient C, the highest-degree kmax max and the corresponding
artist(s), and the artist with the highest betweenness.

connected to Tina Turner or David Bowie. On the other hand, using links in another category “Worked With”, we
constructed the collaboration network, where Mick Jagger is now connected to other members of the Rolling Stones,
such as Keith Richards or Charlie Watts, and others [14].

The similarity network is composed of 32, 377 vertices (artists) and 117, 621 edges, and the collaboration network
is composed of 34, 724 vertices and 123, 082 edges. These two networks have 8, 509 vertices in common. These
common vertices have 24, 950 edges in the similarity network, and 20, 232 edges for the collaboration network, between
themselves. We can visualize this as Fig. 1. The two subnetworks defined on these common vertices will enable us to
conduct a direct comparison study between similarity and collaboration link patterns.

Collaboration Network Similarity Network

FIG. 1: The structure of the data sets studied in this paper. Two sets of network data have an intersection consisting of
common vertices. These common vertices and the edges between them (similarity or collaboration) comprise the subnetworks.

III. BASIC NETWORK PROPERTIES

In this section, we study several key properties of the networks, such as the degree distribution, transitivity, nearest-
neighbor degree correlation, component structure and the Freeman centrality of vertices. They are summarized in
Table I and Fig. 2.

A. Mean geodesic length, diameter and component structure

A prominent feature of a complex network is the called the “small-world effect” [12] which means that the shortest
paths (also called geodesics) between vertices is very small compared to the system size. The longest geodesic in the
network is called its diameter. We see in Table I that average geodesic length d̄ is smaller than 7, while the diameter
is no larger than 23 in each network.

Social Network of Contemporary Popular Musicians 3
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FIG. 2: The cumulative degree distribution P (k) (first row), the local clustering coefficient C(k) (second row), the nearest–
neighbor degree distribution knn (third row), and the cumulative betweenness centrality distribution P (B) for the collaboration
(circle) and similarity (diamond) networks.

A component of a network is the set of vertices that are connected via one or more geodesics, and disconnected
(i.e., no geodesics) from all other vertices. Typically, networks possess one large component that contains a majority
of vertices. In Table I we see that with the exception of the collaboration subnetwork, each giant component contains
∼ 90% of the vertices.

B. Degree distribution

The number of vertices linked to a vertex is called its degree, usually denoted k. The degree distribution pk is the
fraction of vertices in the system with degree k. Many real-world networks, including the Internet and the worldwide
web (WWW), are known to show a right-skewed distribution, often a power law pk ∝ k−τ with 2 < τ < 3. More
frequently, the cumulative degree distribution P (k) =

∑

∞

k′=k pk′ , the fraction of vertices having degree k or larger,
is plotted. A cumulative plot avoids fluctuations at the tail of the distribution and facilitates the evaluation of the
power coefficient τ in case the network follows a power law.

We see in Figure 2 that collaboration network exhibit power-law degree distributions near their tails, p(k) ∼ k−3,
following a straight line in a log-log representation. We obtain a similar result when looking at its intersection
subnetwork.

On the other hand, the similarity network closely follows an exponential form of pk ∼ exp−0.12k, while its
intersection subnetwork follows pk ∼ exp−0.15k. As such, there is a huge difference kmax: artist R.E.M. and Eric
Clapton are the most connected in the entire dataset and the subnetwork with degrees 131 and 55 respective, while
in the collaboration dataset, Paulinho Da Costa tops in both cases with degrees 508 and 143 (tied with the legendary



ARTIST NETWORKS
Let’s see an example of how to use community detection to 
extract information about (artist) music networks:

We can split networks into communities 
using the modularity as  the reference

Division of the similarity network Divisions are hierarchical.

Each community can, in turn, be 
divided into more sub-groups



It is possible to detect the hubs of each network:

Provincial hubs Kinless hubs

ARTIST NETWORKS

Within-module degree*:

Provincial hubs Kinless hubs

Participation coefficient*:

* (Read more at R. Guimerà et al., Nature 433, 895 2005) 



ARTIST NETWORKS
In this way, it is possible to create a cartography of the hubs 
existing in both networks:

Similarity network

Collaboration network
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Users Networks               



USER NETWORKS
In this kind of music networks, users that have consumed a 
musical product are the nodes:

A 

1 

C B D F 

2 3 4 5 

A: (0,1,1,0,0) 
B: (1,1,0,0,0) 
... 

 

Network Projection 

This kind of networks are extremely useful for designing recommendation systems.

Users

Music



USER NETWORKS
Why shou ld we care about user networ ks ? 
Recommendation algorithms

Internet has changed the way music is sold.



USER NETWORKS
Can we trust recommender systems?

Four online music recommendation 
pages were analyzed:

Launch Yahoo!
Amazon

MSN Entertainment
AllMusicGuide

Topology of music recommendation networks
Pedro Cano,a! Oscar Celma, and Markus Koppenberger
Music Technology Group, Universitat Pompeu Fabra, Ocata 1, 08003 Barcelona, Spain

Javier M. Buldúb!

Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Colom 11, E-08222
Terrassa, Spain

!Received 21 July 2005; accepted 21 October 2005; published online 12 January 2006"

We study the topology of several music recommendation networks, which arise from relationships
between artist, co-occurrence of songs in play lists or experts’ recommendation. The analysis
uncovers the emergence of complex network phenomena in these kinds of recommendation net-
works, built considering artists as nodes and their resemblance as links. We observe structural
properties that provide some hints on navigation and possible optimizations on the design of music
recommendation systems. Finally, the analysis derived from existing music knowledge sources
provides a deeper understanding of the human music similarity perception. © 2006 American
Institute of Physics. #DOI: 10.1063/1.2137622$

Music is ubiquitous in human societies. Music generates
communities of musicians1,2 and communities of listeners.
Nevertheless, the way music links people is certainly di-
verse and sometimes unexpected. In this work we focus
on networks where musicians (or bands) are the funda-
mental nodes and are linked to others if they perform or
compose similar music. This information is extracted
from main online music recommendation systems: All-
MusicGuide, MSN Entertainment, Amazon, and Launch
Yahoo! Music recommendation systems are constructed
to assist users to navigate through music collections,
where navigation consists of guided links among artists.
When the user selects an artist, a certain number of al-
ternative artists are suggested, which in principle should
be of his/her interest. In our study of the structure of
different music recommendation systems we find charac-
teristics that influence the systems’ usability. Our results
show that despite some common features, such as small
worldness, different network characteristics exist, such as
the link degree distribution. We show that there exists a
relation between the link degree distribution and the con-
struction of the networks. Networks constructed by col-
laborative efforts are scale free whereas networks with
human experts supervising the links are exponential. This
raises a discussion on the main forces driving the creation
of the networks and hence their quality and potential
uses. If preferential attachment takes place, as in the
scale-free networks under study, the recommendations
are biased toward popular items. On the other hand, ex-
ponential networks are more faithful to the underlying
music similarity.

I. INTRODUCTION

Nowadays access to music is possible by querying artists
or song names—editorial data—or browsing recommenda-

tions generated by collaborative filtering—i.e., recommenda-
tion systems that exploit information such as “users that
bought this album also bought this album.” An obvious
drawback is that consumers need to know the name of the
song or the artist, or an important number of consumers must
have heard and rated the music. This situation makes it dif-
ficult for users to access and navigate through the vast
amount of music composed and performed by unknown new
artists, which is available online in an increasing number of
sites.

In this work, complex network measurements3,4 are used
to analyze the topology of networks underlying the main
music recommendation systems. The properties that emerge
raise a discussion on the underlying forces driving collabo-
rative systems and expert-guided networks. We can also ob-
tain some hints about how much of the network structure is
due to content similarity and how much to the self-
organization of the network. Therefore, it can shed new light
on the design and validation of music similarity measures
and their evaluation.5 Further, it uncovers possible optimiza-
tions when designing music information systems, such as the
optimal number of links between artists or the shortest path
from artist to artist. In this sense, recommendation networks
can be optimized by adding !or removing" links to facilitate
navigating from artist to artist in a short number of clicks.
Finally, we can obtain information about which artist has
more links or which genres are more extended. This kind of
information may help to understand the dynamics of certain
aspects of music evolution, e.g., how did an artist get popular
or how the music genres emerged.

II. GRAPH DATASET

We have gathered information from four different music
recommendation networks: AllMusicGuide,6 Amazon,7

Launch-Yahoo!,8 and MSN Entertainment,9 and we have cre-
ated a graph for each source, taking the ‘‘similarity” between
artists as the linking parameter. A graph is constructed as

a"Electronic mail: pcano@iua.upf.es
b"Electronic mail: javier.martin-buldu@upc.edu
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USER NETWORKS
How is the topology of the networks?

n <k> C d dr r γin γ out 

MSN 51,616 5.5 0.54 7.7 6.4 -0.07 2.4±.01 

Amazon 23,566 13.4 0.14 4.2 3.9 -0.06 2.3±.02 2.4±.04 

Yahoo! 16,302 62.8 0.38 2.7 2.3 -0.21 

AMG 29,206 8.15 0.20 6.2 4.9 0.18 

Good navigation properties 
Kleinberg, Nature 406:845 (2000) 

de Moura..., PRE  68, 036106 (2003) 

Small World 



USER NETWORKS
Interestingly, we find two different kind of networks:

scale-free exponential

in-degreein-degree



USER NETWORKS

Power law  

Exponential 

MSN 

Amazon 

Launch Yahoo! 

All Music Guide 

?? 
Bo th MSN and Amazon 

networks were constructed 

thanks to col laborative 

filtering. 

?? 
All Music Guide was created 

under the supervision of expert 

musical editors, who introduced 

links between artists. Launch 

Yahoo! Didn�t give us any 

information about how the 

network was created. 

Why are distributions so different? We asked how they 
were designed…



USER NETWORKS
We compared our results with another studies:

Music Seer:  
• Experiment on the web. Similarity 

between musical artists is evaluated 
by means of directed surveys. 

• People had to choose the similarity 
of an artist with a list of 10 editor 
selected artists.  

• Only musical similarity is evaluated: 
We obtain an exponential decay…

Art of the Mix: 
• Web page where users upload 

playlists of their favourite songs.
• Other factors enter the game: 

Trendiness, fame, musical tastes. 
We obtain a power law decay…



USER NETWORKS
What did we learn from this kind of study?

• In all cases, music  recommendation networks are small-world networks, 
which is good news for navigation through them. 

• Networks obtained by means of collaborative filtering, which are probably 
influenced by popularity or commercial trends, show scale-free structure.

• Networks obtained by means of musical editor supervision (or guided by), 
which guarantees that the similarity criterion is fulfilled, show exponential 
decay at their probability distribution.  



Conclusions               
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TAKE HOME MESSAGE

• There is a diversity of ways for 
projecting (music) data into a 
(music) network

• Think about the question and 
then try to obtain the most 
adequate network

• … and, more importantly, these 
conclusions go beyond music 
networks!


