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OVERVIEW



(I-III)

Biological Networks



COMPLEX BIOLOGICAL NETWORKS

One of the first contributions of the Complex Network Theory 
to biological systems is the seminal paper of  Watts and Strogatz:

The small-world of C. Elegans neural network, with an edge joining two neurons 
if they are connected  by either a synapse or a gap junction ( n= 282, <k>= 14). 
Table from Watts & Strogatz, 393, 440 (1998).
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typically slower than ,1 km s−1) might differ significantly from
what is assumed by current modelling efforts27. The expected
equation-of-state differences among small bodies (ice versus rock,
for instance) presents another dimension of study; having recently
adapted our code for massively parallel architectures (K. M. Olson
and E.A, manuscript in preparation), we are now ready to perform a
more comprehensive analysis.

The exploratory simulations presented here suggest that when a
young, non-porous asteroid (if such exist) suffers extensive impact
damage, the resulting fracture pattern largely defines the asteroid’s
response to future impacts. The stochastic nature of collisions
implies that small asteroid interiors may be as diverse as their
shapes and spin states. Detailed numerical simulations of impacts,
using accurate shape models and rheologies, could shed light on
how asteroid collisional response depends on internal configuration
and shape, and hence on how planetesimals evolve. Detailed
simulations are also required before one can predict the quantitative
effects of nuclear explosions on Earth-crossing comets and
asteroids, either for hazard mitigation28 through disruption and
deflection, or for resource exploitation29. Such predictions would
require detailed reconnaissance concerning the composition and
internal structure of the targeted object. M
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Collectivedynamicsof

‘small-world’ networks

Duncan J. Watts* & Steven H. Strogatz

Department of Theoretical and Applied Mechanics, Kimball Hall,
Cornell University, Ithaca, New York 14853, USA
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Networks of coupled dynamical systems have been used to model
biological oscillators1–4, Josephson junction arrays5,6, excitable
media7, neural networks8–10, spatial games11, genetic control
networks12 and many other self-organizing systems. Ordinarily,
the connection topology is assumed to be either completely
regular or completely random. But many biological, technological
and social networks lie somewhere between these two extremes.
Here we explore simple models of networks that can be tuned
through this middle ground: regular networks ‘rewired’ to intro-
duce increasing amounts of disorder. We find that these systems
can be highly clustered, like regular lattices, yet have small
characteristic path lengths, like random graphs. We call them
‘small-world’ networks, by analogy with the small-world
phenomenon13,14 (popularly known as six degrees of separation15).
The neural network of the worm Caenorhabditis elegans, the
power grid of the western United States, and the collaboration
graph of film actors are shown to be small-world networks.
Models of dynamical systems with small-world coupling display
enhanced signal-propagation speed, computational power, and
synchronizability. In particular, infectious diseases spread more
easily in small-world networks than in regular lattices.

To interpolate between regular and random networks, we con-
sider the following random rewiring procedure (Fig. 1). Starting
from a ring lattice with n vertices and k edges per vertex, we rewire
each edge at random with probability p. This construction allows us
to ‘tune’ the graph between regularity (p ¼ 0) and disorder (p ¼ 1),
and thereby to probe the intermediate region 0 , p , 1, about
which little is known.

We quantify the structural properties of these graphs by their
characteristic path length L(p) and clustering coefficient C(p), as
defined in Fig. 2 legend. Here L(p) measures the typical separation
between two vertices in the graph (a global property), whereas C(p)
measures the cliquishness of a typical neighbourhood (a local
property). The networks of interest to us have many vertices
with sparse connections, but not so sparse that the graph is in
danger of becoming disconnected. Specifically, we require
n q k q lnðnÞ q 1, where k q lnðnÞ guarantees that a random
graph will be connected16. In this regime, we find that
L,n=2k q 1 and C,3=4 as p ! 0, while L < Lrandom,lnðnÞ=lnðkÞ
and C < Crandom,k=n p 1 as p ! 1. Thus the regular lattice at p ¼ 0
is a highly clustered, large world where L grows linearly with n,
whereas the random network at p ¼ 1 is a poorly clustered, small
world where L grows only logarithmically with n. These limiting
cases might lead one to suspect that large C is always associated with
large L, and small C with small L.

On the contrary, Fig. 2 reveals that there is a broad interval of p
over which L(p) is almost as small as Lrandom yet CðpÞ q Crandom.
These small-world networks result from the immediate drop in L(p)
caused by the introduction of a few long-range edges. Such ‘short
cuts’ connect vertices that would otherwise be much farther apart
than Lrandom. For small p, each short cut has a highly nonlinear effect
on L, contracting the distance not just between the pair of vertices
that it connects, but between their immediate neighbourhoods,
neighbourhoods of neighbourhoods and so on. By contrast, an edge

* Present address: Paul F. Lazarsfeld Center for the Social Sciences, Columbia University, 812 SIPA
Building, 420 W118 St, New York, New York 10027, USA.



COMPLEX BIOLOGICAL NETWORKS

Biological networks are very heterogeneous, but one thing 
is sure, they are complex networks:

Network parameters of several biological networks: n, number of nodes; m, number of links; z, mean 
degree,; l average shortest path; α, power-law exponent; C, clustering coefficient, and r, assortativity. 

From Newman, SIAM, 45, 167 (2003).
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How are Biological Networks?:

• Biological networks are small-world.

• They are (typically) organized in sub-modules and, as a consequence, 
they have high modularity and community structures.

• It is common to observe dissasortative mixing (i.e., most connected 
nodes are not preferentially connected with each other).

Nevertheless, each network deserves its own interpretation

COMPLEX BIOLOGICAL NETWORKS



There is a diversity of biological networks, each one with 
its own particularities:

•   Metabolic, protein and genetic networks

•   Networks of neurons

•   Functional and anatomical brain networks

•   Food webs in ecosystems 

•   Animal grouping and swarm movement

•  and many others …

COMPLEX BIOLOGICAL NETWORKS



Interactions between genes (through transcription factors) 
lead to a network of promotor/repressor interactions

GENETIC, PROTEIN AND METABOLIC NETWORKS



Genetic transcription networks are directed (digraphs) 
with positive/negative regulations:

transcription factor  
protein 
negative regulation 
positive regulation 

Yeast (S. Cerevisiae) network of 
transcr iptional regulation (N=682 
proteins and M=1289 interactions). 
From Maslov et a l . , Large-Scale 
Topological Properties of Molecular 
Networks (Springer 2003).

GENETIC, PROTEIN AND METABOLIC NETWORKS



Despite their complexity, it is possible to analyze them and 
extract some conclusions:

Figure: (a) The histogram N(Kin) of nodes’ in-degrees Kin in transcription 
regulatory networks of yeast (diamonds, dashed line), and E. coli (circles, solid 

line). (b) the same as (a) but considering the N(Kout. ). From Maslov et al., 
(2003).

The Pin(k) distribution is 
limited by the system (due to 
the finite space of the 
promoter). Pout(k) is not 
limited and, as a consequence, 
has a heavy tail.

GENETIC, PROTEIN AND METABOLIC NETWORKS



Metabolic networks are obtained from the biochemical reactions 
involving the transformation of energy and matter in the cell:

A portion of the WIT database for E. coli. Each substrate can be represented as a 
node of the graph, linked through temporary educt-educt complexes (black boxes) 
from which the products emerge as new nodes (substrates). The enzymes, which 
provide the catalytic scaffolds for the reactions, are shown by their EC numbers. 
From Jeong et al., Nature, 407.651 (2000).

The participating 
subs t r a te s a re 
called metabolites 
and are catalyzed 
and regulated by 
enzymes.

GENETIC, PROTEIN AND METABOLIC NETWORKS



Metabolic networks have scale-free degree distribution

Connectivity distr ibutions P(k) for : (a) 
Archaeoglobus fulgidus (archae); (b) E. coli 
(bacterium); (c) Caenorhabditis elegans 
(eukaryote), counting separately the incoming 
(In) and outgoing links (Out) for each 
substrate. kin (kout) corresponds to the number 
of reactions in which a substrate participates 
as a product (educt). (d) The connectivity 
distribution averaged over all 43 organisms. 
From Jeong et al., Nature, 407.651 (2000).

GENETIC, PROTEIN AND METABOLIC NETWORKS



Metabolic networks also show the small-world property 
and resilience to failures similar to scale-free networks: 

Average path length of  the metabolic 
network of 43 organisms.  From 
Jeong et al., Nature, 407, 651 (2000).
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The effect of substrate removal on the 
metabolic network of E. coli. M=60 corresponds 
to the ~8% of the network metabolites. From 
Jeong et al., Nature, 407, 651 (2000).

GENETIC, PROTEIN AND METABOLIC NETWORKS



Protein-protein interaction networks reflect physical or 
chemical interactions between proteins:

GENETIC, PROTEIN AND METABOLIC NETWORKS

It is estimated that even simple single-celled organisms such as yeast 
have their roughly 6000 proteins interacting by at least 3 interactions 
per protein, i.e. a total of 20,000 interactions or more. By 
extrapolation, there may be on the order of ~100,000 interactions in 
the human body.



Protein-protein (bidirectional) interactions lead to complex 
networks (I know you are not surprised anymore…):

Protein-protein interaction in 
the yeas t S . Cerev i s i ae , 
(N=1870 and M=2240). From 
Jeong et al., Nature, 411, 41 
(2001). The colour of a node 
signifies the phenotypic effect 
of removing the corresponding 
protein (red, lethal; green, non- 
lethal; orange, slow growth; 
yellow, unknown).

GENETIC, PROTEIN AND METABOLIC NETWORKS



Protein-protein interaction networks are typically scale-free 
with an exponential cut-off:

Figure: Probability distribution 
o f t h e p r o t e i n - p r o t e i n 
interaction in the yeast S. 
cerev is iae , (N=1870 and 
M=2240). The distribution is 
scale-free with an exponential 
cut-off (around kc~20). From 
Jeong et al., Nature, 411, 41 
(2001).

GENETIC, PROTEIN AND METABOLIC NETWORKS



Protein-protein networks are dissasortative:

• Interestingly, dissasortative structures 
are robust against  failures of the hubs 
due to the reduced propagation to the 
neighbors.

Figure: Distribution of the average neighbor 
connectivity for the yeast protein-protein 
interaction network. Here, N=3278 and M= 
4549. From Maslov et al., Science., 296, 910 
(2002).

GENETIC, PROTEIN AND METABOLIC NETWORKS



Networks of neurons: 

NEURON AND BRAIN NETWORKS

• C. Elegans: It is the only living 
system that has been fully 
mapped. It has 302 neurons and 
average degree <k>≈29.

• It has low shortest path and high 
clustering: it is a small-world 
network.

• Existence of network motifs.

• The tail of the distribution of 
degrees p(k) is power-law.

Gap junctions connections and chemical 
synapses of C. Elegans neurons. From Varshney, 
PLoS Comp. Biol, 7, 1001066 (2011)



Let’s go to higher spatial scales: Brain Networks

From Bullmore & Sporns, Nature Rev. 10, 186 (2009)

-  Cross-correlation 
-  Wavelet coherence 
- Sync. likelihood 
- Generalized  Sync. 
-  Phase Sync. 
-  Mutual Info. 
-  Granger Causality 

-  EEG 
-  MEG 
-  fMRI 

-  Histological Analysis 
-  DTI (MRI) 

Anatomical Networks Functional Networks 

NEURON AND BRAIN NETWORKS



Ecosystems are networks:

ECOSYSTEMS & FOOD WEBS  
(INTERACTION BETWEEN NON-HUMAN ANIMALS)

Example of trophic interactions within a marine ecosystem.



Food Webs = Trophic interactions

Montoya, J, S L Pimm, R V Sole Nature, 442 (2006)
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ECOSYSTEMS & FOOD WEBS  
(INTERACTION BETWEEN NON-HUMAN ANIMALS)

-  Cross-correlation 
-  Wavelet coherence 
- Sync. likelihood 
- Generalized  Sync. 
-  Phase Sync. 
-  Mutual Info. 
-  Granger Causality 

-  EEG 
-  MEG 
-  fMRI 

-  Histological Analysis 
-  DTI (MRI) 

Anatomical Networks Functional Networks 



(II-III)

RNA Networks     

21INTRODUCTION SCIENTIFIC IMPACT

Four widely read books, translated to over 
twenty languages, have brought network sci-
ence to the general public [34, 35, 36, 37].

Figure  1.11

Wide Impact



(example) A RNA virus is a virus that has ribonucleic acid (RNA) as its 
genetic material. Some examples are SARS, influenza and hepatitis C.

WHAT IS A RNA NEUTRAL NETWORK?

A: adenine (A)  
C: cytosine (C)  
G: guanine (G)  
U: uracil (U) (instead of thymine) 

G≡C – 3 Kcal/mol 

A=U – 2 Kcal/mol 

G–U  – 1 Kcal/mol 



There exists a huge degeneracy between sequence 
(genotype) and function (phenotype):

WHAT IS A RNA NEUTRAL NETWORK?

AGCUAGUGCAAUAGCACCAAGGAUCGGAUCCAGCU  
GGCCCCCGUGACGACGGAGCGGAUAAGGUCCAGCC 
GGCAAUUGCUCAUGUAAACGGGAUCCGAUCCAGCU 
GGCGCCCGUGACGACGGAGCGGAGAAGCUCCAGCC S 

A: adenine (A)  
C: cytosine (C)  
G: guanine (G)  
U: uracil (U) (instead of thymine) 



Construction of a RNA neutral network:

WHAT IS A RNA NEUTRAL NETWORK?

• We choose a secondary structure S.

• A node corresponds to a sequence that has S 
as a m.f.e. structure.

• A link is drawn between two nodes if they are 
at a Hamming distance of one.

• A sequence of length l is linked to at most 3l 
other nodes and the maximum size of such 
network is 4l (since there are 4 bases).

GGCGCCCGUGACGA 

GGCGCCCGUGACGC 

GGCGCCCGUGACGG 

GACGCGCGUGACGC 
GACGCCCGUGACGC 



RNA “real” neutral network of length 12:

WHAT IS A RNA NEUTRAL NETWORK?

• Real and complete neutral networks can be obtained through exhaustive 
enumeration and folding of the space of sequences. For length l=12 there are 
412=16.777.216 sequences.

• “Real” RNA neutral networks can be obtained computationally with the Vienna 
package, which computes the folding energy of all possible secondary structures.

•  For l=12 we obtain 57 different neutral networks (with 44.000 sequences per 
structure on average).



  Sequences of l=12:

WHAT IS A RNA NEUTRAL NETWORK?

(example) 46th rank 



Size ranking:

TOPOLOGICAL PROPERTIES OF RNA NEUTRAL NETWORKS 

• Base pairs are indicated by 
parenthesis () 

• Unpaired bases are indicated 
by dots . 

 (((.…))).. 

b = 1 
b = 2 
b = 3 
b = 4 



 Degree Distribution:

TOPOLOGICAL PROPERTIES OF RNA NEUTRAL NETWORKS 

• with: 
• b = 4 (number of different nucleotides)  
• l = 12 the sequence length (i.e., kmax = 36) 

• Average degree grows with 
the size:

kmax = (b−1)l 

<k>~ 1.79 ln(N) 



Clustering

TOPOLOGICAL PROPERTIES OF RNA NEUTRAL NETWORKS 

• Random networks:
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Assortativity:

TOPOLOGICAL PROPERTIES OF RNA NEUTRAL NETWORKS 

• Yes, they are assortative…



Point mutations:

TOPOLOGICAL PROPERTIES OF RNA NEUTRAL NETWORKS 

• Mutations, i.e. neighbors, 
appear where bases are 
unpaired…



Shortest path:

TOPOLOGICAL PROPERTIES OF RNA NEUTRAL NETWORKS 

•  Shortest path <d> grows 
with the size:

<d>~ 0.63 ln(N) 



 Largest eigenvalue:

TOPOLOGICAL PROPERTIES OF RNA NEUTRAL NETWORKS 



Centrality & Communities:

TOPOLOGICAL PROPERTIES OF RNA NEUTRAL NETWORKS 

• Surprisingly, eigenvector centrality 
is a good indicator of community 
structure… why?



Some conclusions:

TOPOLOGICAL PROPERTIES OF RNA NEUTRAL NETWORKS 

• We have overviewed the topological structure of neutral networks formed by 
12-nucleotides RNA sequences. A total of 412 sequences fragments into 465 
subnetworks corresponding to 57 different secondary structures.

