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Part 1

Basic Concepts



Spatial scales of the brain

~10cm Whole brain

~1cm Brain structure/cortical areas

100pm- 1mm | Local network/‘column’/‘module’

10pum- Tmm Neuron

100nm- 1um | Sub-cellular compartments

~10nm Channel, receptor, intracellular protein




Neuron

e The brain is made of

isolated cells — neurons and

glia —, which are
structurally, metabolically
and functionally
independent.

e Neuron doctrine (Ramony
Cajal, 1894): The neuron is
the basic functional unit of
the nervous system

e Neurons are specialized for

intercellular communication
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https://en.wikipedia.org/wiki/Neuron



Neurons have many and diverse shapes




Synapse

e Specialized region in which a pre-synaptic cell
makes contact with a post-synaptic cell

* Synapses may be chemical or electrical

Sinapse quimica Sinapse elétrica




Neural circuits and networks

Alex Norton, EyeWire,
Seung Lab, MIT

V.J. Wedeen e L.L. Wald, Martinos Center for
Biomedical Imaging at Massachusetts General Hospital



Synaptic Plasticity

* Generic name given to
any type of change
(strengthening or
weakening) in the
efficacy of a synapse

* Synaptic plasticity can
be of short or long
duration

 Hypothetical mechanism
underlying memory
formation and learning
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Neuronal Membrane

e Thin membrane (60-70 A) that separates the
cytoplasm from the extracellular space

e Made of a lipid bilayer in which proteins are
immersed

e Some proteins cross the membrane forming ion
C h anne I S Water filled pore e

{channel protein)

Extracellular
fluid

Hydrophilic _
polar head

Hydrophobic =
non-polar tail

— Phospholipid
bilayer

Intracellular - —
fluid

http://what-when-how.com/neuroscience/electrophysiology-of-neurons-the-neuron-part-1/



lon channels

e Membrane proteins may undergo
conformational changes under electrical and
chemical control, thus regulating ionic flux

e The figure below illustrates a channel opening
due to a protein-ligand binding
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Membrane potential

e There is a difference of electrical potential
between the two sides of the neuronal
membrane

e Defining the zero of potential at the outside
the inside is, in general, at a potential of =50
to —-90 mV

aximo axdnio



lonic concentrations

e |on concentrations
are different on the
two sides of the
neuronal membrane
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Ion In (mM) Out (mM)
Frog muscle (20°C)
K* 124 2,25
Na* 10,4 109
Cr 1,5 77,5
Ca?* 10 2,1
Squid giant axon (20°C)
K* 400 20
Na* 50 440
Cr 40-150 560
Ca?* 104 10
Typical mammalian cell
37°0)
K* 140 5
Na* 5-15 145
Cr 4 110
Ca?* 10 2,5-5




Origin of the membrane potential
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Depolarization and hyperpolarization
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Action potential

e Shape (width and amplitude) characteristic of each
neuron

Spikes

e Threshold phenomenon (all or none) g

Flutuagdes sub-limiares

e Propagates unchanged while subthreshold voltage
fluctuations are strongly attenuated

e Used by neurons to code and transfer information
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Refractory periods

Absolute: period during which a second stimulus (no
matter how strong) will not lead to a second spike. It is
as if the spike threshold were infinite

Relative: period during which a second spike can be
generated by a second stimulus stronger than the first.
The strength of the second stimulus decays with time
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F-1 Curve

Firing rate (F) of a neuron

as a function of its input

current (1) e 7
Each I value correspondsto =~
a constant step current
applied for a given time
Describes the input-output
transfer function of the
neuron

In general, F-I curves are
nonlinear with saturation

for high input values —

Frequéncia (f)




Electrophysiological classes

* Different types of neurons produce different
spike train patterns in response to the same input

current

* The different patterns are grouped in
electrophysiological classes (four examples of
cortical classes are shown below)
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Steriade (2004)



Spike train measures
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Raster plot and PSTH

Used to represent neuronal response because of
neuronal variability
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Interspike Intervals (1Sls)

Another way to measure neuronal variability
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Regular spiking
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The graphs show two ways to
quantify the responses of four
types of cortical neurons: by the
F-I curve and the histogram of
ISls

