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COMPLEX BIOLOGICAL NETWORKS

One of the first contributions of the Complex Network Theory
to biological systems Is the seminal paper of Watts and Strogatz:

|
Collective dynamics of
‘small-world’ networks

Duncan J. Watts* & Steven H. Strogatz

Department of Theoretical and Applied Mechanics, Kimball Hall,
Cornell University, Ithaca, New York 14853, USA

Lactual L random CaCIuaI Crandom
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05

The small-world of C. Elegans neural network, with an edge joining two neurons
if they are connected by either a synapse or a gap junction ( n= 282, <k>= [4).
Table from Watts & Strogatz, 393,440 (1998).



COMPLEX BIOLOGICAL NETWORKS

Biological networks are very heterogeneous, but one thing
S sure, they are complex networks:

network type n m z 4 o C r
metabolic network undirected 765 3686 0.64 2.56 2.2 0.67 —0.240
S protein interactions undirected 2115 2240 2.12 6.80 2.4 0.071 —0.156
Eﬁ marine food web directed 135 5908 4.43 2.05 0.23 —0.263
'_% freshwater food web directed 92 0997 10.84 1.90 0.087 —0.326
neural network directed 307 2359 7.68 3.97 0.28 —0.226

Network parameters of several biological networks: n, number of nodes; m, number of links; z, mean

degree,; | average shortest path; &, power-law exponent; C, clustering coefficient, and r, assortativity.
From Newman, SIAM, 45, 167 (2003).
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COMPLEX BIOLOGICAL NETWORKS

How are Biological Networks!:

* Biological networks are small-world.

 They are (typically) organized in sub-modules and, as a consequence,
they have high modularity and community structures.

* It Is common to observe dissasortative mixing (l.e., most connected
nodes are not preferentially connected with each other).

Nevertheless, each network deserves its own interpretation



COMPLEX BIOLOGICAL NETWORKS

There Is a diversity of biological networks, each one with
its own particularrties:

Metabolic, protein and genetic networks
Networks of neurons

Functional and anatomical brain networks
Food webs In ecosystems

Animal grouping and swarm movement

and many others ...



GENETIC, PROTEIN AND METABOLIC NETWORKS

Interactions between genes (through transcription factors)
lead to a network of promotor/repressor interactions
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GENETIC, PROTEIN AND METABOLIC NETWORKS

Genetic transcription networks are directed (digraphs)
with positive/negative regulations:

° transcription factor
o protein

5 hegative regulation

—> positive regulation

Yeast  (Svr Cerevisiae F—netWorkier
transcriptional regulation (N=682
proteins and M=1289 interactions).
FromreMasiov *er /al p~l=aisae=- SCE
Topological Properties of Molecular
Networks (Springer 2003).

|



GENETIC, PROTEIN AND METABOLIC NETWORKS

Despite their complexity, it 1s possible to analyze them and
extract some conclusions:

The P. (k) distribution is % ;
— ! A
imited by the system (due to X | .
the finite space of the I | w0'h
promoter). P, (k) is not O '
imrted and, as a consequence,
has a heavy tall.
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Figure: (a) The histogram N(Kin) of nodes’ in-degrees Kin in transcription
regulatory networks of yeast (diamonds, dashed line), and E. coli (circles, solid
line). (b) the same as (a) but considering the N(Kout. ). From Maslov et al,
(2003).



GENETIC, PROTEIN AND METABOLIC NETWORKS

Metabolic networks are obtained from the biochemical reactions
involving the transformation of energy and matter in the cell:

The participating
SIS ate sSare
called metabolites
and are catalyzed
and regulated by
enzymes.
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A portion of the WIT database for E. coli. Each substrate can be represented as a
node of the graph, linked through temporary educt-educt complexes (black boxes)
from which the products emerge as new nodes (substrates). The enzymes, which
provide the catalytic scaffolds for the reactions, are shown by their EC numbers.

From Jeong et al,, Nature, 407.651 (2000).



GENETIC, PROTEIN AND METABOLIC NETWORKS

Metabolic networks have scale-free degree distribution

Connectivity distributions P(k) for: (a)
Archaeoglobus fulgidus (archae); (b) E. coli
(bacterium); (c) Caenorhabditis elegans
(eukaryote), counting separately the incoming
(In) and outgoing links (Out) for each
substrate. k. (k. ) corresponds to the number
of reactions In which a substrate participates
as a product (educt). (d) The connectivity
distribution averaged over all 43 organisms.

From Jeong et al., Nature, 407.651 (2000).
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GENETIC, PROTEIN AND METABOLIC NETWORKS

Metabolic networks also show the small-world property
and resilience to fallures similar to scale-free networks:
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network of 43 organisms.  From metabolic network of E. coli. M=60 corresponds
Jeong et al., Nature, 407, 651 (2000). to the ~8% of the network metabolites. From

Jeong et al., Nature, 407, 651 (2000).



GENETIC, PROTEIN AND METABOLIC NETWORKS

Protein-protein interaction networks reflect physical or
chemical interactions between proteins:

[t Is estimated that even simple single-celled organisms such as yeast
have their roughly 6000 proteins interacting by at least 3 interactions
per protein, i.e. a total of 20,000 interactions or more. By
extrapolation, there may be on the order of ~ 100,000 interactions in

the human body.



GENETIC, PROTEIN AND METABOLIC NETWORKS

Protein-protein (bidirectional) interactions lead to complex
networks (I know you are not surprised anymore...):

Protein-protein interaction in
[BRE== e a, e, G CFEVIS e,
(N=1870 and M=2240). From
feoile e alfSNleture) =3 e),
(2001). The colour of a node
signifies the phenotypic effect
of removing the corresponding
protein (red, lethal; green, non-
lethal; orange, slow growth;
yellow, unknown).
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GENETIC, PROTEIN AND METABOLIC NETWORKS

Protein-protein interaction networks are typically scale-free
with an exponential cut-off:

Figure: Probability  distribution

of the protein-protein 0
interaction in the yeast S. - (b) .
cerevisiae, (N=1870 and Al )
M=2240). The distribution s -
scale-free with an exponential 22 - -
cut-off (around k.~20). From .
Jeong et al, Nature, 411, 4| /j: -4 1
(2001). - - _
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Zn Or 7
L=
8+ -
"
| 10 100




GENETIC, PROTEIN AND METABOLIC NETWORKS

Protein-protein networks are dissasortative:

Lo e
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* Interestingly, dissasortative structures
are robust against failures of the hubs
due to the reduced propagation to the
neighbors.
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Figure: Distribution of the average neighbor
connectivity for the yeast protein-protein
interaction network. Here, N=3278 and M=
4549, From Maslov et al., Science., 296, 910
(2002).



NEURON AND BRAIN NETWORKS

system that has been fully R .
mapped. It has 302 neurons and R . S N v DA
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Gap junctions connections and chemical
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PlLos-Comp-Biel /500866 (ZLHSS



NEURON AND BRAIN NETWORKS

Let's go to higher spatial scales: Brain Networks

Functional Networks

Recording sites

Histological or
imaging data

- Cross-correlation

- Wavelet coherence
WWN‘*%JWM - Sync. likelihood

- Generalized Sync.