• The topological analysis reveals that RNA neutral networks are far from being 
random: they have a degree distribution with a well-defined average and 
small dispersion, high clustering and a low average shortest path.

• Several topological relationships can be extracted from the structural 
(biological) restrictions and generic properties of the folding process.

• The average degree of these phenotypic networks grows logarithmically 
with their size, such that abundant phenotypes have additional advantage of being 
more robust to mutations.



POPULATION DYNAMICS IN RNA NEUTRAL NETWORKS 



• Study of the evolution of populations of genomes replicating 
at high mutation rate (e.g. RNA) on artificial neutral networks 
(where populations evolve towards highly connected regions of 
the genome space).

• Analytical study (numerical if not possible) of the evolution of 
replicators on small networks where a second selective 
pressure is included: the folding energy. 

• Application of the results to large and complex “real” neutral 
networks. 

POPULATION DYNAMICS IN RNA NEUTRAL NETWORKS 



A. Initial condition: Each node i contains a number ni(0) of sequences.

B. At each time step (or generation) the population of a node duplicates.

C. The new sequence mutates with probability μ.

D. The population is constant. 

n(t) 
duplication 

mutation 

Duplication - mutation 

Population coming from neighbors 

Network topology 

POPULATION DYNAMICS IN RNA NEUTRAL NETWORKS 

How do sequences move? 



Interplay between dynamics and topology:

i i 

t t+1 

The topology is contained in 
the adjacency matrix C 

ni: population at node i 
µ: mutation rate 

Knowledge of C permits to calculate the final state (population in each node i) 
and the time required to attain equilibrium:

• The final state only depends on C

• Time to equilibrium depends on C and on the mutation rate

POPULATION DYNAMICS IN RNA NEUTRAL NETWORKS 



)()1( tnMtn !!
=+ M=Transition matrix

C=Adjacency matrix (topology)

λi=eigenvalues of M
γi=eigenvalues of C

wi=eigenvectors of M
ui=eigenvectors of Cii wu !!

=

POPULATION DYNAMICS IN RNA NEUTRAL NETWORKS 

Interplay between dynamics and topology:



Figure: Average degree of the population as a function of time for a scale-free network. The final 
value ρ corresponds to the spectral radius of the adjacency matrix. Here μ=0.1 (N=200).

How does the RNA population evolve in the network?
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• Transition matrix M has the same eigenvectors as the Adjacency matrix C:

• The final state is given by the first eigenvector of M (or C).

• The average degree of the population <Kpop> is given by the first eigenvalue of C:

• The time to equilibrium tε depends on C (eigenvalues), on the initial condition and on the 
mutation rate μ: 

)()1( tnMtn !!
=+

For a given network and set of initial conditions:   
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• No matter where the 
initial distribution is (in 
the network), if the  
RNA has enough time, it 
will evolve toward the 
same final distribution.

• The population evolves 
to the more connected 
areas. In this way, it is 
m o r e r o b u s t t o 
mutations. This property 
is known as neutrality.

Population finds robustness in the more connected regions!
0 1 0 1 0 
1 0 1 0 1 
0 1 0 1 0 
1 0 1 0 0 
0 1 0 0 0 
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• The probability of occupying a node depends on its energy:

• The folding energy depends on the base pairs:

• The parameter β quantifies the relative importance of high 
connectivity versus low energy:

• Next, we consider a second selective pressure: the folding energy Ei.

β ! 0 the population evolves to the 

most connected nodes (neutrality). 

 

β ! ∞ the population evolves to nodes 

with lower energy (stability). 

 

G≡C – 3 Kcal/mol 

A=U – 2 Kcal/mol 

G–U  – 1 Kcal/mol 
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Analytical results on (small) networks:

A) Eigenvectors of M’ ≠ Eigenvectors of C: Topology is not enough!

B) The interplay and evolution of the eigenvalues and eigenvectors is the keystone of 
the complex dynamics.

        Example:

 
C)The mutation rate μ and the stability rate β represent opposite forces: μ promotes 
neutrality and β promotes stability.

D) Correlations between degree and energy will be crucial in the transition dynamics.

Lowest energy  
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• Energy versus topology in random networks:

Dependence of the properties of the random mutation network on β and µ when 

neutrality and energetic stability are negatively correlated (NS−). Each curve is plotted 

for µ = 0.001 (•), 0.01 (solid line), and 0.05 (◦). (a) Average energy E, (b) Average degree 

K, (c) Average dispersion D, (d) Dependence of the rescaled time to equilibrium 
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Energy versus topology in scale-free networks

Dependence of the properties of the preferential mutation network on β and µ when neutrality and energetic stability are 

negatively correlated (NS−). Each curve is plotted for µ = 0.001 (•), 0.01 (solid line), and 0.05 (◦). (a) Average energy E, (b) 

Average degree K, (c) Average dispersion D, (d) dependence of the rescaled time to equilibrium 
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Energy versus topology in scale-free networks

(energy parameter) 

In this example, there are 404 
different sequences leading to 
this secondary structure (l=12):

                  (.(....))...

Interestingly, correlation 
b e t w e e n e n e r g y a n d 
degree promotes neutrality 
(robustness to mutations).

Nodes of minimal energy (equal) 

Rest of nodes 
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Conclusions:
• Evolutionary dynamics on neutral networks leads populations to highly 

connected areas in the space of genomes: neutrality (connectivity) is 
optimized, thus increasing robustness to mutations 

• When the energy of the folded state is taken into account, the population 
concentrates around sequences of minimal energy, thus increasing 
robustness to perturbations

• Robustness arises as a compromise between minimizing the effect of 
mutations and maximizing structural stability

• The time required to reach the asymptotic state has to be shorter than the 
time between changes in the environment

• Correlation between energy and degree in real RNA neutral networks 
can increase the robustness of the population 

POPULATION DYNAMICS IN RNA NEUTRAL NETWORKS 



(III-III)

Functional Brain Networks             



What if we apply network science to the most challenging 
system we are facing?

APPLYING NETWORK SCIENCE TO THE BRAIN



APPLYING NETWORK SCIENCE TO THE BRAIN

In brief, (main) types of brain networks

From Bullmore & Sporns, Nature Rev. 10, 186 (2009) 

anatomical functional



M. Rubinov and O. Sporns,
NeuroImage 52, 1059–1069 (2010)

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.neuroimage.2009.10.003.
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Table A1 (continued)

Measure Binary and undirected definitions Weighted and directed definitions

Measures of resilience
Degree distribution Cumulative degree distribution of the network

(Barabasi and Albert, 1999),

P kð Þ =
X

kVzk

p kVð Þ;

where p(k′) is the probability of a node having degree k′.

Cumulative weighted degree distribution, P kwð Þ =
P

k Vzkw p kV
! "

,
Cumulative out-degree distribution, P koutð Þ =

P
k Vzkout p kV

! "
.

Cumulative in-degree distribution, P kin
! "

=
P

k Vzkin
p kV
! "

.

Average neighbor
degree

Average degree of neighbors of node i (Pastor-Satorras et al., 2001),

knn;i =
P

jaN aijkj
ki

:

Average weighted neighbor degree (modified from
Barrat et al., 2004),

kwnn;i =
P

jaN wijk
w
j

kwi
:

Average directed neighbor degree⁎,

kYnn;i =
P

jaN aij + ajið Þ kouti + kini
! "

2 kouti + kini
! " .

Assortativity coefficient Assortativity coefficient of the network (Newman, 2002),

r =
l−1P

i;jð ÞaL kikj − l−1P
i;jð ÞaL

1
2 ki + kj
# $h i2

l−1P
i;jð ÞaL

1
2 k2i + k2j
# $

− l−1P
i;jð ÞaL

1
2 ki + kj
# $h i2 :

Weighted assortativity coefficient (modified from
Leung and Chau, 2007),

rw =
l− 1
P

i; jð ÞaL wijk
w
i k

w
j − l− 1P

i; jð ÞaL
1
2wij kwi + kwjð Þ

h i2

l− 1
P

i; jð ÞaL
1
2wij kwið Þ2 + kwjð Þ2

# $
− l− 1P

i; jð ÞaL
1
2wij kwi + kwjð Þ

h i2 .

Directed assortativity coefficient (Newman, 2002),

rY =
l− 1
P

i; jð ÞaL k
out
i kinj − l− 1

P
i; jð ÞaL

1
2 kouti + kinj
! "h i2

l− 1
P

i;jð ÞaL
1
2 kouti

! "2
+ kinj
! "2h i

− l− 1
P

i;jð ÞaL
1
2 kouti + kinj

# $h i2 .

Other concepts
Degree distribution
preserving network
randomization.

Degree-distribution preserving randomization is implemented by
iteratively choosing four distinct nodes i1, j1, i2, j2 ∈ N at random,
such that links (i1, j1), (i2, j2) ∈ L, while links (i1, j2), (i2, j1) ∉ L.
The links are then rewired such that (i1, j2), (i2, j1) ∈ L and (i1, j1),
(i2, j2) ∉ L, (Maslov and Sneppen, 2002).
“Latticization” (a lattice-like topology) results if an additional
constraint is imposed, |i1+j2| + |i2+j1| b |i1+j1| + |i2+j2|
(Sporns and Kotter, 2004).

The algorithm is equivalent for weighted and directed networks.
In weighted networks, weights may be switched together with
links; in this case, the weighted degree distribution is not
preserved, but may be subsequently approximated on the
topologically randomized graph with a heuristic weight reshuffling
scheme.

Measure `of network
small-worldness.

Network small-worldness (Humphries and Gurney, 2008),

S =
C = Crand
L = Lrand

;

where C and Crand are the clustering coefficients, and L and Lrand are
the characteristic path lengths of the respective tested network and
a random network. Small-world networks often have S ≫ 1.

Weighted network small-worldness, Sw = Cw
= Cw

rand
Lw = Cw

rand
.

Directed network small-worldness, SY = CY
= CY

rand
LY = CY

rand
.

In both cases, small-world networks often have S ≫ 1.

All binary and undirected measures are accompanied by their weighted and directed generalizations. Generalizations that have not been previously reported (to the best of our
knowledge) are marked with an asterisk (⁎). The Brain Connectivity Toolbox contains Matlab functions to compute most measures in this table.
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Table A1 (continued)

Measure Binary and undirected definitions Weighted and directed definitions

Modularity Modularity of the network (Newman, 2004b),

Q =
X

uaM

euu −
X

vaM

euv

 !2" #

;

where the network is fully subdivided into a set of nonoverlapping
modules M, and euv is the proportion of all links that connect nodes
in module u with nodes in module v.
An equivalent alternative formulation of the modularity

(Newman, 2006) is given by Q = 1
l

P
i;jaN aij −

kikj
l

! "
δmi ;mj

,

where mi is the module containing node i, and δmi,mj = 1 if mi = mj,
and 0 otherwise.

Weighted modularity (Newman, 2004),

Qw = 1
lw
P

i;jaN wij −
kwi k

w
j

lw

# $
δmi ;mj :

Directed modularity (Leicht and Newman, 2008),

QY = 1
l

P
i;jaN aij − kouti kini

l

# $
δmi ;mj :

Measures of centrality
Closeness centrality Closeness centrality of node i (e.g. Freeman, 1978),

L−1
i =

n − 1
P

jaN;j≠i
dij

:

Weighted closeness centrality, Lwi
% &−1 = n − 1P

jaN; j≠i
dwij

.

Directed closeness centrality, LYi
% &−1 = n − 1P

jaN; j≠i
dYij

.

Betweenness centrality Betweenness centrality of node i (e.g., Freeman, 1978),

bi =
1

n − 1ð Þ n − 2ð Þ

P
h; jaN

h≠j;h≠i; j≠i;

ρhj ið Þ
ρhj

;

where ρhj is the number of shortest paths between h and j, and ρhj (i)
is the number of shortest paths between h and j that pass through i.

Betweenness centrality is computed equivalently on
weighted and directed networks, provided that path lengths
are computed on respective weighted or directed paths.

Within-module degree
z-score

Within-module degree z-score of node i
(Guimera and Amaral, 2005),

zi =
ki mið Þ− k mið Þ

σk mið Þ ;

where mi is the module containing node i, ki (mi) is the
within-module degree of i (the number of links between i and all
other nodes in mi), and k mið Þ and σk(mi) are the respective mean
and standard deviation of the within-module mi degree distribution.

Weighted within-module degree z-score, zwi = kwi mið Þ− kw mið Þ
σkw mið Þ

.

Within-module out-degree z-score, zouti = kouti mið Þ− kout mið Þ
σkout mið Þ .

Within-module in-degree z-score, zini = kini mið Þ− kin mið Þ
σkin mið Þ .

Participation coefficient Participation coefficient of node i (Guimera and Amaral, 2005),

yi = 1−
X

maM

ki mð Þ
ki

' (2
;

where M is the set of modules (see modularity), and ki (m) is the
number of links between i and all nodes in module m.

Weighted participation coefficient, ywi = 1− P
maM

kwi mð Þ
kwi

! "2
.

Out-degree participation coefficient, youti = 1− P
maM

kouti mð Þ
kouti

! "2
.

In-degree participation coefficient, yini = 1−PmaM
kini ðmÞ
kini

' (2

.

Network motifs
Anatomical and
functional motifs

Jh is the number of occurrences of motif h in all subsets of the
network (subnetworks). h is an nh node, lh link, directed connected
pattern. h will occur as an anatomical motif in an nh node, lh link
subnetwork, if links in the subnetwork match links in h
(Milo et al., 2002). h will occur (possibly more than once) as a
functional motif in an nh node, lh′ ≥ lh link subnetwork, if at least one
combination of lh links in the subnetwork matches links in h
(Sporns and Kotter, 2004).

(Weighted) intensity of h (Onnela et al., 2005),

Ih =
P

u Π i; jð ÞaLhu
wij

! " 1
lh ;

where the sum is over all occurrences of h in the network,
and L

hu

is the set of links in the uth occurrence of h.
Note that motifs are directed by definition.

Motif z-score z-Score of motif h (Milo et al., 2002),

zh =
Jh − h Jrand;hi

σ Jrand;h
;

where 〈Jrand,h〉 and σ Jrand,h are the respective mean and standard
deviation for the number of occurrences of h in an ensemble of
random networks.

Intensity z-score of motif h (Onnela et al., 2005),

zIh = Ih − hIrand;hi
σ Irand;h

;

where 〈Irand,h〉 and σ Irand,h are the respective
mean and standard deviation for the intensity of h in an
ensemble of random networks.

Motif fingerprint nh node motif fingerprint of the network (Sporns and Kotter, 2004),

Fnh
hVð Þ =

X

iaN

Fnh ;i hVð Þ =
X

iaN

JhV;i;

where h′ is any nh node motif, Fnh,i (h′) is the nh node motif
fingerprint for node i, and Jh′,i is the number of occurrences of
motif h′ around node i.

nh node motif intensity fingerprint of the network,
FInh

hVð Þ =
P

iaNF
I
nh ;i hV

% &
=
P

iaN IhV; i,
where h′ is any nh node motif, FInh,i (h′) is the nh node motif
intensity fingerprint for node i, and Ih′,i is the intensity of
motif h′ around node i.

(continued on next page)
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Table A1
Mathematical definitions of complex network measures (see supplementary information for a self-contained version of this table).

Measure Binary and undirected definitions Weighted and directed definitions

Basic concepts and measures
Basic concepts and
notation

N is the set of all nodes in the network, and n is the number of nodes.
L is the set of all links in the network, and l is number of links.
(i, j) is a link between nodes i and j, (i, j ∈ N).
aij is the connection status between i and j: aij = 1 when link (i, j)
exists (when i and j are neighbors); aij = 0 otherwise (aii = 0 for all i).
We compute the number of links as l = ∑i,j∈N aij (to avoid
ambiguity with directed links we count each undirected link twice,
as aij and as aji).

Links (i, j) are associated with connection weights wij.
Henceforth, we assume that weights are normalized,
such that 0 ≤ wij ≤ 1 for all i and j.
lw is the sum of all weights in the network, computed
as lw = ∑i,j∈N wij.

Directed links (i, j) are ordered from i to j. Consequently,
in directed networks aij does not necessarily equal aji.

Degree: number of links
connected to a node

Degree of a node i,

ki =
X

jaN

aij:

Weighted degree of i, kiw = ∑j∈Nwij.
(Directed) out-degree of i, kiout = ∑j∈Naij.
(Directed) in-degree of i, kiin = ∑j∈Naji.