Nowak et al., J. Neurophysiol (2003)
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Postsynaptic potentials

41
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Time (ms)
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s Presynaptic
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EPSP: excitatory

N
postsynaptic potential PSP

Postsynaptic neuron
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IPSP: inhibitory
postsynaptic potential



The membrane equation (passive)

Intracelular

T lmJ, T Intracelular
E — \I Q ﬂ _ Ic\L %G J,IR T
a2 [y 1
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| s v
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3D representation of a network model

Network
architecture

Network
model

Synaptic
model

Neuron
model



Part 2

Single neuron models



What to model in a neuron model?

-  Morphology (shape, axonal target, smooth or spiny);
- Electrophysiology (spike shape, pattern of spike train);
- Neurochemistry (neurotransmitter released at synapses);
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Neuron model

Deterministic vs. Stochastic

Firing rate vs. Spiking
High-dimensional vs. Low dimensional
More vs. Less Biologically Faithful



Deterministic Stochastic

Probability
of firing
Rest ‘ u Rest N

Threshold



Deterministic Stochastic

Probability
of firing
— > — >
Rest u Rest u
Threshold
Small
probability

Do not fire of firing



Rest

Deterministic

Threshold

Do not fire

c WV

Stochastic

Probability
of firing
—= >
Rest \ u
A bit larger
probability

of firing



_

Deterministic

Rest

Threshold

Do not fire

c WV

Stochastic

Probability
of firing
——— >
Rest \ u
A still larger
probability of
firing

oops. neuron fired!



—

Deterministic

Rest

Threshold

c WV

Stochastic

Probability
of firing
= >
Rest u

uis reset
after firing



Deterministic Stochastic

Probability
of firing
Rest | u Rest u
Threshold
Small
probability
Do not fire of firing

And so on...



Comments

e Stochastic neuron models may fire in the
presence of subthreshold inputs

* Firing of stochastic neuron models is not
reproducible, i.e. repetitions of the previous
simulation with the same order of synaptic
inputs produce firing patterns with different
spike times



Neurons indeed show
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dashed line is the expected relationship for a Poisson point process.



Spiking model Firing rate model

Output of neuron

firing /
Output of neuron rate A
/ time

A% HERE. |time \/\,M

Membrane N
potential em rane
potential




The firing rate neuron

I t Internal variable called f
nputs \ 5 Weight activation level (or simply
1 GIgiS activation) of neuron
/ |
u
% Output (or activity): S = f{u) f(u) = Transfer function
f(u) >
n
u=w, X, T WXttt b= _El“i X+b
- 1:

Activation threshold
or bias n
11=.E:)\'\i Xi . X0=1 and Wy = b
1=

or



Transfer functions
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Comments

* Firing rate models are among the earliest
forms of neuron modeling (late 1930s)

* They are the default neuron model used by
Artificial Neural Networks (ANNSs)

* |n brain modeling, firing rate models are
supposed to mimic not single cells but the
“average” firing behavior of cell populations



Population rate model

e Suppose a population of neurons so close together
that they can be considered as ‘equivalent’, i.e. they
have similar properties and connectivity and receive
the same input. Due to noise, which is assumed to be
independent for each neuron, their response to the
input can be different.

* The firing rate, or activity A(t), of the population is

given by

is the number of spikes of the population

. (it + At
A(f) = lim lim — s )
At—0 N— At N

where Ngpikes

in the short time At



* Assume there are many groups of neurons. Each group
i contains a large number of neurons and is described
by its activity A(t).

 The interaction between the different groups can be
modeled by

4, =f(2‘]jiAi
\ "

where A; is the population activity of group j which
receives input from other groups i
* In this equation, J; are no longer the weights of

synapses between two neurons but an effective
interaction strength between two groups of neurons.