- Phase Sync.
Mg X M Mama W4 - Mutual Info.
- Granger Causality
- Histological Analysis Structural brain network Functional brain network
- DTI (MRI) Sensorimotor
> Premotor
e
Prefrontal
Occipital
Inferior tempor Orbitofrontal
4 Temporal pole
Graph theoretical analysis
- wa

From Bullmore & Sporns, Nature Rev. 10, 186 (2009)



ECOSYSTEMS & FOOD WEBS
(INTERACTION BETWEEN NON-HUMAN ANIMALS)

Ecosystems are networks;
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Example of trophic interactions within a marine ecosystem.



ECOSYSTEMS & FOOD WEBS
(INTERACTION BETWEEN NON-HUMAN ANIMALS)

Food Webs = [rophic interactions
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An exponential

P(k) — e-k/3.998

PI truncated power law
P(k) p— k-0.013e—k/11.22

A power law exponential
P(k) = k" P(k) = ¢ /456!
P1 truncated power law

P(k) i k—0.28226—k/42.55

Montoya, J, S L Pimm, RV Sole Nature, 442 (2006)



ECOSYSTEMS & FOOD WEBS
(INTERACTION BETWEEN NON-HUMAN ANIMALS)
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WHAT IS A RNA NEUTRAL NETWORK:?

(example) A RNA virus is a virus that has ribonucleic acid (RNA) as its
osenetic material. Some examples are SARS, influenza and hepatitis C.

G=C - 3 Kcal/mol éﬂ adening (é:))
g : cytosine
A—U ¥ 2 KCal/mOl G: guanine (G)
G-U -1 Kcal/mol U: uracil (U) (instead of thymine)



WHAT IS A RNA NEUTRAL NETWORK?

There exists a huge degeneracy between sequence
(genotype) and function (phenotype):

]

AGCUAGUGCAAUAGCACCAAGGAUCGGAUCCAGCU

- _J GGCCCCCGUGACGACGGAGCGGAUAAGGUCCAGCC
GGCAAUUGCUCAUGUAAACGGGAUCCGAUCCAGCU

S GGCGCCCGUGACGACGGAGCGGAGAAGCUCCAGCC

—

A: adenine (A)
C: cytosine (C)
G: guanine (G)
U: uracil (U) (instead of thymine)




WHAT IS A RNA NEUTRAL NETWORK?

Construction of a RNA neutral network:

VWe choose a secondary structure S.

A node corresponds to a sequence that has S
as a m.f.e. structure.

* A link Is drawn between two nodes If they are GGCGCCCGUGACGA
at a Hamming distance of one.

GGCGCCCGUGACGC

* A sequence of length | is linked to at most 3l
other nodes/ and the maximum size of such
network is 4 (since there are 4 bases). O~ f

GGCGCCCGUGACGG

GACGCGCGUGACGC
GACGCCCGUGACGC



WHAT IS A RNA NEUTRAL NETWORK?

RNA “real” neutral network of length |2

* Real and complete neutral networks can be obtained through exhaustive
enumeratlon and folding of the space of sequences. For length |=/2 there are
S| TN, sequences.

“Real” RNA neutral networks can be obtained computationally with the Vienna
backage, which computes the folding energy of all possible secondary structures.

For =12 we obtain 5/ different neutral networks (writh 44.000 sequences per
structure on average).



WHAT IS A RNA NEUTRAL

Sequences of 1=12:

NETWORK?

Structures and neutral networks for n=12

rank frequency subnetw. structure rank frequency subnetw. structure
1 218567 16 ()™ 30 23260 8 LG
2 183335 10 (G 31 15350 6 (Gen))
3 161765 26 ()X 32 11365 7 o))
4 152393 9 () 1 33 6940 3 ()]
5 152221 15 ()] 34 3638 28 ()8
6 121861 8 o)), 35 3519 27 (o))
7 117253 21 ()] 36 2963 39 ((.(e)))
8 113896 8 (o) e 37 2244 12 ()8
9 110842 22 R((e)); 38 2208 1 ()]
10 105538 8 ()% 39 1520 16 (o))
1 93866 7 () I 40 1379 15 (o))
12 76439 5 () 41 1368 2 (o))
13 74626 12 ((eer))) 42 1308 22 ((.(....))
14 71904 5 () 43 1189 34 (o n)o)
15 70375 5 () 44 1140 23 ((Ce)))
16 61792 7 (o). 45 860 3 ()
17 61613 27 («c.m. 46 800 3 (L))
18 46510 10 R () 47 713 3 (o))
19 45288 42 K((()))! 48 665 15 (G
20 41618 18 (o) 49 414 11 L(G))
21 41092 15 ()™ 50 314 3 ().
22 39740 19 (). 51 240 3 ((C)))
23 37472 5 ()R 52 220 4 (((e)P)]
24 31848 3 [0 o 53 211 4 (R(@™)))]
25 31498 3 (enns). 54 165 4 ((en).)e
26 27522 3 (eonr).e 55 153 4 (Con).).e
27 27312 3 (ers)eenee 56 107 6 (G D).
28 25053 3 (es)eeee 57 54 1 ((onrr) )
29 24366 3 o) 14325304 -

Additional properties of the /=12 RNA neutral networks space can be found in [10].

doi:10.1371/journal.pone.0026324.t001




TOPOLOGICAL PROPERTIES OF RNA NEUTRAL NETWORKS

Slze ran|<|ng: 1e+05 Frrrrrrrii F'rrrrrrrid IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII:
2 1 I ] I 6 I ] I ] -
o 7L o 7 lg ' - b L p a
= 1k i
E 5 ase paitr .. z. 1.L ase pa1r§ .‘. : ] |
| IS : ] i
[ e 1 L ® e i
((....).. o000 el L
— b5 : : ®9 o -
: TR LI ) PP oot d
N 0 1 2 3 4 0 5 10 15 20
1000 network size (x104) B
* Base pairs are indicated by 100 & =
parenthesis () - A X 3
* Unpaired bases are indicated = UL L L DL U L e L IR T :
% o |3 base pairs _ ~ 4 base pairs .
by dots . sl ‘o‘ ] _ o i .
10kz2 * g8« osk .i - -
- ‘ q F ! i -
: g — 5 - . : I_! . : Y :
20 | . 0 e—! L ol | an ]
ST b=\ 0 5 10 15 20 25 30 O 5 10 15 20
. b = 2 1 I T T Y Y O | | I T T I I | [ T I I B | | 1 T T | | [ T O T I | | [ I Y I O | | 1 1 U 1 111
® pH=3 0 100 200 300 400 500 600 700
e size ranking

Figure 2. Subnetworks size ranking. In linear-logarithmic scale, ranking distribution of subnetwork sizes. Colors indicate the number of base
pairs L, in the secondary structure: one pair (black), two pairs (red), three pairs (green) and four pairs (blue). The solid line corresponds to an
exponential fitting. Insets show for each group of structures (with the same L,) the size of the subnetworks (in the y-axis) that belong to the same

neutral network as a function of the corresponding neutral network size (in the x-axis). Note changes of scale in both axes.
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TOPOLOGICAL PROPERTIES OF RNA NEUTRAL NETWORKS

Degree DlStFlbUthn: o o o rrT rrorT T network size
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- 1 [ N=3372
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* b =4 (number of different nucleotides) - 1| — Eii%‘g
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Figure 3. Degree distribution p(k) and average degree (k). (A) Degree distribution p(k) of fifteen subnetworks. They are the five largest (black
curves), five of intermediate size (brown curves, one order of magnitude smaller) and five small subnetworks (blue curves, two orders of magnitude
smaller). (B) Average degree (k) as a function of the subnetwork size N. Colors correspond to one (black), two (red), three (green) and four (blue)
base pairs in the secondary structure. The solid line corresponds to the numerical fitting <k>~1.791In N (note the logarithmic-linear scale). The
analytical approximation to (k) making use of the values of %, p and « obtained from all the 12-nt folded sequences (and implying As=0.53) is
plotted in long-dashed black line. The upper and lower bounds to coefficient As yield (k> = In N and (k> =(3/In4)In N (plotted in short-dashed red
lines).