Shortest path length:
a basis for measuring
integration

Shortest path length (distance), between nodes i and j,

dij =
X

auvagi X j

auv;

where gi↔j is the shortest path (geodesic) between i and j. Note
that dij = ∞ for all disconnected pairs i, j.

Shortest weighted path length between i and j,
dijw = ∑auv∈gi↔j

w f(wuv), where f is a map (e.g., an inverse)
from weight to length and gi↔j

w is the shortest weighted
path between i and j.

Shortest directed path length from i to j, dij→ = ∑aij∈gi→j
aij,

where gi→j is the directed shortest path from i to j.

Number of triangles: a
basis for measuring
segregation

Number of triangles around a node i,

ti =
1
2

X

j;haN
aijaihajh :

(Weighted) geometric mean of triangles around i,
twi = 1

2
P

j;haN wijwihwjh
! "1=3

:
Number of directed triangles around i,
tYi = 1

2
P

j;haN aij + aji
! "

aih + ahið Þ ajh + ahj
! "

.

Measures of integration
Characteristic path
length

Characteristic path length of the network
(e.g., Watts and Strogatz, 1998),

L =
1
n

X

iaN

Li =
1
n

X

iaN

P
jaN;j≠i dij
n − 1

;

where Li is the average distance between node i and all other nodes.

Weighted characteristic path length, Lw = 1
n
P

iaN

P
jaN; j≠i d

w
ij

n − 1 .

Directed characteristic path length, LY = 1
n
P

iaN

P
jaN; j≠i d

Y
ij

n − 1 .

Global efficiency Global efficiency of the network (Latora and Marchiori, 2001),

E =
1
n

X

iaN

Ei =
1
n

X

iaN

P
jaN;j≠i d

−1
ij

n − 1
;

where Ei is the efficiency of node i.

Weighted global efficiency, Ew = 1
n
P

iaN

P
jaN; j≠i dwij

# $− 1

n − 1 .

Directed global efficiency, EY = 1
n
P

iaN

P
jaN; j≠i dYij

# $− 1

n − 1 .

Measures of segregation
Clustering coefficient Clustering coefficient of the network (Watts and Strogatz, 1998),

C =
1
n

X

iaN
Ci =

1
n

X

iaN

2ti
ki ki − 1ð Þ

;

where Ci is the clustering coefficient of node i (Ci = 0 for ki b 2).

Weighted clustering coefficient (Onnela et al., 2005),

Cw = 1
n
P

iaN
2twi

ki ki − 1ð Þ. See Saramaki et al. (2007) for

other variants.

Directed clustering coefficient (Fagiolo, 2007),

CY = 1
n
P

iaN
tYi

kouti + kinið Þ kouti + kini − 1ð Þ− 2
P

jaN
aijaji

:

Transitivity Transitivity of the network (e.g., Newman, 2003),

T =
P

iaN 2tiP
iaN ki ki − 1ð Þ

:

Note that transitivity is not defined for individual nodes.

Weighted transitivity⁎, Tw =
P

iaN
2twiP

iaN
ki ki − 1ð Þ.

Directed transitivity⁎,

TY =
P

iaN tYiP
iaN kouti + kini

! "
kouti + kini − 1
! "

− v2
P

jaN
aijaji

h i :

Local efficiency Local efficiency of the network (Latora and Marchiori, 2001),

Eloc =
1
n

X

iaN

Eloc;i =
1
n

X

iaN

P
j;haN;j≠i aijaih djh Nið Þ

h i−1

ki ki − 1ð Þ
;

where Eloc,i is the local efficiency of node i, and djh (Ni) is the
length of the shortest path between j and h, that contains only
neighbors of i.

Weighted local efficiency⁎,

Ewloc =
1
2
P

iaN

P
j;haN; j≠i wijwih dwjh Nið Þ½ $−1

# $1 = 3

ki ki − 1ð Þ :

Directed local efficiency⁎,

EYloc =
1
2n
P

iaN

P
j;haN;j≠i aij + ajið Þ aih + ahið Þ dYjh Nið Þ

% &−1
+ dYhj Nið Þ
% &−1

# $

kouti + kini
! "

kouti + kini − 1
! "

− 2
P

jaN
aijaji

:

Appendix A.
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… and many more!! 



ANATOMICAL BRAIN NETWORKS

The connectome is a comprehensive map of neural connections in the brain. The production 
and study of connectomes, known as connectomics, may range in scale from a detailed map 
of the full set of neurons and synapses of an organism to a macro scale description of 
the structural connectivity between all cortical areas and subcortical structures.



ANATOMICAL BRAIN NETWORKS

We can analyze the structure of anatomical networks in order to learn 
something from them:

N=71 Brain Areas and L=746
Small-world
No power-law

N= 52 Brain Areas and L=820
Small-world
No power-law

 From Sporns et al., Neuroinformatics, 2, 145 (2004) 



ANATOMICAL BRAIN NETWORKS

The human brain has been also translated into a network:

• Exponential (not scale-
free) degree distribution 
(note that there are 66 
subregions and 998 ROIs).

• Small-world attributes.

• M u l t i p l e m o d u l e s 
interlinked by hub regions.

•  Positive assortativity.

Hagmann et al. (2008) PLoS Biol. 6, e159



FUNCTIONAL BRAIN NETWORKS



IT’S A LONG ROAD… FULL OF  TROUBLE!

Obtaining a functional brain network in three steps:

Measuring Brain Activity Time Series Analysis & 
Network  Construction

Network Analysis

STEP 1 STEP 2 STEP 3 



OBTAINING FUNCTIONAL BRAIN NETWORKS

STEP 1: Measuring Brain Activity

Functional MRI (fMRI). The detection of changes in regional brain activity through their effects on 
blood flow and blood oxygenation (which, in turn, affect magnetic susceptibility and tissue contrast in 
magnetic resonance images). High spatial resolution (~mm3) but low temporal resolution 
(~seconds).

Electroencephalography (EEG). A technique used to measure neural activity by monitoring 
electrical signals from the brain, usually through scalp electrodes. EEG has good temporal 
resolution but relatively poor spatial resolution.

Magnetoencephalography (MEG). A method of measuring brain activity by detecting 
perturbations in the extracranial magnetic field that are generated by the electrical activity of 
neuronal populations. Like EEG, it has good temporal resolution but relatively poor spatial 
resolution. It has better resolution than EEG.

 Others…



STEP 1: Measuring Brain Activity

 Low spatial resolution (we have ~1011 neurons)

 In EEG and MEG, we only measure cortical activity 

 Overlapping of measurements

 Brain is not an isolated system

 High variability in the results

OBTAINING FUNCTIONAL BRAIN NETWORKS



STEP 1I: Time Series Analysis & Network Construction

 Several l inear and nonlinear 
techniques*:

Cross-correlation 
Wavelet coherence 
Synchronization Likelihood 
Generalized  Synchronization
Phase Synchronization
Mutual Information 
Granger Causality

 Once coordination is evaluated, we 
construct the functional network.

OBTAINING FUNCTIONAL BRAIN NETWORKS

* For a review: Pereda et al, Prog. Neurobiol, 77 (2005)



Defining the nodes is a complex task

It is difficult to evaluate causality and weights

Several kinds of synchronization exist at the same time

Where to put a threshold? (normalization, comparison,…)

High variability in the results

In EEG and MEG, we only measure cortical activity (missing interactions)

OBTAINING FUNCTIONAL BRAIN NETWORKS

STEP 1I: Time Series Analysis & Network Construction



A. Characterize the topology of brain functional networks and its 
influence on the processes occurring in them.

B. Identify differences between healthy brains and those with a 
certain pathology.

C. Develop models in order to explain the changes found in impaired 
functional networks.

STEP III: Network Analysis

OBTAINING FUNCTIONAL BRAIN NETWORKS



A. Characterize the topology of brain functional networks 
and its influence in the processes occurring in them: 

• Small-world topology -> High efficiency in information transmission?
• High clustering -> Good local resilience?
• Modularity -> Segregation & integration of information?

define the functional networks (rc ! 0:7). Our data were
also compared with values from a randomly rewired net-
work, where nodes keep their degree by permuting links
(i.e., the link connecting nodes i, jis permuted with that
connecting nodes k, l) [6] (see below). In this control the
degree of each node is maintained but all other correlations
(including clustering) are destroyed.

To test the generality of these findings the same analysis
was performed in seven subjects across three task condi-
tions. During data acquisition [7] subjects perform on-off
finger tapping with three different protocols. In one case
they are instructed verbally to start and stop tapping, in the
other one the start or stop cue is a small green or red dot in a
video screen, and in the last one the start or stop cue is the
entire screen turning green or red. The results are very
robust across subjects and task conditions. In particular, the
average of degree distribution (see Fig. 3) shows a clear
power law scaling decaying as p"k# ! k$!, with an expo-
nent close to 2. Although a precise fitting is arguably
difficult, we find that for rc % 0:6 ! % 2, for rc % 0:7 is
2.1, and for rc % 0:8 is 2.2. This power law, indicating that
the functional networks are scale-free, implies that there is
always a small but finite number of brain sites having broad
‘‘access’’ to most other brain regions. Those well con-
nected nodes are comparatively much more numerous in
these networks than in a randomly connected network.

As shown in the bottom panel of Fig. 3 the average
probability of finding a link between two nodes, separated
at least by a distance !, also decays as a power law. The
significance of the scaling with distance is unclear because
of the well-known extensive cortex folding, which makes
linear distance a dubious parameter.

The scale-free character remains unaltered even for
tasks engaging different brain regions. This is already
implicit in the aggregated data of Fig. 3 (top panel), but
we further corroborated this feature by analyzing two
radically different brain states: listening to music and

finger tapping. As shown in Fig. 4, although the topo-
graphic distribution of the functional networks is very
different for the two tasks, they have similar scaling be-
havior. For comparison, the standard activation map de-
rived with the generalized linear model [8] is also shown.

Now we turn to describe statistical properties of these
networks: path length and clustering. The path length (L)
between two voxels is the minimum number of links
necessary to connect both voxels. Clustering (C) is the
fraction of connections between the topological neighbors
of a voxel with respect to the maximum possible. If voxel i
has degree ki, then the maximum number of links between
the ki neighbors is ki"ki $ 1#=2. Thus, if Ei is the number
of links connecting the neighbors then the clustering of
voxel i, Ci % 2Ei=ki"ki $ 1#. The average clustering of a
network is given by C % 1=N

P
iCi, where N is the number

of voxels. Clustering was analyzed also with respect to
degree. The average clustering over voxels with the same
degree C"k# % 1=Nk

P
j%fijki%kgCj, where the sum runs over

the Nk voxels with degree k.
Table I summarizes the results for the networks analyzed

showing the average values (n % 22 datasets) for each
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extracted from seven subjects. Top Panel: Average degree dis-
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separated by a distance larger than ! (using rc % 0:6).
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FIG. 2 (color online). Degree distribution for three values of
the correlation threshold. The inset depicts the degree distribu-
tion for an equivalent randomly connected network.
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threshold (rc, first column) used to construct the networks.
Listed are N, C, L, the average degree hki, and !. The
clustering (Crand) and path length (Lrand) values of an
equivalent random network are also included for compari-
son. Note that as the threshold rc increases the total number
of nodes N decreases substantially, resulting by definition
in more correlated networks. As a result, the number of
nodes with at least one link decreases, and consequently
the hki value decreases as well. In all cases, the coefficient
C remains 4 orders of magnitude larger than Crand.
Networks randomized using the rewiring described by
Maslov et al. [6] also have clustering significantly smaller
than the raw data (the order of 10!2). This feature, together

with the similarity of path length of the original nets and
their randomized controls (L and Lrand), is indicative of a
small-world structure [2,3]. This property is robust as it
does not depend on parameter rc.

To our knowledge, this is the first report on the topo-
logical structure of a large-scale brain network. Previous
studies employing these statistical analyses have been
limited to the small data sets of C. Elegans [2], and two
neuroanatomical databases [9,10], the macaque visual cor-
tex [11] and the cat cortex [12] (see Table II). These studies
did not demonstrate scale-free features. Comparison with
the previous two reports indicate the following: although
clustering in the present study is smaller in absolute value,
it is still orders of magnitude larger than the random case
(10!1 vs 10!4), while in the previous reports the clustering
of the experimental data was just 1 order of magnitude
larger than the randomized controls in the best case.
Interestingly, the average connectivity hki in all cases is
of the same order, despite the huge differences in net-
works’ origins and sizes. Accordingly, this consistency
may reflect some constraint(s) inherent to network con-
struction. These quantitative features show that the human
brain network examined here has small-world properties, a
finding that was previously postulated [2,3].

Figure 5 illustrates the dependence of two important
features upon a voxel’s degree. The first is clustering,
found in many cases to scale as C"k# $ k!", an indication
of hierarchical organization [13,14]. We see, instead, a
relative independence of clustering from degree. The sec-
ond feature is that a highly connected node tends to con-
nect with other well connected nodes. As shown in the
bottom panel of Fig. 5, there is a positive correlation
between the degrees of adjacent vertices. This correlation,
also called assortative mixing, is not typical of biological
networks, but rather is distinctive of social networks [15].
Transitivity in correlations contributes to an artifactual
increase of the clustering coefficient, using partial directed
coherence or Granger causality [16] in the future should
clarify this.

In summary, we report statistical measures showing that
the functional correlations of the human brain form a scale-
free network with small-world properties and assortative
mixing. While some of these properties have been infor-
mally discussed, this work is the first quantitative descrip-
tion of these large-scale topological properties, as well as
the first report of an assortative biological network. The
scaling laws demonstrated here are robust across parame-

TABLE I. Average statistical properties of the brain functional
networks.

rc N C L hki ! Crand Lrand

0.6 31 503 0.14 11.4 13.41 2.0 4:3% 10!4 3.9
0.7 17 174 0.13 12.9 6.29 2.1 3:7% 10!4 5.3
0.8 4891 0.15 6.0 4.12 2.2 8:9% 10!4 6.0

TABLE II. Previously reported statistics of relatively smaller
networks. None of these networks is scale-free.

Network N C L hki ! Crand Lrand

C. Elegans 282 0.28 2.65 7.68 not applicable 0.025 2.1
Macaque VC 32 0.55 1.77 9.85 not applicable 0.318 1.5
Cat Cortex 65 0.54 1.87 17.48 not applicable 0.273 1.4

FIG. 4 (color). Comparison for two tasks: Panels (a) and (b)
correspond to a finger tapping task while (c) and (d) to listening
to music analyzed with our method or the standard FMRI linear
model. Colors in pictures of panels (a) and (c) code the number
of links detected with our method, and those in panels (b) and (d)
the activation map built with standard model [8]. The link
distributions (lower panel) show that the networks for both tasks
are scale-free.

PRL 94, 018102 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
14 JANUARY 2005

018102-3“…scale-free complex networks are known to 
show resistance to failure, facility of 
synchronization, and fast signal processing… ” 

Eguiluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian 
Scale-free brain functional networks. Phys Rev Lett 94: 
018102 (2005).
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B. Identify differences between healthy brains and those 
with a certain pathology: 

•  Quantify evolution towards random topologies.
•  Evaluate the loss of modularity in the networks.
•  Quantify the increase of energy expenses.

“…the distortion of the functional network is 
related to an evolution towards random 
structures, as indicated by a clustering 
coefficient and shortest path length that is closer 
to the random configuration… ” 

J.M. Buldú, R. Bajo, F. Maestú et al., "Reorganization of 
Functional Networks in Mild Cognitive Impairment", 
PLoS ONE 6(5): e19584 (2011)
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“…These results point to the hypothesis that 
i n the a lpha band the s t r uc tu ra l 
r e o r g a n i z a t i o n a f t e r r e c o v e r y 
corresponds to an increase of the 
strength in the most active links rather 
than in the rest of the edges… ” 

N.P. Castellanos, I. Leyva, J.M. Buldú, et al., “Principles of 
recovery from traumatic brain injury: reorganization of 
functional networks", Neuroimage, 55, 1189-1199 
(2011).

Author's personal copy

test changes.We find correlations with some of the general scores of the
WAIS-III test, specifically, a positive correlation between changes in
delta-based path length (L) and those in Performance IQ score (PIQ), and
a positive correlation between alpha-based normalized global-efficiency
(Ê) and Perceptual Organization Index (POI).