Model dimension

* The dimension of a model is the number of
variables used by the model: 1, 2, 3, 4, etc

* |n general, the higher the number of
dimensions of a model, the more difficult to
understand its behavior

* Each variable has an equation associated to it,
so high dimensional models are more
computationally expensive



Criteria for biological faithfulness

* Explicitness: model variables can be mapped
to measured quantities;

* Number of details included: dendritic
morphologies, ionic channel types,
inhomogeneities in ion channel distributions,
intracellular and biochemical mechanisms
(calcium buffering, diffusion, second
messengers pathways), extracellular potential

* How is a spike generated? By hand or
naturally from the equations



Hodgkin-Huxley model

e 4D, single compartment, explicit (based on ionic

conductances), spikes naturally generated
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Hodgkin-Huxley formalism

Opening and closing of
Individual channels is a
stochastic process

cell

ion channel recording
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Comment RN

e Hodgkin and Huxley (1952) developed their
model to describe action potential generation
in the squid giant axon

* |tis hugely different from mammalian cortical
neurons

e Butionic currents in cortical neurons can be
described in a similar way, hence “Hodgkin-
Huxley-type models”



Detailed compartmental models

* D=g(m+1); g = number of compartments; m =
number of conductances

e Used mostly for single-neuron modeling

A. Characterized Neuron
oy B
——
25 um
W

T
ERRE RN

Model of a cerebellar Purkinje cell (De Schutter
and Bower, 1994): 4550 compartments.



Comment

* The addition of more and more compartments
to a neuron model seems to be a good strategy
to get closer to the “real thing”

* However, increased complexity not necessarily
always lead to better models:

— Each new compartment requires the modeler to
decide which conductances to put in it and with
what parameters, and there are few cases in which
these are known (so the modeler has to “guess”)

— As the number of parameters increase so does the

number of parameter combinations that produce
similar behavior (how unique is a model?)



Reduced compartmental models

e Few compartments (e.g. ball-and-stick model)

e Used in “realistic” network models
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Reduced HH models

Hodgkin-Huxley
Transient Na Current (m,h)

Persistent K Current (n)
Leak Current

Remove h
Remove n and Leak

Transient Na Current (m,h)

Leak Current

Persistent Na Current (m)

Persistent K Current (n)

Minimal Models /\

h m n
Gating for Gating for Gating for
Inactivation Activation Activation
of Na Current of Na Current of K Current
Leak Current Gating variables
Izhikevich (2007)
Tonic Spiking

Eleax (MV)

Cymbalyuk

Bursting

Silence

10 15
gIeak (nS)

Single compartment models
with only 2 or 3 variables
(one being V)

Can replicate a number of
properties of the HH model,
including the genesis of an
action potential

Can be analyzed in the phase
plane using dynamical
systems tools: equilibrium
points, limit cycles,
bifurcations
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Reduced HH models

Hodgkin-Huxley
Transient Na Current (m,h)
Persistent K Current (n)
Leak Current

Transient Na

Leak Current

Current (m,h) Persistent Na Current (m)

Persistent K Current (n)

-50

-60

-65

V, m: fast variables
N, h: slow variables

m(t)=> m,,
n(t) = 0.84 — h(t)

Model with 2
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Reduced models can be analyzed in the phase plane using dynamical
systems tools: equilibrium points, limit cycles, bifurcations



Fast variables (V, m)
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V and n (fast and slow variables)
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V, m: fast variables
n, h: slow variables
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Fitzhugh-Nagumo Model

2-D system that has the same qualitative characteristics of the fast-slow phase plane

. w)=0
/Cublc N gv.w) Stable branches
dv o /o _
E = f(v) —w+ Iapp f(v.w):O‘!‘ """"
dw \ =]
dr (v —yw). V.w) Vo, Vi)
v = voltage; / .
w = recovery variable \ \
w 0.8 -
0.30 4 ’ r dw/dt =0
aviar=0 =0
025 f Iapp — (g Keener&Sneyd(1998) 4 | Iapp = 0.5
020
. 015 = 06—
0.10
0.05 — 0.5 -
0.00 ;
-0.05 +———f——T7—T— 71— b4 T T
-0.4 0.0 0.4 0.8 -0.4 0.0 0.4 0.8
v Vv
System has a stable resting state The resting state is unstable

and is excitable

and there is a periodic orbit



Fitzhugh-Nagumo model
(Bifurcation diagram)
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Simple spiking neuron models