TOPOLOGICAL PROPERTIES OF RNA NEUTRAL NETWORKS
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Figure 4. Clustering. (A) Clustering distribution C(k) for the fifteen networks analyzed in Fig. 3. (B) Average clustering C(N) as a function of the
subnetwork size N for all folded neutral networks (colored circles), equivalent random networks (black squares) and theoretical predictions with a
classical random model (C(N)~<k)>N !, green stars). Circle colors correspond to the number of base pairs of each subnetwork (see caption of Fig.
3). In both plots (A) and (B), the analytical approximations using the values of %, p and « obtained from all the 12-nt folded sequences are plotted in

Iong-dashed black lines.



TOPOLOGICAL PROPERTIES OF RNA NEUTRAL NETWORKS

Assortativity:
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Figure 5. Assortativity. (A) Average nearest neighbors degree k,,(k) as a function of k for fifteen networks of different sizes. (B) Assortativity
parameter r as a function of the network size. As in previous figures, colors correspond to the number of base pairs of the subnetwork: one (black),
two (red), three (green) and four (blue). The r for equivalent random networks are plotted in black squares.




TOPOLOGICAL PROPERTIES OF RNA NEUTRAL NETWORKS

Point mutations:

1 | | | o

[ [ <k> <= 15 A) |
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» Mutations, 1.e. neighbors, e I D B
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Figure 6. Probability of mutation. Probability of mutation at each position of the sequence for two different secondary structures (see x-axis
labels of both plots). (A) corresponds to the largest subnetwork N =57481, whose secondary structure is fourth by abundance. (B) corresponds to the
largest subnetwork N=35594 of the most abundant secondary structure. We plot the sequences grouped by degree (dotted, dashed and dashed-
dotted lines) together with their averages (solid lines).




TOPOLOGICAL PROPERTIES OF RNA NEUTRAL NETWORKS

Shortest path:
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Figure 7. Average shortest path {(d). Dependence of the average shortest path on the subnetwork size N for all folded neutral networks (colored
circles), equivalent random networks (black squares) and theoretical predictions with a classical random model ({d) ~ In N/In {k), green stars).
Circle colors correspond to the number of base pairs of each subnetwork (see caption of Fig. 3). The numerical fitting is plotted as a solid black line,
while the analytical approximations correspond to the long-dashed black lines (for values of « and As numerically obtained from the folding of all 12-
nt sequences). Inset (A): relation between the average shortest path {d) and the average Hamming distance (/) of the subnetworks. Inset (B):
relation between the longest distance between any pair of nodes of the network d,,, and the maximum number of different bases between
sequences H,,,, (maximum Hamming distance). In the insets, the dashed lines are {(d)={(H) and dyax = Huax, Which correspond to the lower
bounds of {d) and d.., respectively.
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TOPOLOGICAL PROPERTIES OF RNA NEUTRAL NETWORKS
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Figure 8. Eigenvector centrality. Largest eigenvalue 4, of the adjacency matrix A as a function of the network size N. The inset shows the linear
relationship between 4, and the network average degree (k). Solid line in the inset is 4; = (k).



TOPOLOGICAL PROPERTIES OF RNA NEUTRAL NETWORKS

Centrality & Communities:

» Surprisingly, eigenvector centrality
Is a good indicator of community
structure... why!?
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Figure 9. Sequence centrality. Evaluation of the sequence centrality for the largest subnetwork N =57481, whose secondary structure is ((....))..... In
(A), degree k; versus eigenvector centrality v,(i). In (B), degree k; versus betweenness centrality B(i). Colors and shapes denote the type of base pairs
the sequences have (see Figure’s legend). Note the community division created by the eigenvector centrality, which is related to the type of
nucleotides participating in the base pair: GC+UA and AU+CG for low eigenvector centrality, GU+CG and GC+UG and for intermediate v,(/) and

GC+CG for high v,(i).




TOPOLOGICAL PROPERTIES OF RNA NEUTRAL NETWORKS

Some conclusions:

« We have overviewed the topological structure of neutral networks formed by
| 2-nucleotides RNA sequences. A total of 412 sequences fragments into 465
subnetworks corresponding to 5/ different secondary structures.

 The topological analysis reveals that RNA neutral networks are far from being
random: they have a degree distribution with a well-defined average and
small dispersion, high clustering and a low average shortest path.

» Several topological relationships can be extracted from the structural
(biological) restrictions and generic properties of the folding process.

- The average degree of these phenotypic networks grows logarithmically
with their size, such that abundant phenotypes have additional advantage of being
more robust to mutations.



POPULATION DYNAMICS IN RNA NEUTRAL NETWORKS




POPULATION DYNAMICS IN RNA NEUTRAL NETWORKS

» Study of the evolution of populations of genomes replicating
at high mutation rate (e.g. RNA) on artificial neutral networks
(where populations evolve towards highly connected regions of
the genome space).

* Analytical study (numerical if not possible) of the evolution of
replicators on small networks where a second selective
pressure is included: the folding energy.

I”

- Application of the results to large and complex “real” neutral

hetworks.



POPULATION DYNAMICS IN RNA NEUTRAL NETWORKS

How do sequences move!

A. Inrtial condrtion: Each node i contains a number n,(0) of sequences.
B. At each time step (or generation) the population of a node duplicates.
C. The new sequence mutates with probability M.

D. The population Is constant.

dupllcatlon Population coming from neighbors
I mutation /
ni(t+1)=1(2—p)ni(t) + ﬁ n;(t).

31
{nn};
1=>Osxe S
S ] ] ~3 . .

Duplication - mutation Network topology




POPULATION DYNAMICS IN RNA NEUTRAL NETWORKS

Interplay between dynamics and topology:

n;: population at node i

L . -
ni(t+1) = (2 — )n; () + H Z n;(t) u: mutation rate

3
{nn};
The topology is contained in i :
the adjacency matrix C /O\A) O\\ /W\

oy t+1 !

Knowledge of C permits to calculate the final state (population in each node 1)
and the time required to attain equilibrium:

 The final state only depends on C

 Time to equilibrium depends on C and on the mutation rate



POPULATION DYNAMICS IN RNA NEUTRAL NETWORKS

Interplay between dynamics and topology:

n;(t+1)=(2— p)n;(t) + % n;(t).
o {nn};

n(t +1) = Mn(z) M=Transition matrix
C=Adjacency matrix (topology)

_. /1
M=(2_)I+LC.
(2 —p)I+ 37

Ai=eigenvalues of M

No= (2 )+ % Yi=eigenvalues of C
w;=eigenvectors of M
U =W, ui—eigenvectors of C




POPULATION DYNAMICS IN RNA NEUTRAL NETWORKS

How does the RNA population evolve in the network?