We note that the most altered parameters after TBI were in all
spectral cases the network strength S and the energetic cost EC. The
most pronounced changes are found in the absolute parameters of the
delta band, where statistical differences arise between pre and control
conditions but disappear in the post condition, unveiling the recovery

of the original network structure. In this band, all graph-based
parameters increase after TBI and reduce after therapy, approaching
to control reference. The only exception is the network shortest path
L, whose decrease is a consequence of the higher weights in the
connections between brain regions. The pathological increase of slow
rhythms is widely documented in the literature (Lewine et al., 1999;
Bartolomei et al., 2006a,b; Lewine et al., 2007; Bosma et al., 2008). It
seems that the increased delta-based connectivity in patients
following a TBI reflects a generalized physiological malfunctioning
which diminishes with cognitive recovery. A higher strength could

Fig. 5. Results obtained with numerical simulations of the targeted models T+ (light-blue circles) and T− (magenta circles). In all panels, the average parameters of the pre (red
circle), post (blue square) and control (black star) groups are plotted. Panels A–B: Evolution of delta band network parameters (light-blue dotted lines) of pre-therapy patients, with
the initial value before therapy in black dots: absolute values (A) and normalized values (B). Panels C–D: Evolution of alpha band parameters of pre-therapy patients (with the same
colour code): absolute values (C) and normalized values (D).

1196 N.P. Castellanos et al. / NeuroImage 55 (2011) 1189–1199
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of the original network structure. In this band, all graph-based
parameters increase after TBI and reduce after therapy, approaching
to control reference. The only exception is the network shortest path
L, whose decrease is a consequence of the higher weights in the
connections between brain regions. The pathological increase of slow
rhythms is widely documented in the literature (Lewine et al., 1999;
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Modeling Recovery after Traumatic Brain Injury: Shortest path L, 
Efficiency E, Energetic Cost EC and Clustering C. In all panels, the 
average parameters of the pre (red circle), post (blue square) and 
control (black star) groups are plotted. 

C. Develop models in order to explain the changes found in 
impaired functional networks: 

•  Identify what are the rules that determine the network distortion.

ANALYZING FUNCTIONAL BRAIN NETWORKS



We are accumulating errors from the previous two steps

Functional networks are not static

High variability in the results

Functional networks do not evaluate function 

But… above all… 

STEP III: Network Analysis

ANALYZING FUNCTIONAL BRAIN NETWORKS



… NETWORK MEASURES ARE COMMONLY 
MISINTERPRETED….

… SINCE WE NORMALLY FORGET THAT WE ARE 
ANALYZING THE BRAIN!

STEP III: Network Analysis

ANALYZING FUNCTIONAL BRAIN NETWORKS



(III-III)



FUNCTIONAL BRAIN NETWORKS: RISKS & CHALLENGES

When projecting the brain activity into a network, we are 
loosing a lot of information…

… and we may forget what is behind…



“…the analysis reported here looks at the 
synchronizability from different perspective 
and considers the synchronization properties 
of the brain networks rather than looking for a 
synchronous pattern in the original EEG signal…”  

EXAMPLE 1: Synchronizability

compared to other bands), where the synchronization properties
of the SZ networks were worse than those of controls.

4. Discussion

Recent advancements in statistical methods for analyzing
complex networks have influenced studies in brain network
organization. It has been shown that large-scale brain networks
constructed through recordings such as EEG, MEG, FMRI, and DTI
show attributes such as small-world property, modularity, and
scale-free degree distribution [1,36–40]. Graph theory analysis of
brain signals may give useful information on the mechanisms that
various brain disorders influence the brain structural and func-
tional organization. SZ is one of those disorders that has been
shown to alter a number of metrics of brain functional networks
[4,14–18].

The abnormality in the cotico-cortical connectivity has been
widely reported in SZ [37–40]. A necessary link between abnor-
mal circuitry and basic SZ symptoms is functional connectivity.
However, the changes in the anatomical and functional connec-
tivity in SZ are not in the same direction [41]. While the
anatomical connectivity assessed by DTI showed nearly uniform
decrease in SZ, the functional connectivity captured through fMRI
showed both increased (for some connections such as cingulate
and thalamus) and decreased (for some connections such as
middle temporal gyrus) regimes [41]. The application of state-
spaced based synchronization measure (S-estimator) on the data
used for the present study has revealed the coexistence of hypo-
and hyper-synchronization clusters in SZ [22]. The abnormal
functional connectivity and synchronization in SZ has also been
revealed by other studies (reviewed in Ref. [42]).

Following current views by ‘‘functional connectivity’’ we
understand cooperation between distributed neural assemblies
in the brain. Common ways of assessing the cooperation among
cortical networks are measuring their synchronization, correla-
tion, or coherency. Graph theory analysis is another method
providing a global picture of the functional connectivity and
cooperation among distributed brain regions [1,36–40]. In the
present study we applied the graph theory techniques on the
EEGs of SZ patients and compared their statistics with those of
normal control subjects. The observed wide-spread morphologi-
cal abnormalities in SZ such as enlarged ventricles (reviewed in

Ref. [43]), decreased cortical volume or thickness coupled with
increased cell packing density [44–46], and reduced clustering of
neurons [40], suggest the dysconnectivity model of SZ [47]. The
dysconnection hypothesis suggests anomalous structural integ-
rity and/or functional connectivity in SZ [47].

The association between anatomical and functional connectiv-
ity in the brain signifies a challenging issue in neuroscience
research. Segregation and integration in the brain have been
proposed as two potential principles linking these different
modes of brain connectivity [48]. The interplay of segregation
and integration in brain networks may cause information binding
resulting in the generation of information that is simultaneously
highly spread and highly mixed. These two principles, i.e. func-
tional segregation and integration of brain networks, play impor-
tant roles in information processing and proper functionality of
the brain. The modularity index is one of those measures
frequently used for characterizing the segregation properties of
complex networks and the brain networks have been shown to
have a modular structure [49,50]. We found the beta band as a
marker of abnormal modularity of brain networks in SZ patients.
The small-worldness is another measure revealing the functional
segregation and integration in the networks [51–53]. In our data,
this measure was significantly different in SZ patients as com-
pared to controls for a cluster of high valued thresholds in alpha
and beta bands. Previous fMRI studies in SZ patients and healthy
controls also showed disturbed topological properties in the brain
functional networks in patients, such as a lower strength and
degree of connectivity, a lower efficiency, a lower clustering
coefficient, and, hence, disrupted small-worldness [15]. Therefore,
abnormal small-worldness is associated with partial disorganiza-
tion of brain networks in SZ-affected brain.

Networks may undergo random and/or intentional failures in
their components. Many biological networks have shown resilient
behavior against random failures and a number of measures such
as assortativity and vulnerability are important in characterizing
such a resilient behavior. The pattern of changes for these
measures in SZ patients reveals the alternation in the resiliency
of brain functional networks in SZ.

Synchronization is believed to play an important role in
information processing in the brain at both macroscopic and
cellular levels [26,54]. Our results showing a pattern of significant
differences in the synchronization properties of brain networks in
SZ is of high importance, since a number of previous reports have

Fig. 7. Measure of synchronizability of brain functional networks in SZ patients compared to normal controls. The graphs show the mean values of the synchronizability
index, i.e., the eigenratio (the largest eigenvalue of the Laplacian matrix of the connection graph divided by its second smallest eigenvalue), as a function of threshold in SZ
patients and normal controls. Other designations are as Fig. 3.

M. Jalili, M.G. Knyazeva / Computers in Biology and Medicine 41 (2011) 1178–11861184

compared to other bands), where the synchronization properties
of the SZ networks were worse than those of controls.

4. Discussion

Recent advancements in statistical methods for analyzing
complex networks have influenced studies in brain network
organization. It has been shown that large-scale brain networks
constructed through recordings such as EEG, MEG, FMRI, and DTI
show attributes such as small-world property, modularity, and
scale-free degree distribution [1,36–40]. Graph theory analysis of
brain signals may give useful information on the mechanisms that
various brain disorders influence the brain structural and func-
tional organization. SZ is one of those disorders that has been
shown to alter a number of metrics of brain functional networks
[4,14–18].

The abnormality in the cotico-cortical connectivity has been
widely reported in SZ [37–40]. A necessary link between abnor-
mal circuitry and basic SZ symptoms is functional connectivity.
However, the changes in the anatomical and functional connec-
tivity in SZ are not in the same direction [41]. While the
anatomical connectivity assessed by DTI showed nearly uniform
decrease in SZ, the functional connectivity captured through fMRI
showed both increased (for some connections such as cingulate
and thalamus) and decreased (for some connections such as
middle temporal gyrus) regimes [41]. The application of state-
spaced based synchronization measure (S-estimator) on the data
used for the present study has revealed the coexistence of hypo-
and hyper-synchronization clusters in SZ [22]. The abnormal
functional connectivity and synchronization in SZ has also been
revealed by other studies (reviewed in Ref. [42]).

Following current views by ‘‘functional connectivity’’ we
understand cooperation between distributed neural assemblies
in the brain. Common ways of assessing the cooperation among
cortical networks are measuring their synchronization, correla-
tion, or coherency. Graph theory analysis is another method
providing a global picture of the functional connectivity and
cooperation among distributed brain regions [1,36–40]. In the
present study we applied the graph theory techniques on the
EEGs of SZ patients and compared their statistics with those of
normal control subjects. The observed wide-spread morphologi-
cal abnormalities in SZ such as enlarged ventricles (reviewed in

Ref. [43]), decreased cortical volume or thickness coupled with
increased cell packing density [44–46], and reduced clustering of
neurons [40], suggest the dysconnectivity model of SZ [47]. The
dysconnection hypothesis suggests anomalous structural integ-
rity and/or functional connectivity in SZ [47].

The association between anatomical and functional connectiv-
ity in the brain signifies a challenging issue in neuroscience
research. Segregation and integration in the brain have been
proposed as two potential principles linking these different
modes of brain connectivity [48]. The interplay of segregation
and integration in brain networks may cause information binding
resulting in the generation of information that is simultaneously
highly spread and highly mixed. These two principles, i.e. func-
tional segregation and integration of brain networks, play impor-
tant roles in information processing and proper functionality of
the brain. The modularity index is one of those measures
frequently used for characterizing the segregation properties of
complex networks and the brain networks have been shown to
have a modular structure [49,50]. We found the beta band as a
marker of abnormal modularity of brain networks in SZ patients.
The small-worldness is another measure revealing the functional
segregation and integration in the networks [51–53]. In our data,
this measure was significantly different in SZ patients as com-
pared to controls for a cluster of high valued thresholds in alpha
and beta bands. Previous fMRI studies in SZ patients and healthy
controls also showed disturbed topological properties in the brain
functional networks in patients, such as a lower strength and
degree of connectivity, a lower efficiency, a lower clustering
coefficient, and, hence, disrupted small-worldness [15]. Therefore,
abnormal small-worldness is associated with partial disorganiza-
tion of brain networks in SZ-affected brain.

Networks may undergo random and/or intentional failures in
their components. Many biological networks have shown resilient
behavior against random failures and a number of measures such
as assortativity and vulnerability are important in characterizing
such a resilient behavior. The pattern of changes for these
measures in SZ patients reveals the alternation in the resiliency
of brain functional networks in SZ.

Synchronization is believed to play an important role in
information processing in the brain at both macroscopic and
cellular levels [26,54]. Our results showing a pattern of significant
differences in the synchronization properties of brain networks in
SZ is of high importance, since a number of previous reports have

Fig. 7. Measure of synchronizability of brain functional networks in SZ patients compared to normal controls. The graphs show the mean values of the synchronizability
index, i.e., the eigenratio (the largest eigenvalue of the Laplacian matrix of the connection graph divided by its second smallest eigenvalue), as a function of threshold in SZ
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compared to other bands), where the synchronization properties
of the SZ networks were worse than those of controls.

4. Discussion

Recent advancements in statistical methods for analyzing
complex networks have influenced studies in brain network
organization. It has been shown that large-scale brain networks
constructed through recordings such as EEG, MEG, FMRI, and DTI
show attributes such as small-world property, modularity, and
scale-free degree distribution [1,36–40]. Graph theory analysis of
brain signals may give useful information on the mechanisms that
various brain disorders influence the brain structural and func-
tional organization. SZ is one of those disorders that has been
shown to alter a number of metrics of brain functional networks
[4,14–18].

The abnormality in the cotico-cortical connectivity has been
widely reported in SZ [37–40]. A necessary link between abnor-
mal circuitry and basic SZ symptoms is functional connectivity.
However, the changes in the anatomical and functional connec-
tivity in SZ are not in the same direction [41]. While the
anatomical connectivity assessed by DTI showed nearly uniform
decrease in SZ, the functional connectivity captured through fMRI
showed both increased (for some connections such as cingulate
and thalamus) and decreased (for some connections such as
middle temporal gyrus) regimes [41]. The application of state-
spaced based synchronization measure (S-estimator) on the data
used for the present study has revealed the coexistence of hypo-
and hyper-synchronization clusters in SZ [22]. The abnormal
functional connectivity and synchronization in SZ has also been
revealed by other studies (reviewed in Ref. [42]).

Following current views by ‘‘functional connectivity’’ we
understand cooperation between distributed neural assemblies
in the brain. Common ways of assessing the cooperation among
cortical networks are measuring their synchronization, correla-
tion, or coherency. Graph theory analysis is another method
providing a global picture of the functional connectivity and
cooperation among distributed brain regions [1,36–40]. In the
present study we applied the graph theory techniques on the
EEGs of SZ patients and compared their statistics with those of
normal control subjects. The observed wide-spread morphologi-
cal abnormalities in SZ such as enlarged ventricles (reviewed in

Ref. [43]), decreased cortical volume or thickness coupled with
increased cell packing density [44–46], and reduced clustering of
neurons [40], suggest the dysconnectivity model of SZ [47]. The
dysconnection hypothesis suggests anomalous structural integ-
rity and/or functional connectivity in SZ [47].

The association between anatomical and functional connectiv-
ity in the brain signifies a challenging issue in neuroscience
research. Segregation and integration in the brain have been
proposed as two potential principles linking these different
modes of brain connectivity [48]. The interplay of segregation
and integration in brain networks may cause information binding
resulting in the generation of information that is simultaneously
highly spread and highly mixed. These two principles, i.e. func-
tional segregation and integration of brain networks, play impor-
tant roles in information processing and proper functionality of
the brain. The modularity index is one of those measures
frequently used for characterizing the segregation properties of
complex networks and the brain networks have been shown to
have a modular structure [49,50]. We found the beta band as a
marker of abnormal modularity of brain networks in SZ patients.
The small-worldness is another measure revealing the functional
segregation and integration in the networks [51–53]. In our data,
this measure was significantly different in SZ patients as com-
pared to controls for a cluster of high valued thresholds in alpha
and beta bands. Previous fMRI studies in SZ patients and healthy
controls also showed disturbed topological properties in the brain
functional networks in patients, such as a lower strength and
degree of connectivity, a lower efficiency, a lower clustering
coefficient, and, hence, disrupted small-worldness [15]. Therefore,
abnormal small-worldness is associated with partial disorganiza-
tion of brain networks in SZ-affected brain.

Networks may undergo random and/or intentional failures in
their components. Many biological networks have shown resilient
behavior against random failures and a number of measures such
as assortativity and vulnerability are important in characterizing
such a resilient behavior. The pattern of changes for these
measures in SZ patients reveals the alternation in the resiliency
of brain functional networks in SZ.

Synchronization is believed to play an important role in
information processing in the brain at both macroscopic and
cellular levels [26,54]. Our results showing a pattern of significant
differences in the synchronization properties of brain networks in
SZ is of high importance, since a number of previous reports have

Fig. 7. Measure of synchronizability of brain functional networks in SZ patients compared to normal controls. The graphs show the mean values of the synchronizability
index, i.e., the eigenratio (the largest eigenvalue of the Laplacian matrix of the connection graph divided by its second smallest eigenvalue), as a function of threshold in SZ
patients and normal controls. Other designations are as Fig. 3.
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Synchronizability parameter for the 
control and patient (schizophrenia) 
group in the alpha band.

unpartial case; SZ networks showed decreased assortativity for a
cluster of high values of the threshold (Fig. 6). It is worth
mentioning that the unpartial correlation values between a pair
of sensors are often much larger than the corresponding partial
correlation value. The assortativity of brain networks was
increased for a cluster of low threshold values in alpha band for
unpartial and in beta band for partial case. We also calculated the
centrality measures (node and edge-betweenness centrality mea-
sures); however, SZ patients showed no significant differences as
compared to control in these centrality measures.