1D or 2D, non-HH type models (not explicit)
Emphasis on neuronal response (spike trains)
Spikes generated by hand

Examples:

— Leaky integrate-and-fire (LIF) model (Lapicque 1907)
— Non-linear LIF models (quadratic, exponential)

— lzhikevich model

— Adaptive exponential integrate-and-fire (AdEx) model



The LIF model —
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Dynamics of the LIF model

] dVv
Rescaling TE=—(V—Vrest)+R'l :
V-V . RI )
ys——© . j= s t=t/T=
‘/th _‘/rest ‘/th T Vrest
dv .
dt

with threshold atv=1
Stable fixed pointatv =i

For i< 1the membrane potential goes to the
fixed point and stays there (no spikes)

Fori>1the membrane potential gets to the
threshold and a spike occurs

After the spike the membrane potential is reset
to 0 and the process starts again

The neuron keeps firing regularly while the
above threshold stimulus is on




Non-linear I&F models

Extensions of the LIF model given by
dv ,
T—=0Q(V)+1
=00
with
p(v)=a(v-b) (quadratic IF model, QIF)
¢(v)=—-v+ae’” (exponential IF model, EIF)

The black dot in the top graph is a stable fixed point
and the white dot is an unstable fixed point

The voltage value of the white dot is the critical
voltage for spike initiation by a short current pulse

The bottom graph shows the case for a constant
super-threshold current: the result is repetitive
firing

Notice that a strong inhibitory current can push the
curve below the dv/dt = 0 line and disrupt the A
repetitive firing




Firing-rate

Firing-rate, v(I(Hz)

F-1 curves of IF models for a constant input
current (A) and a noisy input current (B)
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Firing behavior of IF models
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Voltage traces of IF models for the same

noisy input current. B shows a higher resolution
for a short time interval in which a spike has
been generated in all models

Fourcaud-Trocmé et al. (2003)



LIF with adaptive variable

Redaptagse na nquidnsia do dipamn
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T dt —(V-V;)(1+ Rg,) + RI g, is incremented after each spike so that the
d stronger /, current forces the voltage to V,,
Ta Ja = —(a thus making it more difficult for the voltage to

dt reach threshold



lzhikevich model

integrator resonator

" threshold
manifold

Quadratic integrate-and-fire with
recovery variable (v and u).

v nullcline: quadratic
u nullcline: linear
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reset occurs not at the threshold but
at the peak of the spike

Izhikevich, 2007



Izhikevich model

By adjusting the four parameters (a, b, ¢, d) of

the model to experimental data, Izhikevich

was able to mimic the firing behavior of a
large number of cell types
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www.izhikevich.com



Adaptive EIF model (AdEx)

Exponential integrate-and-fire with INITIATION PATTERN
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AdEx vs Izhikevich

The main differences of the Izhikevich model and the AdEx model are:

guadratic voltage dependence in the voltage equation of the Izhikevich model versus
exponential dependence in the AdEx model;

upswing of the action potential is too slow in the Izhikevich model (Izhikevich 2007)
compared to real neurons and more realistic in the AdEx model because of the exponential
voltage dependence (Badel et al. 2008);

the Izhikevich model shows unrealistic nonlinearities in the subthreshold regime,
whereas the AdEx model is linear in agreement with experiments (Badel et al. 2008);
attenuation of high frequency inputs as Y2 for a model with quadratic voltage dependence
like in the Izhikevich model vs. 1/f for models with exponential voltage dependence (Fourcaud
et al, 2003);

the choice of the voltage cut-off value for spikes is critical in the Izhikevich model but less
so in the AdEx model (In the absence of a cut-off the adaptation variable w diverges in the
Izhikevich model during the upswing of the action potential but does not diverge in the AdEx
model.);

extraction of the voltage dependence from experiments suggests a combination of linear
and exponential terms as in the AdEx model (Badel et al. 2008), rather than a quadratic
dependence as in the Izhikevich model;

while qualitative fits to firing patterns are possible with both models, the AdEx model
allows better quantitative fits to voltage traces (Naud et al. 2008).

http://www.scholarpedia.org/article/Adaptive_exponential_integrate-and-fire_model
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