1 L III"I 1 IIIIIII Ll 1 Illlll[ 1 ] Illllll 1 LI
— aqually distnbuted
10 —— mtzally at n=3 {hub)

- — mtzally at n=143 (far)

[ p=6.035

B K=2 50 J
l 1 1 lllllll t 1 lllllll 1 1 lllllll 1 1 lllllll 1 11 A
10 10 10 10 10°

Generations

Figure: Average degree of the population as a function of time for a scale-free network. The final
value p corresponds to the spectral radius of the adjacency matrix. Here p=0.1 (N=200).



POPULATION DYNAMICS IN RNA NEUTRAL NETWORKS

Transition matrix M has the same eigenvectors as the Adjacency matrix C:

| [
.. _ (¢ | H | M=(2-pulI+=C.
ni(t+ 1) = (2 — p)n(t) + ﬁ{ } n;(t) . { ___________________________________________________________ 31

The final state Is given by the first eigenvector of M (or C).

kmin < <l\> < 71 =<Kpop> < knlu.r

The average degree of the population <K,,,> Is given by the first eigenvalue of C:

The time to equilibrium tg depends on C (eigenvalues), on the inrtial condition and on the
mutation rate M

| Inay/ay[-1n €

= 1
€ ln|)\1/)\2|

For a given network and set of initial conditions: t:EL oL
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POPULATION DYNAMICS IN RNA NEUTRAL NETWORKS

1010

1010
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Population finds robustness in the more connected regions!

« No matter where the

initial  distribution 1s (in
the network), If the
RNA has enough time, it
will evolve toward the

same final distribution.

- The population evolves

to the more connected

areas. In this way, It Is
M o MedL e DA sisNic
mutations. This property

s known as neutrality.



POPULATION DYNAMICS IN RNA NEUTRAL NETWORKS

Next, we consider a second selective pressure: the folding energy E,.

The probability of occupying a node depends on Its energy:

Pi = Pxp{_’-}(Ez — Emz’n)} :

The folding energy depends on the base pairs:

G=C - 3 Kcal/mol L o ]
- 2 Kcal/mol E; = —(3“‘"(:0 + 2Ny + ;\-’GU) ;
G-U -1 Kcal/mol

The parameter B quantifies the relative importance of high

connectivity versus low energy:

B =2 0 the population evolves to the
most connected nodes (neutrality).

{
M' = E [(2 — ,H}I + %G} = EM B =  the population evolves to nodes
- with lower energy (stability).




POPULATION DYNAMICS IN RNA NEUTRAL NETWORKS
Analytical results on (small) networks:

A) Eigenvectors of M’ # Eigenvectors of C:Topology is not enough!

B) The interplay and evolution of the eigenvalues and eigenvectors is the keystone of
the complex dynamics.

1.951

>
oo
A

3
Example: B, ,

1
< 2

S
n 1.949
B, o E, foececece D
o o E i 1.948
4 0 ] 1 l L S%oeo ] | 1 l | I <
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
E; o Lowest energy
B/u p/u

 — —
w—

Ce0900 00000000000 l .9~

/g
Il ie
!
|
>
/

C)The mutation rate 4 and the stability rate B represent opposite forces: 4 promotes
neutrality and B promotes stability.

D) Correlations between degree and energy will be crucial in the transition dynamics.



POPULATION DYNAMICS IN RNA NEUTRAL NETWORKS

* Energy versus topology In

random networks:

0 0,001 0,002 0003 0 0.001 0,002 0,003
30000
(c) (d) T2
i | \J' s
20000 |- %' v w3
0 Ik
= | |
3y 10000 |- W}\.\w“(f\q
251 - ' '
| 4
"2 1 | ] | 1 0 1 | 1 | 1
0 0001 0,002 0003 0 0.001 0.002 0,003
B/ B/
- — -

Dependence of the properties of the random mutation network on B and p when
neutrality and energetic stability are negatively correlated (NS-). Each curve is plotted
for p = 0.001 (¢), 0.01 (solid line), and 0.05 (°). (a) Average energy E, (b) Average degree
K, (c) Average dispersion D, (d) Dependence of the rescaled time to equilibrium



POPULATION DYNAMICS IN RNA NEUTRAL NETWORKS

Energy versus topology In scale-free networks

Ceceo-
1 I | I 1 0 | I 1 I |
0 0.005 0.01 0,015 0 0.005 0.01 0.015
- b (C) 2e+05 id)

(V3]
'il T

%o.o.m

0 1 I 1 I | 0.
0 0.005 0.01 0,015 0 0.005 0,01 0.015

B/ B/

Dependence of the properties of the preferential mutation network on B and py when neutrality and energetic stability are
negatively correlated (NS-). Each curve is plotted for p = 0.001 (¢), 0.01 (solid line), and 0.05 (°). (a) Average energy E, (b)
Average degree K, (c) Average dispersion D, (d) dependence of the rescaled time to equilibrium



POPULATION DYNAMICS IN RNA NEUTRAL NETWORKS

Energy versus topology In scale-free networks

In this example, there are 404
different sequences leading to
this secondary structure (I=12):

PN

o

© Nodes of minimal energy (equal)
@ Rest of nodes

e
—_
(=}
O
o

Mean degre

=
%)
|

Interestingly, correlation
between energy and
degree promotes neutrality

(robustness to mutations). 10 107 (enaray parameter)

' & —————

Mean energy
IQ 1
'w
N
|




POPULATION DYNAMICS IN RNA NEUTRAL NETWORKS

Conclusions:

* Evolutionary dynamics on neutral networks leads populations to highly
connected areas In the space of genomes: neutrality (connectivity) is
optimized, thus increasing robustness to mutations

* When the energy of the folded state Is taken into account, the population
concentrates around sequences of minimal energy, thus increasing
robustness to perturbations

* Robustness arises as a compromise between minimizing the effect of
mutations and maximizing structural stability

- The time required to reach the asymptotic state has to be shorter than the
time between changes in the environment

« Correlation between energy and degree in real RNA neutral networks
can increase the robustness of the population



Functional Brain Networks
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APPLYING NETWORK SCIENCE TO THE BRAIN

What it we apply network science to the most challenging
system we are facing!




APPLYING NETWORK SCIENCE TO THE BRAIN

In brief, (main) types of brain networks

functional

Anatomical parcellation 1 ‘ Recording sites

Histological or
imaging data

\2 Time series data

Functional brain network
Sensorimotor

> Premotor

Graph theoretical analysis

5= T

From Bullmore & Sporns, Nature Rev. 10, 186 (2009)




Measure

Binary and undirected definitions

|

Basic concepts and measures

Basic concepts and
notation

Degree: number of links
connected to a node

Shortest path length:
a basis for measuring
integration

Number of triangles: a
basis for measuring
segregation

Measures of integration
Characteristic path
length

Global efficiency

Measures of segregation
Clustering coefficient

Transitivity

Local efficiency

N is the set of all nodes in the network, and n is the number of nod
L is the set of all links in the network, and [ is number of links.

(i,j) is a link between nodes i and j, (i, j € N).

aj is the connection status between i and j: a; = 1 when link (i, j)
exists (when i and j are neighbors); a; = 0 otherwise (a; = 0 for a
We compute the number of links as | = > _;cn a; (to avoid
ambiguity with directed links we count each undirected link twice,
as a;; and as aj;).