Finally, we tested the brain networks for their synchronization
properties. Fig. 7 shows the synchronizability index, i.e. the
eigenratio of the Laplacian matrix of the connection graph for
the SZ patients and controls. The networks based on partial
correlations have altered synchronizability only in the beta band
and for some high values of the threshold. However, for the
networks based on unpartial correlations, decreased synchroniz-
ability, i.e. increased eigenratio, is characteristic in the theta,
alpha, beta, and gamma bands. We found a cluster of intermedi-
ate threshold values (with a larger range in the alpha and gamma

Fig. 2. Whole-head difference maps of node-strengths in SZ patients vs. normal controls Group-averaged difference node-strength-maps (the strength of a node is defined
in Eq. (4)) for delta, theta, alpha, beta, and gamma bands. The difference maps show the significant (Po0.05, Wilcoxon’s ranksum test) between-group changes. Sensors
with strength values significantly higher in SZ patients than in controls are in red, whereas those with lower values are in blue. There are no significant differences in the
gray regions.

Fig. 3. Functional segregation and integration of brain functional networks in SZ patients with small-worldness index. The graphs show the mean values of the small-
worldness index as a function of the threshold in SZ patients and normal controls for different frequency bands, including the delta, theta, alpha, beta, and gamma. The
brain functional networks were based on partial and unpartial cross-correlation matrices. The blue dots represent the threshold values, where the value of the small-
worldness index is significantly different between SZ and normal groups (Po0.05, Wilcoxon’s ranksum test). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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a b s t r a c t

Schizophrenia is often considered as a dysconnection syndrome in which, abnormal interactions between
large-scale functional brain networks result in cognitive and perceptual deficits. In this article we apply
the graph theoretic measures to brain functional networks based on the resting EEGs of fourteen
schizophrenic patients in comparison with those of fourteen matched control subjects. The networks were
extracted from common-average-referenced EEG time-series through partial and unpartial cross-correla-
tion methods. Unpartial correlation detects functional connectivity based on direct and/or indirect links,
while partial correlation allows one to ignore indirect links. We quantified the network properties with the
graph metrics, including mall-worldness, vulnerability, modularity, assortativity, and synchronizability.
The schizophrenic patients showed method-specific and frequency-specific changes especially pro-
nounced for modularity, assortativity, and synchronizability measures. However, the differences between
schizophrenia patients and normal controls in terms of graph theory metrics were stronger for the
unpartial correlation method.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Techniques from graph theory are increasingly being applied to
model the functional and/or structural networks of the brain [1,2].
The brain networks can be studied at different levels ranging from
micro-scale containing a number of interconnected neurons to
macro-scale containing distributed brain regions. To construct the
large-scale networks, signals recorded from the brain via methods
such as electroencephalography (EEG), magnetocephalography
(MEG), functional magnetic resonance imaging (fMRI), or diffusion
tensor imaging (DTI), are used [3–7]. Often, binary (directed or
undirected) adjacency matrices are analyzed [1,2], where binary
links represent the presence or absence of a connection. The first
step in analyzing brain networks is to extract its structure from
the time-series. Possible methods are cross-correlation, coherence,
and synchronization likelihood [3–6]. The next step is to represent
it in a number of biologically meaningful measures. To this end,
measures such as characteristic path length, efficiency of connec-
tions, clustering coefficient, modularity, node degree and central-
ity, assortativity, and synchronizability are applied [7,8].

Large-scale brain networks, comprising anatomically or func-
tionally distinct regions and inter-regional pathways, exhibit
specific non-random patterns with the small-world and/or scale-

free properties [9,10]. Graph theoretical analysis on anatomical
and functional networks of the brain have revealed its economical
small-world structure characterized by high clustering (transitiv-
ity) and a short characteristic path length [11]. The brain func-
tional networks are cost-efficient in the sense that they provide
efficient parallel processing for low connection cost [12]. Brain
disorders influence the anatomical and functional brain networks.

Brain wirings may show abnormal patterns in schizophrenia
(SZ). SZ symptoms affect the patients by manifesting as auditory
hallucinations, paranoid or bizarre delusions and/or disorganized
speech and thinking in the context of significant social and/or
occupational dysfunction. About 1% of the population worldwide
suffers from different forms of SZ [13]. Additionally, another 3% of
the population has SZ-type personality disorders. SZ is the fourth
leading cause of disability in the developed counties for people at
the age of 15–44.

Schizophrenic patients show the abnormal patterns of brain
connectivity. MRI-based studies on a large group of SZ patients
revealed the reduced hierarchy of multimodal networks and
increased connection distance [14]. The disruption of effective
small-world architecture in many cortical regions, including
prefrontal, parietal, and temporal lobes was shown for functional
networks based on EEG [4] and fMRI [15]. Another fMRI study
showed reduced clustering and small-worldness in SZ, as well as
reduced probability of high-degree hubs, and increased robust-
ness to networks’ component failures [16]. Nonlinear correlation
analysis of EEG time-series also confirmed lower clustering and
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EXAMPLE 1: Synchronizability

from the same patient was low, and moreover, was a consis-
tent finding for all investigated seizures independently of the
anatomical location of their onset !cf. Figs. 4"a# and 4"b#$.

Typical time courses for !max"w#, !min"w#, and S"w# dur-
ing a seizure are shown in Fig. 3. Again we observed a
concave-like temporal evolution, with highest values of S
"i.e., lowest synchronizability# in the middle of the seizure,
followed by a decline "i.e., an increasing synchronizability#
already prior to the electrographic seizure end. Although this
behavior varied from patient to patient, it was a consistent
finding for all seizures !cf. Fig. 4"c#$. A comparison of Fig.
3"b# with Fig. 3"c# shows that S"w# is largely dominated by
the dynamics of the smallest nonvanishing eigenvalue
!min"w#, and its decrease in the middle of the seizure may
indicate a reorganization of the network into local
substructures.34,66 In this case, sparsely occurring links be-
tween local substructures can significantly affect !min.

67 The
relative change of largest eigenvalue !max"w# during the sei-
zure is less pronounced as compared to that of !min"w# and
resembles the time course of edge density ""w# !cf. Fig.
3"d#$. This similarity can be expected, at least to some ex-
tent, since edge density constitutes a lower bound for the
largest eigenvalue, !max#n" "cf. Ref. 25#. We could not,
however, observe such a clear cut influence of " on !min and
hence on S. As regards the degree distribution, we again
observed $d"w#%0.25n and dmin"w#=1 for all windows and
a temporal evolution of dmax"w# quite similar to the dynamics

of ""w# "data not shown# indicating that the degree distribu-
tion of the seizure network does not appear to determine its
synchronizability "cf. Ref. 68#.

Figure 4 summarizes the dynamics of functional network
properties and synchronizability for all 100 focal onset sei-
zures. Irrespective of the anatomical location of seizure ori-
gin, both the normalized cluster coefficient and the normal-
ized average shortest path length rapidly increased during the
first half of the seizures, then gradually decreased again. In-
terestingly, this temporal evolution was more pronounced for
the normalized cluster coefficient than for the normalized
average shortest path length. This indicates a relative shift
toward a less random functional topology of the seizure
state. Seizures are usually associated with massively syn-
chronized brain activity,65,69 and the significantly decreased
synchronizability of the underlying functional topology may
catalyze the emergence of a globally synchronized state of
the epileptic brain. Once such a state has been established,
synchronizability increases again, as observed in our data.

If the observed changes of functional topology were sim-
ply a consequence of enhanced volume conduction during
the seizures, i.e., due to direct propagation of distant sources
to remote sensors, the covariance of the EEG signals would
be expected to occur with zero time lag. In order to exclude
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FIG. 2. Evolving network properties during a seizure. Vertical broken lines
indicate times of onset Tons and end Tend of the seizure. "a# Exemplary time
course of the ratio C"w# /Cr"w#. The cluster coefficient C"w# of the epileptic
brain network is already slightly larger than the corresponding value of a
random network Cr"w# before seizure onset and attains a maximum devia-
tion approximately in the middle of the seizure. Already prior to seizure end,
the cluster coefficient attains values indicative of a random network, which
extends into the post-seizure period. A similar, though less pronounced,
temporal evolution can be observed for the average shortest path length "b#.
Edge density ""w# fluctuates around 0.3 during the first half of the seizure
and slowly increases during the second half, which extends into the post-
seizure period "c#. Profiles are smoothed using a four-point moving average.
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FIG. 3. Evolving synchronizability during a seizure. Exemplary time
courses of the largest eigenvalue !max"w# "a#, the smallest nonvanishing
eigenvalue !min"w# "b#, the eigenratio S"w# "c#, and of edge density ""w# "d#.
S"w# mainly follows the dynamics of !min"w# and shows a concave-like
temporal evolution similar to the ones observed for the statistical network
characteristics "cf. Fig. 2#. The dynamics of !max"w# is largely dominated by
""w#. Vertical broken lines indicate times of onset Tons and end Tend of the
seizure. Profiles are smoothed using a four-point moving average.
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We assess electrical brain dynamics before, during, and after 100 human epileptic seizures with
different anatomical onset locations by statistical and spectral properties of functionally defined
networks. We observe a concave-like temporal evolution of characteristic path length and cluster
coefficient indicative of a movement from a more random toward a more regular and then back
toward a more random functional topology. Surprisingly, synchronizability was significantly de-
creased during the seizure state but increased already prior to seizure end. Our findings underline
the high relevance of studying complex systems from the viewpoint of complex networks, which
may help to gain deeper insights into the complicated dynamics underlying epileptic seizures.
© 2008 American Institute of Physics. #DOI: 10.1063/1.2966112$

Epilepsy represents one of the most common neurological
disorders, second only to stroke. Patients live with a con-
siderable risk to sustain serious or even fatal injury dur-
ing seizures. In order to develop more efficient therapies,
the pathophysiology underlying epileptic seizures should
be better understood. In human epilepsy, however, the
exact mechanisms underlying seizure termination are still
as uncertain as are mechanisms underlying seizure initia-
tion and spreading. There is now growing evidence that
an improved understanding of seizure dynamics can be
achieved when considering epileptic seizures as network
phenomena. By applying graph-theoretical concepts, we
analyzed seizures on the EEG from a large patient group
and observed that a global increase of neuronal synchro-
nization prior to seizure end may be promoted by the
underlying functional topology of epileptic brain dynam-
ics. This may be considered as an emergent self-
regulatory mechanism for seizure termination, providing
clues as to how to efficiently control seizure networks.

I. INTRODUCTION

Complex networks can be observed in a wide variety of
natural and man-made systems,1–5 and an important general
problem is the relationship between the connection structure
and the dynamics of these networks. With graph-theoretical
approaches, networks may be characterized using graphs,
where nodes represent the elements of a complex system and
edges their interactions. In the study of brain dynamics,6,7 a
node may represent the dynamics of a circumscribed brain
region determined by electrophysiologic8–10 or imaging

techniques.11–13 Then two nodes are connected by an edge, or
direct path, if the strength of their interaction increases above
some threshold. Among other structural !or statistical" pa-
rameters, the average shortest path length L and the cluster
coefficient C are important characteristics of a graph.1,14 L is
the average fewest number of steps it takes to get from each
node to every other, and is thus an emergent property of a
graph indicating how compactly its nodes are interconnected.
C is the average probability that any pair of nodes is linked
to a third common node by a single edge, and thus describes
the tendency of its nodes to form local clusters. High values
of both L and C are found in regular graphs, in which neigh-
boring nodes are always interconnected yet it takes many
steps to get from one node to the majority of other nodes,
which are not close neighbors. At the other extreme, if the
nodes are instead interconnected completely at random, both
L and C will be low.

Recently, the emergence of collective dynamics in com-
plex networks has been intensively investigated in various
fields.15–31 It has been proposed, for example, that random,
small-world, and scale-free networks, due to their small net-
work distances, might support efficient and stable globally
synchronized dynamics.15,32,33 Synchronized dynamics, how-
ever, depends not only on statistical but also on spectral
properties of a network, which can be derived from the ei-
genvalue spectrum of the Laplacian matrix describing the
corresponding network.34 Although a number of studies re-
ported on a correlation between statistical network properties
!such as degree homogeneity, cluster coefficient, and degree
distribution" and network synchronizability, the exact rela-
tionship between the propensity for synchronization of a net-
work and its topology has not yet been fully clarified.
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Evolving synchronizability during an epileptic 
seizure. The synchronizability parameter increases, 
thus being the network LESS synchronizable.

FUNCTIONAL BRAIN NETWORKS: RISKS & CHALLENGES

“…we observed a concave-like temporal 
evolution, with highest values of S ︎i.e., 
lowest synchronizability ︎ in the middle of 
the seizure, followed by a decline ︎i.e., an 
increasing synchronizability︎…”

“…while the aforementioned interpretation 
WOULD indicate that the transient evolution 
in graph properties is an active process of 
the brain to abort a seizure, our findings could 
a l s o b e u n d e r s t o o d a s a p a s s i v e 
consequence of the seizure itself.”



The Master Stability Function* (MSF) is a tool to evaluate the stability of 
the synchronized state of diffusively coupled dynamical systems:

(the lower, the better)
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IV. STABILITY OF THE SYNCHRONIZED STATE IN
COMPLEX NETWORKS

In the previous section we have reviewed the synchro-
nization of various types of oscillators on complex net-
works. Another line of research on synchronization in
complex networks, developed in parallel to the studies of
synchronization in networks of phase oscillators, is the
investigation of the stability of the completely synchro-
nized state of populations of identical oscillators. The
seminal work by Barahona and Pecora (2002) initiated
this research line by analyzing the stability of synchro-
nization in SW networks using the Master Stability Func-
tion (MSF). The framework of MSF was developed earlier
for the study of synchronization of identical oscillators
on regular or other simple network configurations (Fink
et al., 2000; Pecora and Carroll, 1998). The extension
of the framework to complex topologies is natural and
important, because it relates the stability of the fully
synchronized state to the spectral properties of the un-
derlying structure. It provides with an objective crite-
rion to characterize the stability of the global synchro-
nization state, from now on called synchronizability of
networks independently of the particularities of the oscil-
lators. Relevant insights about the structure-dynamics
relationship has been obtained using this technique.

In this section, we review the MSF formalism and the
main results obtained so far. Note that the MSF ap-
proach assesses the linear stability of the completely syn-
chronized state, which is a necessary, but not a sufficient
condition for synchronization.

A. Master Stability Function formalism

To introduce the MSF formalism, we start with an ar-
bitrary connected network of coupled oscillators. The
assumption here for the stability analysis of synchroniza-
tion is that all the oscillators are identical, represented
by the state vector x in an m-dimensional space. The
equation of motion is described by the general form

ẋ = F(x). (51)

For simplicity, we consider time-continuous systems.
However, the formalism applies also to time-discrete
maps. We will also assume an identical output function
H(x) for all the oscillators, which generates the signal
from the state x and sends it to other oscillators in the
networks. In this representation, H is a vector function of
dimension m. For example, for the 3-dimensional system
x = (x, y, z), we can take H(x) = (x, 0, 0), which means
that the oscillators are coupled only through the compo-
nent x. H(x) can be any linear or nonlinear mapping of
the state vector x. The N oscillators, i = 1, . . . , N , are
coupled in a network specified by the adjacency matrix

A = (aij). We have

ẋi = F(xi) + σ
N

∑

i=1

aijwij [H(xj) − H(xi)] (52)

= F(xi) − σ
N

∑

j=1

GijH(xj), (53)

being wij the connection weights, i.e., the network is,
in general, weighted. The coupling matrix G is Gij =

−aijwij if i ̸= j and Gii =
∑N

j=1 aijwij . When the cou-
pling strength is uniform for all the connections (wij =
1), the network is unweighted, and the coupling matrix G
is just the usual Laplacian matrix L. By definition, the
coupling matrix G has zero row-sum. Thus there exists a
completely synchronized state in this network of identical
oscillators, i.e.,

x1(t) = x2(t) = . . . = xN (t) = s(t), (54)

which is a solution of Eq. (53). In this synchronized
state, s(t) also approaches the solution of Eq. (51), i.e.,
ṡ = F(s). This subspace in the state space of Eq. (53),
where all the oscillators evolve synchronously on the same
solution of the isolated oscillator F, is called the synchro-
nization manifold.

