

Modern Computer Architectures

Ivan Girotto – igirotto@ictp.it

Information & Communication Technology Section (ICTS)
International Centre for Theoretical Physics (ICTP)

Performance Metrics

- When all CPU component work at maximum speed that is called peak of performance
 - Tech-spec normally describe the theoretical peak
 - Benchmarks measure the real peak
 - Applications show the real performance value
- CPU performance is measured as:
 - Floating point operations per seconds FLOP/s
- The real performance is in many cases mostly related to the memory bandwidth (Bytes/s) and the exploitation of the parallelism within the CPU

The Classical Model

John Von Neumann

The Instruction Processing Cycle

- Fetch: read the next instruction from memory
 - 001000 00001 00010 000000100001000
- Decode: operands and operation are decoded
 - add, \$r1, \$r2, 10
- Load: retrieve the data from memory to registers
- Execute: execute the instruction
 - \$r1 = 4500 + 10
- Store: store the results

Sequential Processing

Pipelining

Pipelining

Superscalaring

Loops and Pipeline


```
for( i = 0; i < N; i += 1 )
{
    A[i] = s * A[i]
}</pre>
```

```
Loop: load r1, A(i)
load r2, s
mult r3, r2, r1
store A(i), r3
branch => loop
```


The CPU Memory Hierarchy

CPU Registers

CACHE

MAIN MEMORY

COMPUTATION

APPLICATION DATA

Cache Memory

- Expensive (SRAM) high-speed memory
- Relatively low-capacity in regards to RAM
- Cache Memory are for Instructions (i.e., L1I)
 and for Data (i.e., L1D)
- Modern CPU are designed with several levels of cache memories

Cache Memory

Loop: load r1, A(i)
load r2, s
mult r3, r2, r1
store A(i), r2
branch => loop

 Designed for temporal/spatial locality

 Data is transferred to cache in blocks of fixed size, called *cache* lines.

CACHE

- Operation of LOAD/STORE can lead at two different scenario:
 - cache hit
 - cache miss

MAIN MEMORY

Caches

Fast memory to exploit spatial and temporal locality!

The CPU Memory Hierarchy

HPC Trend and Moore's Law

To the Extreme - Parallel Inside

Vector Units for processing multiple data in //

Pipelined/Superscalar design: multiple functional units operate concurrently

Few basic rules for optimized codes

- Do less work!!
 - Elimination of common sub-expressions
- Avoid expensive operations
 - Reduce your math to cheap operations
 - Avoid branches
- Think as a the compiler works
 - Enhance the compiler

Symmetric Multiprocessors (SMP)

MAIN MEMORY

Modern NUMA Multicores

The AMD Opteron 6380 Abu Dhabi 2.5GHz

Socket P#1 (64GB)							
NUMANode P#2 (32GB)							
L3 (6144KB)							
L2 (2048KB)		L2 (2048KB)		L2 (2048KB)		L2 (2048KB)	
L1i (64KB)		L1i (64KB)		L1i (64KB)		L1i (64KB)	
L1d (16KB)	L1d (16KB)	L1d (16KB)	L1d (16KB)	L1d (16KB)	L1d (16KB)	L1d (16KB)	L1d (16KB)
Core P#0 PU P#16	Core P#1	Core P#2 PU P#18	Core P#3 PU P#19	Core P#4 PU P#20	Core P#5 PU P#21	Core P#6 PU P#22	Core P#7 PU P#23
NUMANode P#3 (32GB)							
L3 (6144KB)							
L2 (2048KB)		L2 (2048KB)		L2 (2048KB)		L2 (2048KB)	
L1i (64KB)		L1i (64KB)		L1i (64KB)		L1i (64KB)	
L1d (16KB)	L1d (16KB)	L1d (16KB)	L1d (16KB)	L1d (16KB)	L1d (16KB)	L1d (16KB)	L1d (16KB)
Core P#0 PU P#24	Core P#1 PU P#25	Core P#2	Core P#3 PU P#27	Core P#4 PU P#28	Core P#5	Core P#6 PU P#30	Core P#7

The Intel Xeon E5-2665 Sandy Bridge-EP 2.4GHz

State of the art

AMD

Intel

Threading and Vectorization