Degree of a node i,

k,‘ = Z aU
jeN

J

Shortest path length (distance), between nodes i and j,

dij = Z Ay,

ayy Egi(—)j

where g;._.; is the shortest path (geodesic) between i and j. Note
that dj; = < for all disconnected pairs i, j.

Number of triangles around a node i,

1
ti = jz aijaihajh.
Jj.,heN

Characteristic path length of the network
(e.g., Watts and Strogatz, 1998),

1 1
L= ﬁz L = 0 > Yienjzi di
ieN ieN n—1 ’

where L; is the average distance between node i and all other nodes

Global efficiency of the network (Latora and Marchiori, 2001),

1 1 ZjeN#idif]
E=al B=q2 =007

where E; is the efficiency of node i.

Clustering coefficient of the network (Watts and Strogatz, 1998),
1 1 2t;
C = = C = — 7'7
195 = nig R -

where C; is the clustering coefficient of node i (C; = 0 for k; < 2).

Transitivity of the network (e.g., Newman, 2003),

T— _ 2ien2ti
Yien ki(ki — 1)

Note that transitivity is not defined for individual nodes.

Local efficiency of the network (Latora and Marchiori, 2001),

1
Epe = %Z Eoci = %Z > jhen i %ijTin {djh(Ni)} 7

ieN ieN ki(ki -

where Ejq; is the local efficiency of node i, and dj, (N;) is the
length of the shortest path between j and h, that contains only
neighbors of i.

Measure

Binary and undirected definitions

Modularity

Measures of centrality
Closeness centrality

Betweenness centrality

Within-module degree
z-score

Participation coefficient

Network motifs
Anatomical and
functional motifs

Motif z-score

Motif fingerprint

Modularity of the network (Newman, 2004b),

o-ghe-(5)]

ueM veM

where the network is fully subdivided into a set of nonoverlapping
modules M, and e, is the proportion of all links that connect nodes
in module u with nodes in module v.

An equivalent alternative formulation of the modularity

(Newman, 2006) is given by Q = %ZUEN <a,-j = %) 5mi‘m],.
where m; is the module containing node i, and &, 1, = 1 if m; = m,
and 0 otherwise.

Closeness centrality of node i (e.g. Freeman, 1978),
_ n—1

Li L = 7{1

ZjEN,ﬁéf y

Betweenness centrality of node i (e.g., Freeman, 1978),

1 opi (i)
h=— L % om0
=D =2 2,

where py; is the number of shortest paths between h and j, and py; (i)

is the number of shortest paths between h and j that pass through i.
Within-module degree z-score of node i
(Guimera and Amaral, 2005),

! ok(m;) ’
where m; is the module containing node i, k; (m;) is the
within-module degree of i (the number of links between i and all
other nodes in m;), and k(m;) and "™ are the respective mean
and standard deviation of the within-module m; degree distribution.

Participation coefficient of node i (Guimera and Amaral, 2005),

yi=1-— Z(k';(—m))27

meM 1

where M is the set of modules (see modularity), and k; (m) is the
number of links between i and all nodes in module m.

Jn is the number of occurrences of motif h in all subsets of the
network (subnetworks). h is an n, node, I, link, directed connected
pattern. h will occur as an anatomical motif in an n, node, I, link
subnetwork, if links in the subnetwork match links in h

(Milo et al., 2002). h will occur (possibly more than once) as a

functional motif in an n, node, I, > I, link subnetwork, if at least one

combination of [, links in the subnetwork matches links in h
(Sporns and Kotter, 2004).

z-Score of motif h (Milo et al., 2002),
Jh _ <Jrand.h>

Zn, —
h O—] rand,h

where {Jranq,n) and o Jmnen are the respective mean and standard
deviation for the number of occurrences of h in an ensemble of
random networks.

n, node motif fingerprint of the network (Sporns and Kotter, 2004),
B, () = 3 Fyih) = 3 g
ieN ieN

where h’ is any n, node motif, F, ; (h’) is the n, node motif
fingerprint for node i, and Jj,; is the number of occurrences of
motif h’ around node i.

Measure

Binary and undirected definitions

Measures of resilience
Degree distribution

Average neighbor
degree

Assortativity coefficient

Other concepts

Degree distribution
preserving network
randomization.

Measure “of network
small-worldness.

Cumulative degree distribution of the network
(Barabasi and Albert, 1999),

P(k) = p(k'),
k

>k
where p(k’) is the probability of a node having degree k'.
Average degree of neighbors of node i (Pastor-Satorras et al., 2001),

_ Xjen Gk

Ko i A .
1

Assortativity coefficient of the network (Newman, 2002),
1 —1 1 2
177 e kiky — [1 D (ij)el 2 (ki + kj)]
-1 Z(ij)eL% <k1‘2 + ka> - [171 Z(ij)d% (ki + kj)}

=

5

Degree-distribution preserving randomization is implemented by
iteratively choosing four distinct nodes iy, ji, is, j» € N at random,
such that links (i1, j1), (i2, j2) € L, while links (i, j2), (i2, j1) & L.
The links are then rewired such that (iy, j»), (i2,j1) € L and (iy, ji),
(i, j2) € L, (Maslov and Sneppen, 2002).

“Latticization” (a lattice-like topology) results if an additional
constraint is imposed, [i1+j2| + |i2+Hji1| < [i1+ia| + |ia+jal

(Sporns and Kotter, 2004).

Network small-worldness (Humphries and Gurney, 2008),

= C/ Crand
L / Lrand i
where C and Capq are the clustering coefficients, and L and L;a,q are

the characteristic path lengths of the respective tested network and
a random network. Small-world networks often have S > 1.

... and many more!!

M. Rubinov and O. Sporns,
Neurolmage 52, 1059—-1069 (2010)



ANATOMICAL BRAIN NETWORKS

The connectome is a comprehensive map of neural connections in the brain. The production
and study of connectomes, known as connectomics, may range in scale from a detailed map

of the full set of neurons and synapses of an organism to a macro scale description of
the structural connectivity between all cortical areas and subcortical structures.




ANATOMICAL BRAIN NETWORKS

We can analyze the structure of anatomical networks In order to learn
something from them:
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From Sporns et al., Neuroinformatics, 2, 145 (2004)



ANATOMICAL BRAIN NETWORKS

The human brain has been also translated into a network:

Exponential (not scale-
free) degree distribution
(note that there are 66
subregions and 998 ROls).

Small-world attributes.

Multiple modules
interlinked by hub regions.

Positive assortativity.

?}5%_3%%@: >

.i{g<$wm“l;
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Bl ' W .

b et R
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'm | ..
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>0.500
>0.330
>0.167

>0.500

e >0.330

Hagmann et al. (2008) PLoS Biol. 6,e159

«  >0.167




FUNCTIONAL BRAIN NETWORKS




IT°’S A LONG ROAD... FULL OF TROUBLE!

Obtaining a functional brain network in three steps:

STEP | STEP 2 STEP 3

Sensorimotor

73" A2 ';\
g ! o b ":: £ 3 . I' \
1(; ,‘v\ I' - ‘. ‘
i “"\ e \V\‘\
s \ A
r»“*\*\Q\\

Occipital A\ \
R | ~>~.“‘\\‘§
N :
4 <,3/A\\ N z/

Parietal _AETIIRTEIS P [
7

»

Prefrontal ‘

\

\

e —

|
|

Temporal pole

Measuring Brain Activity Time Series Analysis & Network Analysis
Network Construction



OBTAINING FUNCTIONAL BRAIN NETWORKS

STEP |: Measuring Brain Activity

» Functional MRI (fMRI). The detection of changes in regional brain activity through their effects on
blood flow and blood oxygenation (which, in turn, affect magnetic susceptibility and tissue contrast in

magnetic resonance images). High spatial resolution (~mm3) but low temporal resolution
(~seconds).