1. Linear Stability and Master Stability Function

When all the oscillators are initially set at the synchro-
nization manifold, they will remain synchronized. Now
the crucial question is whether the synchronization man-
ifold is stable in the presence of small perturbations δxi.
To assess the stability, we need to know whether the per-
turbations grow or decay in time. The linear evolution of
small δxi can be obtained by setting xi(t) = s(t)+δxi(t)
in Eq. (53), and expanding the functions F and H to first
order in a Taylor series, i.e., F(xi) = F(s) + DF(s)δxi

and H(xi) = H(s)+ DH(s)δxi. Here DF(s) and DH(s)
are the Jacobian matrices of F and H on s, respectively.
This expansion results in the following linear variational
equations for δxi,

δẋi = DF(s)δxi − σDH(s)
N

∑

j=1

Gijδxj . (55)

The variational equations display a block form, each
block (ij) having m components. The main idea here is
to project δx into the eigenspace spanned by the eigen-
vectors vi of the coupling matrix G. This projection
can operate in block form without affecting the structure
inside the blocks. By doing so, Eqs. (55) can be diago-
nalized into N decoupled eigenmodes in the block form

ξ̇l = [DF(s) − σλlDH(s)] ξl, l = 1, · · · , N, (56)

where ξl is the eigenmode associated with the eigenvalue
λl of G. The property λ1 = 0, associated to the eigen-
vector v1 = (1, 1, . . . , 1), follows naturally from the zero
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state, s(t) also approaches the solution of Eq. (51), i.e.,
ṡ = F(s). This subspace in the state space of Eq. (53),
where all the oscillators evolve synchronously on the same
solution of the isolated oscillator F, is called the synchro-
nization manifold.

1. Linear Stability and Master Stability Function

When all the oscillators are initially set at the synchro-
nization manifold, they will remain synchronized. Now
the crucial question is whether the synchronization man-
ifold is stable in the presence of small perturbations δxi.
To assess the stability, we need to know whether the per-
turbations grow or decay in time. The linear evolution of
small δxi can be obtained by setting xi(t) = s(t)+δxi(t)
in Eq. (53), and expanding the functions F and H to first
order in a Taylor series, i.e., F(xi) = F(s) + DF(s)δxi

and H(xi) = H(s)+ DH(s)δxi. Here DF(s) and DH(s)
are the Jacobian matrices of F and H on s, respectively.
This expansion results in the following linear variational
equations for δxi,

δẋi = DF(s)δxi − σDH(s)
N

∑

j=1

Gijδxj . (55)

The variational equations display a block form, each
block (ij) having m components. The main idea here is
to project δx into the eigenspace spanned by the eigen-
vectors vi of the coupling matrix G. This projection
can operate in block form without affecting the structure
inside the blocks. By doing so, Eqs. (55) can be diago-
nalized into N decoupled eigenmodes in the block form

ξ̇l = [DF(s) − σλlDH(s)] ξl, l = 1, · · · , N, (56)

where ξl is the eigenmode associated with the eigenvalue
λl of G. The property λ1 = 0, associated to the eigen-
vector v1 = (1, 1, . . . , 1), follows naturally from the zero
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ẋi = Fi(xi)� ⌦
N⌥

j=1

lijH(xj), i = 1, ..., N (S18)

where ⌦ is the coupling strength, H(x) is a vectorial output function and lij are the elements of the

Laplacian matrix L. For identical systems with the same coupling function H(x), the synchronized state
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Synchronization of Interconnected Networks: The Role of Connector Nodes
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In this Letter we identify the general rules that determine the synchronization properties of
interconnected networks. We study analytically, numerically, and experimentally how the degree of the
nodes through which two networks are connected influences the ability of the whole system to synchronize.
We show that connecting the high-degree (low-degree) nodes of each network turns out to be the most
(least) effective strategy to achieve synchronization. We find the functional relation between synchroniz-
ability and size for a given network of networks, and report the existence of the optimal connector link
weights for the different interconnection strategies. Finally, we perform an electronic experiment with two
coupled star networks and conclude that the analytical results are indeed valid in the presence of noise and
parameter mismatches.

DOI: 10.1103/PhysRevLett.112.248701 PACS numbers: 89.75.Hc, 89.75.Fb

Real networks often interact with other networks of
similar or different natures, forming what is known as
networks of networks (NONs) [1]. By considering a NON,
new perspectives in the understanding of classical network
phenomena, such as robustness [2–4], spreading [5,6], or
interaction between modules [7,8], can be obtained, some-
times with counterintuitive results. Similarly, while syn-
chronization in complex networks has been widely studied
[9], very few works have investigated synchronization in
NONs. Huang et al. [10] showed that when two networks
interact through random connections an exact balance
between the weight of internal links in a network and
the weight of links between networks results in greater
synchronization between the two networks. It has also been
shown that for multiple interacting networks, random
connections between distant networks increase the syn-
chronization of the complete NON [11].
Real networks exhibit high heterogeneity of the node

degree, with hubs (i.e., high-degree) and peripheral (i.e.,
low-degree) nodes [12]. What happens if connector links
between the networks, termed interlinks, are not randomly
created, but are instead chosen according to a particular
connection strategy? Carlson et al. [13] analyzed the
influence that low-degree nodes may have on the collective
dynamics of networks. Wang et al. [14] showed that when
two neuron clusters get connected, both the heterogeneity
of the network and the degree (i.e., number of connections)
of the connector nodes, (the nodes reached by interlinks)
influence the coherent behavior of the whole system. A
recent study demonstrated that the proper selection of

connector nodes has strong implications on structural
(centrality) and dynamical properties (spreading or pop-
ulation dynamics) occurring in a NON [15].
In this Letter, we study in a systematic way how

connector nodes between a group of networks with
heterogeneous topology affect synchronization and stabil-
ity of the resulting NON, and provide general rules for
electing in a nonrandom fashion the connector nodes that
maximize the synchronizability.
The stability of the synchronized state of a group of

coupled identical dynamical units is given by the corre-
sponding master stability function (MSF) [16]. For a given
dynamical system and coupling form, the stability of
synchronization depends on the second lowest eigenvalue
λ2, usually called the spectral gap or algebraic connectivity,
and the largest eigenvalue λN [17] of the network Laplacian
matrix L [18]. Dynamical systems can then be classified
according to their MSF [19]: (a) class I systems never
synchronize irrespective of their network topology, (b) class
II systems synchronize for values of λ2 above a threshold
given by the MSF, and (c) class III systems synchronize for
eigenratios r ¼ λN=λ2 lower than a threshold determined
by the MSF.
For isolated networks, the eigenratio r has been used as

an indicator of synchronizability both in theoretical [20,21]
and in real systems such as functional brain networks
[22,23]. For class III systems, obtaining a maximally
synchronizable system is tantamount to minimizing the
eigenratio r. Nishikawa et al. [24] showed that when the
network structure and the link weights were adequately
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ν  is related with σλi where σ  is the coupling 
strength and λi are the eigenvalues of the 
Laplacian matrix (G=S-M)  and λ1< λ2<…< λN.
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Fig. 5.1. Possible classes of master stability function for networked chaotic systems. In all cases !(" = 0) > 0 is the maximum Lyapunov exponent
of the single uncoupled system. The case I (II) corresponds to a monotonically increasing (decreasing) master stability function. Case III admits a
finite range of negative values for !(").

contains always the eigenvalue #1=0, whose corresponding eigenmode lies entirely within the synchronization manifold1
(in analogy with the properties of eigenvalues and eigenvectors of the Laplacian matrix already discussed in Section
2.1.6). The corresponding m conditional Lyapunov exponents equal those of the single uncoupled system ẋ = F(x),3
therefore no conditions on them will be imposed in all the remaining study.

For the sake of clarity, we will now distinguish the case of a symmetric coupling (a symmetric matrix C having a5
real spectrum) from the case of an asymmetric coupling configuration (for which, when diagonalization is allowed,
the spectrum can contain also pairs of complex conjugate eigenvalues). If C is symmetric, all its eigenvalues are real,7
and they can be ordered by size as 0 = #1 !#2 ! · · · !#N . Replacing $#i by " in Eq. (5.3), one obtain a parametric
m-dimensional equation:9

%̇ = K"% = [JF(xs) − "JH(xs)] % , (5.4)

from which one can extract the set of m conditional Lyapunov exponents at each value of the parameter ". The11
parametrical behavior of the largest of such exponents !(") is called Master Stability Function. From what said above,
the value of !(" = 0) will be either zero or larger than zero depending on whether ẋ = F(x) supports a periodic or13
chaotic dynamics.

For " > 0, three possible behaviors of !(") can be produced in the vicinity of the origin, defining three possible classes15
for the choice of the local function F(x) and of the coupling function H(x) : (I) !(") is a monotonically increasing
function, (II) !(") is a monotonically decreasing function that intercepts the abscissa at some "c "0, and (III) !(") is17
a V-shaped function admitting negative values in some range 0!"1 < "2. The three classes of master stability function
are sketched in Fig. 5.1.19

It is easy to understand that both cases (I) and (II) of Fig. 5.1 correspond to rather trivial situations. Indeed, case
(I) is tantamount to say that one never stabilizes synchronization in the network for that choice of F(x) and H(x)21
(for all $ values and for all possible eigenvalues’ distributions, the product $#i always leads to a positive maximum
Lyapunov exponent, and therefore the synchronization manifold S is always transversally unstable). The very opposite23
situation arises for functions F(x) and H(x) giving Master Stability curves as the one of the case II in Fig. 5.1. There,
the network admits always synchronization for a large enough coupling strength, regardless on the topology of the25
coupling configuration (given any eigenvalue distributions it is indeed sufficient to select $ > "c/#2 (where "c is the
intersection point of the master stability function with the " axis) to warrant that all transverse directions to S have27
associated negative Lyapunov exponents). In this latter case, once fixed ẋ = F(x) and H(x) (which fix the value of
"c) the effect of the connection topology is only to rescale (by means of #2) the threshold for the appearance of a29
synchronous state.

A non-trivial and interesting situation is case (III), which by the way corresponds to a very large class of functions31
F(x) and H(x) [433]. Here, !(") is negative in a finite parameter interval ("1, "2) (with "1 = 0 when F(x) supports
a periodic motion). The stability condition is then satisfied for some $ when #N/#2 < "2/"1. The network capability33
to give rise to a synchronized dynamics is fully accounted for by the ratio #N/#2 between the largest and the second
smallest eigenvalue in the spectrum of the coupling matrix: the more packed the eigenvalues of C are, the higher is the35
chance of having all Lyapunov exponents into the stability range for some $ [433].

[IIIIIIIIIIIIIIIIII]

* Pecora & Carroll, PRL 1998
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A) IS THE BRAIN A CLASS I/II/III SYSTEM?

B) DOES THE BRAIN SHOW COMPLETE SYNCHRONIZATION?

C) IS THE BRAIN COMPOSED OF IDENTICAL SYSTEMS?

D) ARE BRAIN REGIONS DIFFUSIVELY COUPLED?

STEP III: Network Analysis

ANALYZING FUNCTIONAL BRAIN NETWORKS



EXAMPLE 1I: Small-worldness 
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From Web of Science: (a) number of 
articles with a topic containing the 
terms “small-world” and “brain” and (b) 
number of citations.



Shortest-path L: corresponds to the lowest number of 
steps to reach a node from any other node of the network. 
The average shortest path is obtained by averaging the 
shortest paths between all pair of nodes of the network. 
Clustering coefficient C: quantifies the percentage of 
neighbours of a node that, in turn, are themselves 
neighbours. It is an indicator of the number of triangles in 
the network. In real networks, including the brain, C typically 
has much higher values than in an equivalent random 
network. 
Small-world (SW) network: network with high local 
clustering C and low average path length L, the latter scaling 
as L~ln(N). Many social, biological and technological 
networks are small-world. 
Watts-Strogatz model: theoretical model proposed to 
generate SW networks [4]. Starting from a regular network 
with an average number of links per node K and a clustering 
coefficient C=1, links are randomly rewired with probability 
p. For small values of p, C remains high, but L dramatically 
decreases, fulfilling a logarithmic dependence on the 
network size N and leading to a SW network.
Small-worldness is defined as the ratio between C and L 
normalized by the Lran and Cran of a set of equivalent 
random networks,  i.e., 𝜎 = (𝐶⁄𝐶𝑟𝑎𝑛)⁄(𝐿⁄𝐿𝑟𝑎𝑛).

EXAMPLE 1I: Small-worldness 
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EXAMPLE 1I: Small-worldness 

Brain recording devices and standard analyses used to construct 
networks from neural data can distort the extent to which a network 
may appear SW (defining the nodes, spurious links, thresholds, …).

Quantifying small-worldness parameter is non-trivial. (normalization)

The true Aquilles heel of the SW measure lies in interpreting its 
significance (meaning of shortest path, efficiency, transmission of 
information,…) 
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“… brain functional networks 
have economical small-wor ld 
properties—supporting efficient 
parallel information transfer at 
relatively low cost—” 

EXAMPLE 1I: Small-worldness 

Efficiency and Cost of Economical Brain
Functional Networks
Sophie Achard, Ed Bullmore*

Brain Mapping Unit, Department of Psychiatry, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom

Brain anatomical networks are sparse, complex, and have economical small-world properties. We investigated the
efficiency and cost of human brain functional networks measured using functional magnetic resonance imaging (fMRI)
in a factorial design: two groups of healthy old (N¼11; mean age¼66.5 years) and healthy young (N¼15; mean age¼
24.7 years) volunteers were each scanned twice in a no-task or ‘‘resting’’ state following placebo or a single dose of a
dopamine receptor antagonist (sulpiride 400 mg). Functional connectivity between 90 cortical and subcortical regions
was estimated by wavelet correlation analysis, in the frequency interval 0.06–0.11 Hz, and thresholded to construct
undirected graphs. These brain functional networks were small-world and economical in the sense of providing high
global and local efficiency of parallel information processing for low connection cost. Efficiency was reduced
disproportionately to cost in older people, and the detrimental effects of age on efficiency were localised to frontal and
temporal cortical and subcortical regions. Dopamine antagonism also impaired global and local efficiency of the
network, but this effect was differentially localised and did not interact with the effect of age. Brain functional
networks have economical small-world properties—supporting efficient parallel information transfer at relatively low
cost—which are differently impaired by normal aging and pharmacological blockade of dopamine transmission.

Citation: Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3(2): e17. doi:10.1371/journal.pcbi.0030017

Introduction

Small-World Brain Networks
Complex networks, from ecosystems to metabolic pathways,

occur in diverse fields of biological science [1,2]. Nervous
systems are complex networks at multiple scales of time and
space. It has been shown that brain anatomical and functional
networks are topologically intermediate between highly
regular lattices and random graphs [3,4]. In other words,
brain networks have characteristically small-world properties
of dense or clustered local connectivity with relatively few
long-range connections mediating a short path length
between any pair of neurons or regions in the network [5–7].
Small-world topology is an attractive model for brain network
organization because it could support both segregated and
distributed information processing [8], confer resilience
against pathological attack [9], and minimise wiring costs
[10]. From an evolutionary perspective, it can be argued that
small-world brain networks have been competitively selected
to solve the economic problem of maximising information
processing efficiency while minimising costs [6,7,11].

Hypotheses and Study Design
To test directly the hypothesis that small-world brain

functional networks have economical properties, we meas-
ured global and local efficiency of parallel information
processing, as a function of cost, in networks derived from
functional magnetic resonance imaging (fMRI) data. Eco-
nomical network organization has been previously defined in
terms of high efficiency E on the basis of low cost K [12,13].
Efficiency was defined as a function of the minimum path
length between regions; the most simple measure of cost was
defined as the number of edges or connections in the
network; both metrics were expressed in proportion to the
maximum efficiency and cost of a comparable network
comprising all possible connections between regions [12,13].

We predicted that brain functional networks would
generally demonstrate economical small-world properties
of high global and local efficiency for low cost. The
functional connectivity between each possible pair of N ¼
90 regional fMRI time series was first estimated in the low-
frequency interval 0.06–0.11 Hz using wavelet correlation
analysis [9]. The resulting wavelet correlation matrices (one
for each participant in the study) were then thresholded to
produce a set of undirected graphs representing the brain
functional network for each participant, and the efficiency
of each network was measured as a function of variable cost
in the range 0.01 " K " 0.5, which is equivalent to 1%–50%
of all possible edges in a (fully connected) network of N¼ 90
nodes.
We were also interested to test the subsidiary hypothesis

that the economical performance of small-world brain
functional networks would be adversely affected by normal
aging and by pharmacological blockade of dopamine neuro-
transmission. We therefore acquired and analysed fMRI data
from two age-defined groups of healthy volunteers—a young
group (N¼15; mean age¼24.7 years) and an older group (N¼
11; mean age ¼ 66.5 years)—each scanned in a no-task or
resting state on two separate occasions following oral
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values depending on the continuously variable strength of
functional association or the physical distance between
nodes). Here we will focus mostly on the simpler case of
unweighted graph analysis but we also rehearse the for-
mulation of efficiency metrics for weighted graphs and
report some additional results for analysis of brain networks
weighted by the strength of functional association between
regions. Third, path length provides a measure of the
network’s capacity for serial information transfer between
nodes, whereas global efficiency is a measure of the network’s
capacity for parallel information transfer between nodes via
multiple series of edges. Since there is strong prior evidence
that the brain supports massively parallel information
processing, it seems conceptually preferable to adopt
efficiency metrics of brain functional network topology.

Results

Brain Functional Networks Have Economical Small-World
Properties
Global and local efficiency of brain networks were

compared with the same parameters estimated in a random
graph and a regular lattice over a range of network costs. As
expected, efficiency monotonically increased as a function of
cost in all networks; the random graph had higher global
efficiency than the lattice; and the lattice had higher local
efficiency than the random graph, for costs in the range 0 !
K ! 0.5; see Figure 1.
The efficiency curves of the brain networks were inter-

mediate between these limiting cases: brain networks had
global efficiency greater than the lattice but less than the
random graph, and local efficiency greater than random but
less than lattice. This characteristically small-world behaviour
of the brain networks was most consistently seen for low-cost
to medium-cost networks, 0.05 ! K ! 0.34, comprising
between 5% and 34% of the 4,005 possible edges in a network
of 90 nodes.
Importantly, in this small-world cost regime, 0.05 ! K !

0.34, global and local efficiency of brain networks was greater
than cost. The difference between global efficiency and cost—
called cost efficiency—typically had a maximum positive
value in networks comprising about 850 edges or 21% of the
possible edges in the network, i.e., Max(Eglobal" K) when K ;
0.2; see Figure 2.

Age Impairs Economical Performance of Small-World Brain
Networks
Older people had reduced global and local efficiency of

brain functional networks compared with younger people, as
shown by the summary statistics on economical parameters of
sparse networks with K ; 0.1 (Table 1 and Figure 3) or by
inspection of the individual network efficiency estimates
(Figure 3). This detrimental effect of age on global efficiency
was statistically significant (ANOVA [analysis of variance], F¼
8.96, df ¼ 1,24, p ¼ 0.006), as was the effect of age on local
efficiency (ANOVA, F ¼ 4.41, df ¼ 1,24, p ¼ 0.05). Results of
post-hoc t-tests are also shown in Figure 3.
Age-related differences in efficiency were not unique to the

single threshold used to generate low-cost networks with K ;

Figure 1. Small-World Properties of Human Brain Functional Networks

Global and local efficiency (y-axis) as a function of cost (x-axis) for a
random graph, a regular lattice, and brain networks. For all networks,
global and local efficiency increase with cost; the random graph has
greater global efficiency than the lattice; the lattice has greater local
efficiency than the random graph. On average, over all subjects in each
group, young brain networks (black broken lines) and old brain networks
(red broken lines) have efficiency curves located between the limiting
cases of random and lattice topology. The small-world regime is
conservatively defined as the range of costs 0.34 ! K ! 0.5 for which
the global efficiency curve for the old networks is greater than the global
efficiency curve for the lattice.
doi:10.1371/journal.pcbi.0030017.g001

Table 1. Efficiency E and Cost K Parameters for Brain Networks

Parameter Macaque Cat C. elegans YP YS OP OS

(Standard Deviation)

K 0.18 0.38 0.06 0.1 0.1 0.1 0.l
Eglobal 0.52 0.69 0.46 0.37 0.35 0.33 0.30

(0.030) (0.033) (0.041) (0.064)
Elocal 0.70 0.83 0.47 0.62 0.59 0.59 0.54

(0.046) (0.043) (0.043) (0.073)
Max (Eglobal " K) 0.33 0.31 0.30 0.29

(0.022) (0.025) (0.030) (0.051)

Results for macaque, cat, and C. elegans are as reported by Latora and Marchiori (2001) for anatomically connected cortical and neuronal networks. Results for YP, YS, OP, and OS are
obtained by comparable analysis of functionally connected human cortical networks (N¼ 15 for young group; N¼ 11 for old group). The cost-efficiency parameter, Max (Eglobal" K), is the
maximum difference between global efficiency and cost over the small-world cost regime 0.05 , K , 0.34, and it is evaluated by calculating the difference over a range of thresholds
applied to the wavelet correlation measures of functional connectivity between regions in the human fMRI data; see Figure 2 for illustration.
doi:10.1371/journal.pcbi.0030017.t001

PLoS Computational Biology | www.ploscompbiol.org February 2007 | Volume 3 | Issue 2 | e170176

Economical Brain Networks

Small-World Properties of Human Brain Functional Networks.  Global and local 
efficiency (y-axis) as a function of cost (x-axis) for a random graph, a regular lattice, and 
brain networks. For all networks, global and local efficiency increase with cost; the 
random graph has greater global efficiency than the lattice; the lattice has greater local 
efficiency than the random graph. On average, over all subjects in each group, young brain 
networks (black broken lines) and old brain networks (red broken lines) have efficiency 
curves located between the limiting cases of random and lattice topology. The small-
world regime is conservatively defined as the range of costs 0.34<K<0.5 for 
which the global efficiency curve for the old networks is greater than the global 
efficiency curve for the lattice.  
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“Smaller diameter networks 
adjust more slowly, have shorter 
correlation lengths and cannot 
achieve the levels of non-local 
integration seen in those nested 
systems.”

“… show how the existence of 
(multiple) paths allows for the 
more rap id d iss ipat ion of 
inhomogeneity. Multiple paths are 
thus central for both information-
processing and the time scales of 
coordination.” 

Dynamics and processing in finite
self-similar networks

Simon DeDeo3,* and David C. Krakauer1,2,3

1Department of Genetics, and 2Wisconsin Institute for Discovery, University of Wisconsin,
Madison, WI 53706, USA

3Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

A common feature of biological networks is the geometrical property of self-similarity.
Molecular regulatory networks through to circulatory systems, nervous systems, social sys-
tems and ecological trophic networks show self-similar connectivity at multiple scales. We
analyse the relationship between topology and signalling in contrasting classes of such topol-
ogies. We find that networks differ in their ability to contain or propagate signals between
arbitrary nodes in a network depending on whether they possess branching or loop-like fea-
tures. Networks also differ in how they respond to noise, such that one allows for greater
integration at high noise, and this performance is reversed at low noise. Surprisingly,
small-world topologies, with diameters logarithmic in system size, have slower dynamical
time scales, and may be less integrated (more modular) than networks with longer path
lengths. All of these phenomena are essentially mesoscopic, vanishing in the infinite limit
but producing strong effects at sizes and time scales relevant to biology.

Keywords: information-processing; phase transition; renormalization;
computation

1. INTRODUCTION

Biological networks exhibit a wide range of structural
features at multiple spatial scales [1–3]. These include
local circuitry reflecting the logic of regulation among
small numbers of elements [4], and motifs of statisti-
cally over-represented patterns within larger networks
of interactions [5], through to macroscopic properties of
complete networks, including the description of the
degree distributions and the large-scale geometrical fea-
tures of networks [2]. Among the most interesting
geometrical properties of biological networks is the prop-
erty of self-similarity or scale invariance [6,7], in which
characteristic topological features are present at all
scales from the local organization of individual nodes,
through to aggregations at the largest network scales.

For genetic and proteomic regulatory networks, as
well as social networks and a variety of distribution net-
works, including respiratory and circulatory networks,
the mechanisms generating self-similar structures have
been well explored [8–17]. A growing body of empirical
work investigates self-similar network structures, includ-
ing motif overabundances at different coarse-grained
scales. The topology of networks under coarse-graining,
or agglomeration, of nodes has formed a central focus in
both empirical [6] and theoretical [18–24] works. How-
ever, the functional implications of these topological
properties remain poorly understood.

Functional explanations of self-similarity tend to fall
into one of three broad classes. Robustness explanations

consider the connectivity properties under perturbation,
and contrast, for example, scale-free and exponential
degree distributions [25–27]. Adaptive optimization
theories argue that self-similarity provides an efficient
means of provisioning densely distributed resource sinks
with a minimum of cable cost [28,29]. Hence, networks
such as the circulatory system can efficiently provide
energy-rich compounds to the cells of the body, and
neural networks can efficiently integrate information
from a large variety of sensory inputs [30,31].

Finally, neutral theories suggest that self-similarity
is not in itself an optimized property of biological net-
works, but a consequence of highly conserved
developmental processes with local rules of assembly
that generate characteristic macroscopic properties
[32–35]. Mathematical studies have shown how motif
abundances can be the consequences of constraints on
large-scale topological properties [36]; conversely,
large-scale topological features might arise from con-
straints on a single local property [37]. In either case,
the connection between the large- and small-scale prop-
erties of a network may have emerged first without
functional meaning.

In this contribution, we investigate the functional
implications of self-similar assembly, as the nodes of a
system adjust their internal states in response to their
neighbours and in the presence of environmental
noise. We find a tension between the small-world prop-
erties of a network and the rapidity of the transition to
an ordered phase. For a fixed number of vertices and
links, self-similar networks with small-world proper-
ties tend to show more gradual transitions, both*Author for correspondence (simon@santafe.edu).
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Small but slow world: How network topology and burstiness slow down spreading

M. Karsai,1,* M. Kivelä,1 R. K. Pan,1 K. Kaski,1 J. Kertész,1,2 A.-L. Barabási,2,3 and J. Saramäki1
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While communication networks show the small-world property of short paths, the spreading dynamics in them
turns out slow. Here, the time evolution of information propagation is followed through communication networks
by using empirical data on contact sequences and the susceptible-infected model. Introducing null models where
event sequences are appropriately shuffled, we are able to distinguish between the contributions of different
impeding effects. The slowing down of spreading is found to be caused mainly by weight-topology correlations
and the bursty activity patterns of individuals.

DOI: 10.1103/PhysRevE.83.025102 PACS number(s): 89.75.Hc, 02.50.Ey, 05.40.−a, 05.45.Tp

Most complex physical, biological, and social networks
show small-world property, where the average shortest path
length is strikingly short compared to the network size [1].
This means that there is at least one short path between
any two nodes that should give rise to rapid transmission
of influence. However, dynamic phenomena on networks
[2], such as spreading of pandemics, electronic viruses,
and information, follow their own pathways, which are not
necessarily topologically efficient [3,4]. Spreading on real
small-world networks turns out to be surprisingly slow, e.g.,
new infections are reported years after the emergence of a new
computer virus or the introduction of an antivirus [5]. Here we
aim at resolving this puzzle. For issues such as strategies and
timings of vaccination, improvement of information diffusion,
and the slow decay of activity of computer viruses, it is crucial
to understand the role of the underlying network and temporal
activity patterns in the spreading dynamics.

The dynamics of spreading is commonly studied with SI,
SIR, or SIS models [6] on static networks or in mean field,
where the letters in the acronyms refer to the different states
(Susceptible, Infectious, or Recovered) of individuals and the
dynamics is defined by changes of these states due to the
influence of others. These models lead to rapid, exponential
growth of the epidemic at early stages of spreading, while
the dynamics at later stages depend on the model and network.
For the SI process, the infection spreads until the whole system
reachable from initial conditions is infected, with exponential
slowing down toward the end. For the SIR process, competing
effects set in and the spreading may remain local or percolate
through the system while the SIS process has more complex
dynamics.

While these results capture some of the qualitative features
of real-world processes, the heterogeneity of the systems limits
their applicability. First, the interactions of real-world systems
span networks by broad distributions of node connections and
mesoscopic features in the form of communities with dense
internal and sparse external connectivity. Second, interaction
intensities vary and are closely coupled to network topology.

*marton.karsai@aalto.fi

Third, the daily cycle and bursty character of interaction events
give rise to important temporal inhomogeneities.

Some aspects of these features have already been studied.
For static networks, it is known that spatial structure has
an effect on epidemics (see, e.g., [7,8]), and community
structure slows down information diffusion due to trap-
ping in dense regions [9–11]. There is an intimate relation
between inhomogeneous link weights and network topology
in social and communication networks [12,13]: Links within
communities are strong, while links between them are weak.
This Granovetter-type structure enhances the trapping effect
of the communities, leading to additional slowing down of
spreading [13].

The bursty nature of human interactions has received
particular interest and it has turned out that the corresponding
activity patterns are usually non-Poissonian, often power-law
correlated (see [14]). The effect of bursty dynamics on
spreading has been approached using empirical data together
with approximate analytical models [15,16]. In Ref. [15],
computer worm spreading was studied using email logs and the
SI model, and it was found that the non-Poissonian interevent
time distribution leads to slow spreading in the late stages of the
process. Slow spreading was also observed in Ref. [16], where
an internet viral marketing experiment was carried out and
modeled as a branching process in the nonpercolating regime.
It was also argued that on the contrary, in the percolating
regime, broad interevent time distributions should give rise to
faster spreading.

In this Rapid Communication, we study the problem of
spreading dynamics in its full complexity, using time-stamped
event data on human communication networks and the SI
model. We apply null models on these event sequences and
show that spreading slows down due to simultaneous effects
of structural and temporal correlations.

For the event sequences, we have used the following data:
a) Mobile phone data from a European operator (national
market share ∼20%) with ∼3.25 × 108 time-stamped voice
call records over a period of 120 d. We have only retained
links with bidirectional calls within the largest connected
component (LCC) of the aggregated call network (MCN),
yielding N = 4 572 735 nodes, L = 9 055 944 links, and
306 218 217 calls. We define link weights as the number of

025102-11539-3755/2011/83(2)/025102(4) ©2011 American Physical Society

“While communication networks show 
the small-world property of short 
paths, the spreading dynamics in them 
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through communication networks by using 
empirical data on contact sequences and 
the susceptible-infected model.” 

“I investigated the effects of network 
structure on diffusion … The 
behavior spread farther and faster 
across clustered-lattice networks 
than across correspond ing 
random networks.”

G. Hunt, A. Miller, T. Olszewski, and P. Wagner for their
suggestions; M. Kosnik and A. Miller for reviews; and
M. Foote for verifying that my subsampling algorithms
were programmed correctly. Numerous contributors to the
Paleobiology Database made this study possible, and
I am particularly grateful to M. Clapham, A. Hendy, and
W. Kiessling for recent contributions. Research described

here was funded by donations from anonymous private
individuals having no connection to it. This is Paleobiology
Database publication 117.
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The Spread of Behavior in an Online
Social Network Experiment
Damon Centola

How do social networks affect the spread of behavior? A popular hypothesis states that networks
with many clustered ties and a high degree of separation will be less effective for behavioral
diffusion than networks in which locally redundant ties are rewired to provide shortcuts across the
social space. A competing hypothesis argues that when behaviors require social reinforcement, a
network with more clustering may be more advantageous, even if the network as a whole has a
larger diameter. I investigated the effects of network structure on diffusion by studying the spread
of health behavior through artificially structured online communities. Individual adoption was
much more likely when participants received social reinforcement from multiple neighbors
in the social network. The behavior spread farther and faster across clustered-lattice networks than
across corresponding random networks.

Many behaviors spread through social
contact (1–3). As a result, the network
structure of who is connected to whom

can critically affect the extent to which a behav-
ior diffuses across a population (2–8). There are
two competing hypotheses about how network
structure affects diffusion. The “strength of weak
ties” hypothesis predicts that networks with
many “long ties” (e.g., “small-world” topologies)
will spread a social behavior farther and more
quickly than a network in which ties are highly
clustered (4–6). This hypothesis treats the spread
of behavior as a simple contagion, such as dis-
ease or information: A single contact with an
“infected” individual is usually sufficient to trans-
mit the behavior (2). The power of long ties is
that they reduce the redundancy of the diffusion
process by connecting people whose friends do
not know each other, thereby allowing a behavior
to rapidly spread to other areas of the network
(3–5). The ideal case for this lack of redundancy
is a “random” network, in which, in expectation
for a large population, each of an individual’s
ties reaches out to different neighborhoods (4, 9).
The other hypothesis states that, unlike disease,
social behavior is a complex contagion: People
usually require contact with multiple sources of
“infection” before being convinced to adopt a be-
havior (2). This hypothesis predicts that because
clustered networks have more redundant ties,
which provide social reinforcement for adoption,
they will better promote the diffusion of behav-
iors across large populations (2, 7). Despite the
scientific (6, 7, 10) and practical (1, 2, 11) im-
portance of understanding the spread of behavior

through social networks, an empirical test of
these predictions has not been possible, because
it requires the ability to independently vary the
topological structure of a social network (12).