» Electroencephalography (EEG). A technique used to measure neural activity by monitoring
electrical signals from the brain, usually through scalp electrodes. EEG has good temporal
resolution but relatively poor spatial resolution.

» Magnetoencephalography (MEG). A method of measuring brain activity by detecting
perturbations In the extracranial magnetic field that are generated by the electrical activity of
neuronal populations. Like EEG, it has good temporal resolution but relatively poor spatial
resolution. [t has better resolution than EEG.

Others...



OBTAINING FUNCTIONAL BRAIN NETWORKS

STEP |: Measuring Brain Activity

DANGER ZONE

o | ow spatial resolution (we have ~ | 0' neurons)

o |In EEG and MEG, we only measure cortical activity
o Overlapping of measurements

» Brain Is not an isolated system

o High variabllity in the results



OBTAINING FUNCTIONAL BRAIN NETWORKS

STEP |I: Time Series Analysis & Network Construction

o Several linear and nonlinear
techniques™:

r-)‘\
- —— - - ¥ e ™ e N I ™t
A — S O - Nt g T pp— .q I \\"A ,——’ '* v ..J

—_ g ———— -
—— A e T = g™ N A ——

ot e v
e 1

o Cross-correlation
o Wavelet coherence WMMYWN‘ww‘—v\hwuﬁ,w,\f\or\L'J I,‘
o Synchronization Likelihood '
o Generalized Synchronization

o Phase Synchronization MﬂMM“M“WWWM

mev“"b-"\ow“mﬁ*w‘“ﬂvwh’\| " Lt

o Mutual Information
o Granger Causality

e e e e TR A L e (RENIETE /) s | P PR IPUUIN | /- et
construct the functional network. *

* For a review: Pereda et al, Prog. Neurobiol, 77 (2005)



OBTAINING FUNCTIONAL BRAIN NETWORKS

STEP |I: Time Series Analysis & Network Construction

DANGER ZONE

e NS S

Defining the nodes Is a complex task

[t Is difficult to evaluate causality and weights

Several kinds of synchronization exist at the same time

Where to put a threshold?! (normalization, comparison,...)

High variability in the results

In EEG and MEG, we only measure cortical activity (missing interactions)



OBTAINING FUNCTIONAL BRAIN NETWORKS

STEP lll: Network Analysis

A. Characterize the topology of brain functional networks and its
influence on the processes occurring In them.

B. Identify differences between healthy brains and those with a
certain pathology.

C. Develop models in order to explain the changes found In iImpaired
functional networks.



ANALYZING FUNCTIONAL BRAIN NETWORKS

A. Characterize the topology of brain functional networks
and its influence in the processes occurring in them:

; Small-world topology -> High efficiency in information transmission?
g High clustering -> Good local resilience!
- Modularity -> Segregation & integration of information?

Eguiluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian
Scale-free brain functional networks. Phys Rev Lett 94:

LLERAL [ T T TTTT]
018102 (2005). (0* -
® ‘\M/:
TABLE I. Average statistical properties of the brain functional ki é
networks. = 10 =
-7 @)
Fe N C L <k> Y Crand Lrand & )
= s =4
06 31503 0.14 114 1341 20 43x10% 39 = 10 E 700 800 S
WS 0713 128226 297 D1 30105 /5.3 O ‘ ~ 0.5 Degree K- 3
0.8 4891 015 60 412 22 89X107* 60 A — L= Y -
10 E —. r=0.6 =
~ o1 =0.7 N
ig 0 L1 |C Liiinl 1 U U I
...Scale-free  complex networks are known to TS 1
show resistance to failure, facility of 10 10 10 10

synchronization, and fast signal processing... " Degree K



ANALYZING FUNCTIONAL BRAIN NETWORKS

B. Identify differences between healthy brains and those
with a certain pathology:

4 Quantify evolution towards random topologies.
- Evaluate the loss of modularity in the networks.
: Quantify the increase of energy expenses.
JM. Buldy, R. Bajo, F. Maestu et al, "Reorganization of 25f | | | *

Functional Networks in Mild Cognitive |Impairment”,
PLoS ONE 6(5):e19584 (201 1)

“...the distortion of the functional network is
related to an evolution towards random

structures, as indicated by a clustering
coefficient and shortest path length that is closer
to the random configuration. .. ”

% Variation over control average

Figure S1: Percentage of variation of the average degree K, average shortest path L and its normalized value L= LL,

network outreach O and normalized outreach O = OL, clustering C' and normalized clustering C= CL and network

ran
)

modularity (). Circles (o) correspond to p < 0.03 and stars (*) to p < 0.01, specifically: K (p = 0.018), L. (p = 0.025),
O (p =0.007), O (p=0.027), C (p =0.002) and @ (p = 0.0033) .



ANALYZING FUNCTIONAL BRAIN NETWORKS

C. Develop models in order to explain the changes found in

impaired functional networks:

 |dentify what are the rules that determine the network distortion.

N.P. Castellanos, I. Leyva, .M. Buldy, et al., “Principles of
recovery from traumatic brain injury: reorganization of
functional networks", Neuroimage, 55, [189-1199

(201 1).

“... These results point to the hypothesis that
N e a—HIana-Lehe, Siroeturdy
reorganization after recovery
corresponds to an increase of the
strength in the most active links rather
than in the rest of the edges... "

32 \\ 0.42
\ E

24 \
03

oS M

0.32 0.35

Modeling Recovery after Traumatic Brain Injury: Shortest path L,
Efficiency E, Energetic Cost EC and Clustering C. In all panels, the
average parameters of the pre (red circle), post (blue square) and
control (black star) groups are plotted.



ANALYZING FUNCTIONAL BRAIN NETWORKS

STEP Ill: Network Analysis

NINJAS AND PIRATES
AND LASERS AND DRAGONS

* ZOMBIES WELCOME! *

et s

——

» We are accumulating errors from the previous two steps
» Functional networks are not static
» High variability in the results

o Functional networks do not evaluate function

o But... above all...



ANALYZING FUNCTIONAL BRAIN NETWORKS

STEP lll: Network Analysis

g N LRV VORI EASURES: - ARE(COTA RN
MISINTERPRETED. ...

NS HNEEEY BN RIIATA I IR RGEEZRI AV S
ANALYZING THE BRAIN!



Risks & Challenges
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FUNCTIONAL BRAIN NETWORKS: RISKS & CHALLENGES

VWhen projecting the brain activity into a network, we are
loosing a lot of iInformation. ..

... and we may forget what is behind...
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EXAMPLE |: Synchronizability

and Medicine 41 (2011) 1178-1186

Contents lists available at ScienceDirect

Computers in Biology and Medicine
i 4

journal homepage: www.elsevier.com/locate/cbm

EEG-based functional networks in schizophrenia
Mahdi Jalili **, Maria G. Knyazeva "¢

§ rtment of Computer Engineering, Sharif University of Technology, Tehran, Iran
b Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), and University of Lausanne, Lausanne, Switzerland
5 rtment of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland

“...the analysis reported here looks at the
synchronizability from different perspective
and considers the synchronization properties
of the brain networks rather than looking for a
synchronous pattern in the original EEG signal...”