I tested the effects of network structure on
diffusion using a controlled experimental approach.
I studied the spread of a health behavior through
a network-embedded population by creating an
Internet-based health community, containing 1528
participants recruited from health-interest World
Wide Web sites (13).

Each participant created an anonymous online
profile, including an avatar, a user name, and a set
of health interests. They were then matched with
other participants in the study—referred to as
“health buddies”—as members of an online health
community. Participants could not contact their
health buddies directly, but they could receive
emails from the study informing them of their
health buddies’ activities. To preserve anonymity
and to prevent people from trying to identify

friends whomay have also signed up for the study
(or from trying to contact health buddies outside
the context of the experiment), I blinded the
identifiers that people used. Participants made
decisions about whether or not to adopt a health
behavior based on the adoption patterns of their
health buddies. The health behavior used for this
study was the decision to register for an Internet-
based health forum, which offered access and rat-
ing tools for online health resources (13).

The health forum was not known (or acces-
sible) to anyone except participants in the ex-
periment. This ensured that the only sources of
encouragement that participants had to join the
forumwere the signals that they received from their
health buddies. The forum was populated with ini-
tial ratings to provide content for the early adopters.
However, all subsequent content was contributed
by the participants who joined the forum.

Participants arriving to the study were randomly
assigned to one of two experimental conditions—
a clustered-lattice network and a random network—
that were distinguished only by the topological
structure of the social networks (Fig. 1). In the
clustered-lattice–network condition, there was a
high level of clustering (5, 6, 13) created by re-
dundant ties that linked each node’s neighbors to
one another. The random network condition was
created by rewiring the clustered-lattice network
via a permutation algorithm based on the small-
world–network model (6, 13–15). This ensured
that each node maintained the exact same number
of neighbors as in the clustered network (that is, a
homogeneous degree distribution), while simulta-
neously reducing clustering in the network and
eliminating redundant ties within and between
neighborhoods (4, 6, 14).

The network topologies were created before
the participants arrived, and the participants could

Sloan School of Management, Massachusetts Institute of
Technology, Cambridge, MA 02142, USA. E-mail: dcentola@
mit.edu

Fig. 1. Randomization of
participants to clustered-
lattice and random-
network conditions in a
single trial of this study
(N = 128, Z = 6). In
each condition, the black
node shows the focal
node of a neighborhood
to which an individual is
being assigned, and the
red nodes correspond to
that individual’s neigh-
bors in the network. In
the clustered-lattice net-
work, the red nodes share
neighbors with each other, whereas in the random network they do not. White nodes indicate individuals who
are not connected to the focal node.
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periment. This ensured that the only sources of
encouragement that participants had to join the
forumwere the signals that they received from their
health buddies. The forum was populated with ini-
tial ratings to provide content for the early adopters.
However, all subsequent content was contributed
by the participants who joined the forum.
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assigned to one of two experimental conditions—
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that were distinguished only by the topological
structure of the social networks (Fig. 1). In the
clustered-lattice–network condition, there was a
high level of clustering (5, 6, 13) created by re-
dundant ties that linked each node’s neighbors to
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created by rewiring the clustered-lattice network
via a permutation algorithm based on the small-
world–network model (6, 13–15). This ensured
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FUNCTIONAL BRAIN NETWORKS: RISKS & CHALLENGES

EXAMPLE 1I: Small-worldness 



The brain is not a usual network: Not a single scale…. not a single 
dimension! (topology vs. space vs. time)… not static … nodes are not 
equivalent!

A possible solution: A network-based reduction of the problem may be too 
strict. We should include as many biological information as possible in the network.

FUNCTIONAL BRAIN NETWORKS: RISKS & CHALLENGES

dynamics?
time?
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Neuroscientists often assume that the brain is organized as a 
small-world network, a structure where few connecting links 
drastically shorten the distance between closely knit groups 
of nodes. However, the experimental quantification of the 
small-world structure and its interpretation in terms of 
information processing are so fraught with technical, 
methodological and theoretical difficulties as to question its 
usefulness as a descriptor of global brain organization. 

Describing global brain organization 
Characterizing the brain's anatomy and dynamics organization 
and how this enables it to carry out complex tasks is 
highly non trivial. While there has long been strong evidence 
that brain anatomy can be thought of as a complex network at 
micro as well as macro scales, the use of functional imaging 
techniques has recently shown that brain dynamics also has a 
network-like structure. 

Network Science allows neuroscientists to quantify the 
general organizing principles of brain structure and dynamics 
at all scales in terms of highly reproducible, often universal 
properties shared by prima facie very different systems [1]. A 
network representation also helps addressing classical but 
complex issues such as structure-function relationships in a 
straightforward and elegant fashion, and determining how 
efficiently a system transfers information or how vulnerable it 
is to damage [2,3].  

One of the most studied global network properties is the 
small-world (SW) structure [4]. In a SW network, nodes tend 
to form triangles, making the network locally robust. At the 
same time, the distance between any pair of nodes is much 
smaller than the network size and increases slowly 
(logarithmically) with the number of nodes in the network. 
This combination of properties has been suggested to 
represent a solution to the trade-off between module 
independence and specialization, and has been associated 
with optimal communication efficiency, high-speed and 
reliability of information transmission [5]. 

In neuroscience, SW structure was reported for healthy 
brain anatomical and functional networks, and deviations 
from this global organization in various pathologies [6,7]. 
While there has been some imprecision in the use of the 
definition of SW network [Box 1], these findings gave the 
neuroscience community hope that the SW could constitute a 
functionally meaningful universal feature of global brain 
organization.  

In spite of this preliminary evidence, whether or not the 
brain is indeed a SW network is still very much an open 
question [8]. But what chance have system neuroscientists got 

to provide a conclusive answer to this question? In a typical 
experimental setting, neuroscientists record brain images, 
define nodes and links, construct a network, extract its 
topological properties, to finally assess their statistical 
significance and their possible functional meaning. Behind 
each of these stages, particularly when studying functional 
brain networks, lurk fundamental technical, methodological or 
theoretical stumbling blocks that render the SW construct 
problematic. 

Glossary 
___________________________________________________________ 
Network: collection of N nodes connected by M links. 
Nodes represent the subparts of a system (e.g., cities, 
neurons). Links capture the interplay between nodes and 
can be either tangible (e.g., tracts between cortical 
regions, roads between cities) or intangible (e.g., 
friendship between people).  
Network Science: multidisciplinary field analysing the 
structure and dynamics of networks (social, biological or 
technological) with methodological tools borrowed from 
graph theory, statistical physics and nonlinear dynamics.  
Shortest-path L: corresponds to the lowest number of 
steps to reach a node from any other node of the network. 
The average shortest path is obtained by averaging the 
shortest paths between all pair of nodes of the network. 
Clustering coefficient C: quantifies the percentage of 
neighbours of a node that, in turn, are themselves 
neighbours. It is an indicator of the number of triangles in 
the network. In real networks, including the brain, C 
typically has much higher values than in an equivalent 
random network. 
Small-world (SW) network: network with high local 
clustering C and low average path length L, the latter 
scaling as L~ln(N). Many social, biological and 
technological networks are small-world. 
Watts-Strogatz model: theoretical model proposed to 
generate SW networks [4]. Starting from a regular 
network with an average number of links per node K and 
a clustering coefficient C=1, links are randomly rewired 
with probability p. For small values of p, C remains high, 
but L dramatically decreases, fulfilling a logarithmic 
dependence on the network size N and leading to a SW 
network. 
Functional networks: are built using the statistical 
interdependencies between the dynamics of all pairs of 
nodes belonging to a network.  
 
 

 

Manuscript
Click here to download Manuscript: SW 17 06 2015 def.docx 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

rstb.royalsocietypublishing.org

Introduction
Cite this article: Papo D, Buldú JM, Boccaletti
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1. Brain networks: from anatomy to topology
The first clear, recognizably scientific representations of the human brain were the
drawings and engravings of the Renaissance anatomists. These prototype anatom-
ical maps of brain organization demonstrated a physical structure somewhat
walnut-like in appearance: an approximately symmetrical pair of deeply wrinkled
lobes connected to each other by a central bridge of tissue. More extensive
and detailed dissection of the human brain revealed that its convoluted surface
is thinly covered (less than 3 mm) by a layer of so-called grey matter—
the cortex; and that anatomically separated regions of cortical grey matter are
extensively interconnected to each other (and to subcortical grey matter nuclei)
by axonal projections that are bundled together to form macroscopically visi-
ble white matter tracts, including the major white matter tract linking the two
cerebral hemispheres.

Even these few fundamental observations on the anatomical organization of
the brain indicate that it must be considered as a large-scale (more than 1 mm) net-
work of grey matter regions connected by white matter tracts. It has also been
increasingly well understood, since the first microscopic neuro-anatomists of
the nineteenth century, that there is an intricate pattern of synaptic connections
between locally neighbouring neurons in the same cortical column or area. So
there has long been strong evidence that the brain has a qualitatively complex
network organization at micro (less than 1 mm) as well as macro scales.

At a microscopic scale, we know that drawing a complete network diagram of
the human brain would be a task of currently unmanageable scale and technical
difficulty. The brain comprises an estimated 1011 neurons (105 mm– 3) and axonal
projections or ‘wires’ connecting neurons have an estimated total length of 105 km
(5 km mm23). These large numbers are naturally magnified by focusing on the
connections between neurons: the association matrix of pair-wise synaptic
weights between neurons will be of the order of 10100. To these challenges of
scale must be added the technical difficulties of accurately measuring all the
synaptic connections between densely packed neurons (glia and other cells) in
even a small block of cortical tissue post-mortem. For the foreseeable future, it
seems likely that our best data on complete micro networks will continue to
come from smaller nervous systems such as Caenorhabditis elegans.

However, there is a more tractable opportunity to map the large-scale network
organization of the human brain at the macroscopic scale provided by neuroima-
ging techniques such as magnetic resonance imaging (MRI). MRI has sufficient
spatial resolution (approx. 1 mm) to measure structural properties (such as
cortical thickness) and functional properties (such as low-frequency endogenous
oscillations) in hundreds of cortical areas and major subcortical nuclei. Diffusion-
weighted MRI (DW-MRI) can also be used to measure white matter tracts
between grey matter regions. From these data, we can estimate measures of ana-
tomical or functional connectivity between regions. For example, the probability of
a white matter connection between two regions can be inferred by various
methods for DW-MRI tractography; and functional connectivity between a pair
of regions can be simply estimated as the correlation between the two functional
MRI (fMRI) time series measured simultaneously, while the subject lies quietly ‘at
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Many physical and biological systems can be studied using complex network
theory, a new statistical physics understanding of graph theory. The recent
application of complex network theory to the study of functional brain
networks has generated great enthusiasm as it allows addressing hitherto
non-standard issues in the field, such as efficiency of brain functioning or
vulnerability to damage. However, in spite of its high degree of generality,
the theory was originally designed to describe systems profoundly different
from the brain. We discuss some important caveats in the wholesale application
of existing tools and concepts to a field they were not originally designed to
describe. At the same time, we argue that complex network theory has not
yet been taken full advantage of, as many of its important aspects are yet to
make their appearance in the neuroscience literature. Finally, we propose
that, rather than simply borrowing from an existing theory, functional neural
networks can inspire a fundamental reformulation of complex network
theory, to account for its exquisitely complex functioning mode.

1. Introduction
Characterizing how the brain organizes its activity to carry out complex tasks is
highly non-trivial. While early neuroimaging and electrophysiological studies
typically aimed at identifying patches of task-specific activation or local time-
varying patterns of activity, there has now been consensus that task-related
brain activity has a temporally multiscale, spatially extended character, as net-
works of coordinated brain areas are continuously formed and destroyed [1,2].

Up until recently, though, the emphasis of functional brain activity studies
has been on the identity of the particular nodes forming these networks, and
on the characterization of connectivity metrics between them [3], the underlying
covert hypothesis being that each node, constituting a coarse-grained represen-
tation of a given brain region, provides a unique contribution to the whole.
Thus, functional neuroimaging initially integrated the two basic ingredients of
early neuropsychology: localization of cognitive function into specialized brain
modules and the role of connection fibres in the integration of various modules.

Lately, brain structure and function have started being investigated using
complex network theory, a statistical mechanics understanding of an old
branch of pure mathematics: graph theory [4]. Graph theory allows endowing
networks with a great number of quantitative properties [5,6], thus vastly
enriching the set of objective descriptors of brain structure and function at
neuroscientists’ disposal.

However, in spite of a great potential, the results have so far not entirely met
the expectations in that complex network theory has not yet given rise to a
major breakthrough, has mainly been used to achieve descriptive goals and
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Both at rest and during the executions of
cognitive tasks, the brain continuously cre-
ates and reshapes complex patterns of cor-
related dynamics. Thus, brain functional
activity is naturally described in terms of
networks, i.e., sets of nodes, representing
distinct subsystems, and links connect-
ing node pairs, representing relationships
between them.

Recently, brain function has started
being investigated using a statistical
physics understanding of graph the-
ory, an old branch of pure mathematics
(Newman, 2010). Within this framework,
network properties are independent of the
identity of their nodes, as they emerge
in a non-trivial way from their interac-
tions. Observed topologies are instances
of a network ensemble, falling into one of
few universality classes and are therefore
inherently statistical in nature.

Functional network reconstruction
comprises various steps: first, nodes are
identified; then, links are established
according to a certain metric. This gives
rise to a clique with an all-to-all connec-
tivity. Deciding which links are significant
is done by choosing which values of these
metrics should be taken into account.
Finally, network properties are computed
and used to characterize the network.

Each of these steps contains an ele-
ment of arbitrariness, as graph theory
allows characterizing systems once a net-
work is reconstructed, but is neutral as
to what should be treated as a system
and to how to isolate its constituent
parts.

Here we discuss some aspects related
to the way nodes, links and networks in

general are defined in system-level studies
using noninvasive techniques, which may
be critical when interpreting the results of
functional brain network analyses.

WHAT’S A NODE?
A node is a drastically coarse-grained rep-
resentation of an object, identifying it to a
structureless point, in a way similar to the
reduction of a whole mechanical system to
its center of mass, allowed by the system’s
symmetries.

Identifying nodes supposes that the
studied system can meaningfully be
decomposed into different parts, a chal-
lenging task when dealing with spatially
extended systems of largely unknown
organization and complex dynamics.

Defining a node generates qualitatively
different problems for different record-
ing techniques: for non-invasive system-
level electrophysiological techniques, the
main issue is how well sensors sample the
underlying dynamical system; for func-
tional magnetic resonance imaging ones,
the central question is how to best segment
the space.

SUB-SAMPLING
Studies using electrophysiological tech-
niques such as electro- (EEG) or magne-
toencephalography (MEG) identify nodes
with sensors and, as a consequence, dras-
tically undersample electrical activity at
a neuronal level and the corresponding
functional space.

The spatial sampling implicitly leads
to a coarse graining of the dynamics,
introducing a spatial scale irrespective of
the actual system organization, resulting

in spatial correlations in the topology of
reconstructed networks.

Even more importantly, sub-sampling
can severely affect topological network
properties (Stumpf et al., 2005; Lee et al.,
2006). While the functional networks
based on synchronization of MEG sen-
sors may be qualitatively similar to those
obtained after source reconstruction in
the anatomical space (Palva et al., 2010),
network topologies derived from surface
recordings may not reflect the topology
of the underlying network of neuronal
sources (Antiqueira et al., 2010), let aside
that of anatomical connections between
them (Ponten et al., 2010).

Limitations in the amount of data and
in the reliability of link estimation (either
due to the presence of noise, of common
sources or the inability of most estimators
to distinguish between direct and indi-
rect interactions with the same dynam-
ical subsystem) likely lead to the spuri-
ous addition, deletion or changes in the
nature of links. Spurious links between
nodes of similar degree may for instance
decrease the average shortest path length
and increase the clustering coefficient
(Lee et al., 2006). As a result, networks
may erroneously be classified as small-
world and assortative, even when their
true structure is disassortative (Bialonski,
2012).

Furthermore, randomly sub-sampled
scale-free networks generally turn out not
to be scale-free (Stumpf et al., 2005),
and multiple electrode recordings gener-
ally overestimate the true network small-
worldness, as each sensor picks up many
sources at small scales, while their number
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