Controls | |
Patients

-«

| Synchronizability

L

0 0.2 0.4 06 0.8
Threshold

— e—

Synchronizability parameter for the
control and patient (schizophrenia)
group In the alpha band.
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EXAMPLE |: Synchronizability

CHAOS 18, 033119 (2008)

Evolving functional network properties and synchronizability
during human epileptic seizures

Kaspar A. Schindler,’?? Stephan Bialonski,'® Marie-Therese Horstmann,'3*

Christian E. EIger,1 and Klaus Lehnertz"3*?

lDeparl‘mem‘ of Epileptology, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany

2Departmemf of Neurology, Inselspital, Bern University Hospital and University of Bern, Switzerland

3Helmholtz-]nstitm‘e for Radiation and Nuclear Physics, University of Bonn, Nussallee 14-16, 53115 Bonn, c
Germany

4Interdisciplinary Center for Complex Systems, University of Bonn, Romerstrasse 164, 53117 Bonn,

Germany 100 1

(Received 21 May 2008; accepted 10 July 2008; published online 15 August 2008)

0 ' E i
...we observed a concave-like temporal & 60
evolution, with highest values of S i.e.,
lowest synchronizability in the middle of 20= | |
the seizure, followed by a decline e, an
ncreasine svynchronizability. " Evolving synchronizability during an epileptic
. fuzd seizure. The synchronizability parameter increases,
: . . . thus being the network LESS hronizable.
“...while the aforementioned interpretation s ALy e s

WOULD indicate that the transient evolution
in graph properties is an active process of
the brain to abort a seizure, our findings could
also be understood as a passive
consequence of the seizure itself”
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The Master Stability Function®™ (MSF) I1s a tool to evaluate the stability of
the synchronized state of diffusively coupled dynamical system:s:

N
% = F(xi)+0 Y ajywy[H(x;) —Hx)] = F(x;) -0 ) GyH(x))

i=1 j=1
A A I

Class | system: Not synchronizable

Class Il system: 0Az > 11

l

(the higher, the better)

Class Ill system: oAy > 11

oAN < s
V is related with OAi where O is the coupling l
strength and Ai are the eigenvalues of the
Laplacian matrix (G=S-M) and A < A,<...< A, r=Ayn/4

* Pecora & Carroll, PRL 1998 (the lower, the better)



ANALYZING FUNCTIONAL BRAIN NETWORKS

STEP lll: Network Analysis

A) IS THE BRAIN A CLASS I/II/IIF SYSTEM?
B) DOES THE BRAIN SHOW COMPLETE SYNCHRONIZATION?
S LSIE BEAINCCOMPOSEDA@F |DENTICA S LS ¢

D) ARE BRAIN REGIONS DIFFUSIVELY COUPLED!?
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EXAMPLE |l: Small-worldness

REVIEW m

Articles per year

Small-World Brain Networks

DANIELLE SMITH BASSETT and ED BULLMORE

Many COmr‘|°V naohunrlee hava a emallanarld tanalamy charactarizad b denes laral clietarina ar clionichnace

afconnes!  The Journal of Neuroscience, January 4, 2006, 26(1):63-72; doi:10.1523/JNEUROSCI.3874-05.2006
anatomical
and distribt i .
minimize v Behavioral/Systems/Cognitive
mathemati
o thomed Citations per year
th Ci *1: ]
woe. A Resilient, Low-Frequency, Small-World &
from elect Hun
o Proc Natl Acad Sci U S A 2006 December 19; 103(51): 19518-19523.  PMCID: PMC1838565
models pro H H I Published online 2006 December 11. doi: 10.1073/pnas.0606005103.
systems. N Ig
Sophie Copyright © 2006 by The National Academy of Sciences of the USA
Bullmol Neuroscience
= From the Cover
‘ . T‘
Brain| & 2001 2004 2007 2010 2013
Departt = Adal \ENTAL HEALTH & EMOTIONAL WELL-BEING
Cambi = func Year
ambri.
Sant Bl 7 panie e e ter Friendly & It's a small world in your brain after all
GlaxoS = Font Size +T ) : 1
- Thom From Web of Science: (a) number of
™
— T 0Y . : ' e
Cambri Your brain is a complex structure a vast network of neurons responsible for ar-tl C | eS Wl-th a -to p I C CO ntal n I ng -th e
TUnit fo thought, feeling, impulse. Michael Greicius, assistant professor of neurology, has 1 by gy
" long been fascinated with the mysterious workings of the brain, calling it “the orga (] '
li;nstltUte th!?talk: :’;CF:”:; you : !101 Greu:lu;l aund his m%;.,ork;r‘s h:T d!:cw‘::grled e -te rm S Sm a_l | —WO rl d an d b ral n an d (b)
CBIOI(:JQ' differences in the brain networks between people with Alzheimer's disease (AD)
. amor and healthy controls—differences that may soon lead to easier diagnosis of the . y
To wn number of citations.
etb23@
Edited | Networks of all kinds work best when they include many hubs, such that data
Octobe people or other elements can zip between them. This networking structure is called
small-world” and occurs in many areas of life, including our own brains
—

The hubs in small-world networks aren't necessarily close to one another, but they
can be reached from other hubs through just a fe making flow more
efficient. Take, for example, the path of news from a small town in the Bay Area
such as Vallejo. A story from Vallejo might be reported by the media hub in San
Francisco, and perhaps picked up and reprinted by media hubs in New York or
internationally. The news doesn't travel from that Bay Area town to New York
through every small town media outlet in between
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EXAMPLE |l: Small-worldness

Shortest-path L: corresponds to the lowest number of
steps to reach a node from any other node of the network.
The average shortest path Is obtained by averaging the
shortest paths between all pair of nodes of the network.
Clustering coefficient C: quantifies the percentage of
neighbours of a node that, in turn, are themselves
neighbours. It Is an indicator of the number of triangles in
the network. In real networks, including the brain, C typically
has much higher values than in an equivalent random p=0 > p=1
network.

Small-world (SW) network: network with high local
clustering C and low average path length L, the latter scaling L I T - L
as L~In(N). Many social, biological and technological 7
networks are small-world. 08 . Cp) 1O ° -
Watts-Strogatz model: theoretical model proposed to [ D i
generate SW networks [4]. Starting from a regular network 06 ]
with an average number of links per node K and a clustering [ ]
coefficient C=1, links are randomly rewired with probability 04T . §
p. For small values of p, C remains high, but L dramatically [ Lp/LO) ° ]
decreases, fulfilling a logarithmic dependence on the 021 * . ]
network size N and leading to a SV network. [ * e o 4
Small-worldness is defined as the ratio between C and L ooopr ooor . ool o1 i
normalized by the L, and C_  of a set of equivalent p

random networks, ie., o = (CCran)y(L/Lran).

Regular Small-world Random




FUNCTIONAL BRAIN NETWORKS: RISKS & CHALLENGES

EXAMPLE |l: Small-worldness

» Brain recording devices and standard analyses used to construct
networks from neural data can distort the extent to which a network
may appear SW (defining the nodes, spurious links, thresholds, ...).

o Quantifying small-worldness parameter is non-trivial. (normalization)
» [he true Aquilles heel of the SW measure lies in interpreting its

significance (meaning of shortest path, efficiency, transmission of
information,...)
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EXAMPLE |l: Small-worldness

OPEN a ACCESS Freely available online

PLOS computationAL BloLOGY

Efficiency and Cost of Economical Brain
Functional Networks

9 *
Sophie Achard, Ed Bullmore
Brain Mapping Unit, Department of Psychiatry, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom

brain functional networks
have economical small-world

properties—supporting efficient
parallel information transfer at
relatively low cost—"

Global Efficiency Local Efficiency

o | Qe
Lattice
© | ©
o o
O (o]
o | : o
i
i
< ! <
o ! o
[}
: Random
o | / ! o
[} [}
<small world regime>
[}
= (i ! o |
o T T T T T o T T T T T
0.012 0.12 0.25 0.37 0.5 0.012 0.12 0.25 0.37 0.5
Cost Cost

Small-World Properties of Human Brain Functional Networks. Global and local
efficiency (y-axis) as a function of cost (x-axis) for a random graph, a regular lattice, and
brain networks. For all networks, global and local efficiency increase with cost; the
random graph has greater global efficiency than the lattice; the lattice has greater local
efficiency than the random graph. On average, over all subjects in each group, young brain
networks (black broken lines) and old brain networks (red broken lines) have efficiency
curves located between the limiting cases of random and lattice topology. The small-
world regime is conservatively defined as the range of costs 0.34<K<0.5 for
which the global efficiency curve for the old networks is greater than the global
efficiency curve for the lattice.
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EXAMPLE |l: Small-worldness

]OURNAI.
THE ROYAL J. R. Soc. Interface (2012) 9, 2131-2144
doi:10.1098 /rsif.2011.0840

SOCIETY
In erface CrossMark Published mizliﬁe 29 February 2012

Dynamics and processing in finite
self-similar networks

Simon DeDeo?* and David C. Krakauer!:2:3

' Department of Genetics, and > Wisconsin Institute for Discovery, University of Wisconsin,
Madison, WI 53706, USA
3Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

show how the existence of
(multiple) paths allows for the
more rapid dissipation of
inhomogeneity. Multiple paths are
thus central for both information-
processing and the time scales of
coordination.”

“Smaller diameter networks
adjust more slowly, have shorter
correlation lengths and cannot
achieve the levels of non-local
integration seen in those nested
systems.”
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EXAMPLE |l: Small-worldness

3 SEPTEMBER 2010 VOL 329 SCIENCE

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 83, 025102(R) (2011 The Spread of Behavior in an Online
Small but slow world: How network topology and burstiness slow down spreading SOC | al N etWO I'k EXpe 1] ment
M. Karsai,"* M. Kiveld,! R. K. Pan,' K. Kaski,! J. Kertész,!> A.-L. Barab4si,>> and J. Saramiki! Damon Centola

'BECS, School of Science and Technology, Aalto University, P.O. Box 12200, FI-00076, Finland
2Institute of Physics and BME-HAS Condensed Matter Group, BME, Budapest, Budafoki it 8., H-1111, Hungary
3Center for Complex Networks Research, Northeastern University, Boston, Massachusetts 02115, USA
(Received 12 June 2010; revised manuscript received 8 November 2010; published 18 February 2011)

"l investigated the effects of network

“While communication networks show structure on diffusion ... The
the small-world property of short behavior spread farther and faster
paths, the spreading dynamics in them across clustered-lattice networks
turns out slow. Here, the time evolution than across corresponding
of information propagation is followed random networks."

through communication networks by using
empirical data on contact sequences and
the susceptible-infected model.”
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The brain is not a usual network: Not a single scale.... not a single

dimension! (topology vs. space vs. time)... not static ... nodes are not
equivalent!
dynamics!
time!?
space!
function?

A possible solution: A network-based reduction of the problem may be too
strict. VWe should include as many biological information as possible in the network.
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TAKE HOME MESSAGE

Just one and simple message. ..

... we face the challenge of creating a
neuro-inspired network science!

some related references...

PHILOSOPHICAL
TRANSACTIONS

O ——
LCenter for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain

S O C I E TY 2Complex Systems Group, Universidad Rey Juan Carlos, Méstoles, Spain
SCNR, Istituto dei Sistemi Complessi, Florence, Italy

D of Psychiatry, Behavioural and Clinical Neurosciences Institute, University of Cambridge,

rsth.royalsocietypublishing.org Cambridge, UK
GlaxoSmithKline, Alternative Discovery and Development, Addenbrooke’s Centre for Clinical Investigations,
Cambridge, UK

Complex network theory and the brain

David Papo’, Javier M. Buldi'2, Stefano Boccaletti® and Edward T. Bullmore®?

frontiers in OPINION ARTICLE %
blished: 27 Febi 2014
HUMAN NEUROSCIENCE ol 0B 2074 9107

Reconstructing functional brain networks: have we got the
basics right?

David Papo'*, Massimiliano Zanin?* and Javier M. Buldi*®

" Computational Systems Biology Group, Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain

2 Departamento de Engenharia Electrotecnica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Lisboa, Portugal
3 Innaxis Foundation & Research Institute, Madrid, Spain

4 Laboratory of Biological Networks, Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain

® Departamento de Tecnologia Electronica, Universidad Rey Juan Carlos, Mdstoles, Spain

*Correspondence: papodav@gmail.com

PHILOSOPHICAL i : :
TRANSACTIONS Functional brain networks: great

), expectations, hard times and the big

THE ROYAL leap forward
SOCIETY

David Papo’, Massimiliano Zanin?3, José Angel Pineda-Pardo’,

rsth.royalsocietypublishing.org Stefano Boccaletti* and Javier M. Buldd'®

Lenter for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain

2Faculdade de Ciencias e Tecnologia, Departamento de Engenharia, Electrotécnica, Universidade Nova de Lishoa,
Lishoa, Portugal

3Innaxis Foundation and Research Institute, Madrid, Spain

4Istituto dei Sistemi Complessi, CNR, Florence, Italy

5Complex Systems Group, Universidad Rey Juan Carlos, Mdstoles, Spain

Opinion piece GrossMark

click for updates

Beware of the small-world, neuroscientist!

David Papo'’, Massimiliano Zanin??, Johann H. Martinez*®, and Javier M. Buldu'®

! Laboratory of Biological Networks, Center for Biomedical Technology & GISC, UPM, Madrid, Spain
3 Innaxis Foundation & Research Institute, Madrid, Spain

5 Modeling and Simulation Laboratory, Business Faculty, Universidad del Rosario de Colombia, Bogot4, Colombia
6 Complex Systems Group & GISC, Universidad Rey Juan Carlos, Mdstoles, Spain
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2 Faculdade de Ciencias e Tecnologia, Departamento de Engenharia Electrotecnica, Universidade Nova de Lisboa, Lisboa, Portugal

4 Department of Physics and Fundamental Mechanics Applied to Agroforestry Engineering, Universidad Politécnica de Madrid, Madrid, Spain
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THE (B) TEAM

“...they survive as soldiers of fortune. If you have a problem, if no one else can help,
and If you can find them, maybe you can hire them...”

tJohann H. Martinez

(Universidad del Rosario, Colombia)

David Papo

(La Puta Calle Institute, Spain)

Jose A. Pineda

‘ (Hospital HM Puerta Sur;, Spain)
 Massimiliano Zanin |

(Innaxis, Spain)

More information at
www.complexity.es/jmbuldu




