Part 3

Synaptic models



Purpose of synaptic modeling

* To capture the following facts:

1. Some neurons have stronger and more lasting
influences over a given neuron than others

2. Some of these influences are excitatory (increase
the likelihood of spike emission) while some are
inhibitory (decrease this likelihood)

3. The strength of the influence of a neuron over
another one changes over time as a function of
the activities of both neurons (synaptic plasticity)
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Types of synapses

Electrical

2 neurons linked together
by gap junctions
Rapid communication

Bidirectional
communication

Excitation/inhibition at the
same synapse

Occur between neurons
and glia

Chemical
Signal transduction
Excitatory or inhibitory
Slower communication

Unidirectional
communication

More plastic



Electrical synapses
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An action potential in the
presynaptic neuron causes the
postsynaptic neuron to be
depolarized within a fraction of
millisecond

Gap junction coupling can be
modeled by a single resistance
connecting the 2 cells (see
equivalent circuit to the left).

The corresponding equations are
given below the figure. The cell-cell
coupling coefficient is k and the
transjunctional current is [



Chemical Synapses

Excitatory or inhibitory
lonotropic (fast) and metabotropic (slow)

Many neurotransmitters, but the most common
in the cortex are:

— Glutamate (usually excitatory)

— y-aminobutyric acid (GABA) (usually inhibitory)
Dynamics depends on receptor type:

— Glutamate receptors: AMPA/Kainate and NMDA
— GABA receptors: GABA, and GABA;

Short-term and long-term synaptic plasticity



Postsynaptic potentials

* Excitatory postsynaptic Synapric

potential
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Postsynaptic potentials summation

B
A | Epsp g ©
“Epsp IPSP

hillock
Axon ——

Temporal summation:
(spikes from the same cell
arriving at successive times)

B
A | EPSP ¢, g
epsp IPSP

@)

w
o

X0
hillock

Membrane potential (mV)
L& +
a

~
o

Spatial summation:
(spikes from different cells
arriving at the same time)



lonotropic and Metabotropic Synapes
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Synaptic receptors

Glutamate GABA
* lonotropic * lonotropic
— AMPA/Kainate: early — GABA,
EPSP

 Metabotropic

— NMDA: activated — GABA,

when cell is already

depolarized (late
EPSP)



Synaptic models

There are many models, the most common in
network models assumes a synaptic current

Isyn = g(t)(vpost - Vrev)

V.., = =75 mv (inhibitory synapses) and V., =0

ev

(excitatory synapses)

g(t) = synaptic conductance of postsynaptic cell

Synaptic delays can
also be introduced
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Synaptic conductance

 The time course of g(t) can be modeled by
kinetic equations but in general fixed time
course functions are used
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Fixed functions used to model g(t)
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Synaptic inputs in the LIF model

(also valid for other IF models)
e Current-based model: Each presynaptic spike
generates a postsynaptic current pulse in

neuron /
dV

— —V; + RI}V"(t

Fixed function
/
syn
Z wiy Z

. tj(f) are the spike times of presynaptic neuron j

* w; is the synaptic efficacy (weight) of the
synapse from neuron j to neuron i



Synaptic inputs in the LIF model

(also valid for other IF models)

Conductance-based model: Each presynaptic
spike generates a change in the conductance
of the postsynaptic membrane with time
course g(t - t )
dV;
dt

v ( wa Z (t — t§.f)) (Vi(t) — View)

= —Vi + RI.”"(t)




Short-term plasticity
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Experimental recordings showing depression (A) and
facilitation (B) of excitatory cortical synapsesin a
slice of rat somatosensory cortex. A. Markram &

Synaptic conductance given by

g(t) = gpsprel

p. = probability that a postsynaptic
channel opens given that a transmitter
was released by presynaptic neuron =2
modeled by an a function
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sequence of 4 presynaptic spikes followed by a 5th
spike 400 ms after (Gerstner & Kistler, 2002)



Excitatory/Inhibitory synaptic balance
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To keep firing rates from differing too greatly between the two cases, the value of
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Activity-dependent synaptic plasticity

* Widely believed as the basic phenomenon

underlying learning and memory

 Hebb (1949): if input from neuron A often

contributes to the firing of neuron B, t

nen the

synapse from A to B should be strengt

nened

 More recently, Hebb’s suggestion has

peen

generalized to include decreases in strength
arising from repeated failure of neuron A to
be involved in the activation of neuron B



LTP and LTD

CA] eCorg
CA3 Record
pvramidal .
cell \ Schaffer
collaterals
Strong depolarizing pulses
paired with EPSPs
Test
4 [
- -
g s A
'g 2 \:‘. .. ’..0
=1 ...°..~:O‘.. Rl [k ™ 5
%‘ LR o..l ‘~%'. : I:»,Ss o
: L
< 7
e 0 -
§ 00. L) -
0 10 30 40 50 60 70

CA1l
pvramidal

cell \
=4

v
7
<7

Record

CA3
pyramidal N

cell

Schaffer
collaterals

gjq 150

iu

2

S

£ 5

- I

0 15 30 45 60
Time (min)

Low-frequency stimulation

Purves et al. (2001)



Synaptic weight (w;)

* Simplest synaptic model, mostly used by firing
rate models but good to illustrate synaptic
plasticity rules
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Hebbian plasticity




Hebbian plasticity




Hebbian plasticity
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Hebbian plasticity
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Hebbian plasticity
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Hebbian plasticity
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Hebbian plasticity
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Neurons that fire together
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Spike-timing dependent plasticty
(STDP)
* The relative timing of pre- and postsynaptic

affects the sign and amplitude of the activity-
induced changes in synaptic efficacy
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Zhang et al., 1998 (Fig. 8.2B from Dayan & Abbott, 2001)



Spike-timing dependent plasticity




Spike-timing dependent plasticity




Spike-timing dependent plasticity




Spike-timing dependent plasticity
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Spike-timing dependent plasticity
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Spike-timing dependent plasticity
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Spike-timing dependent plasticity
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Models of long-term plasticity

Ly, =8 50 (Vi = Vi)

* Changesin g2 (to model incorporation or
removal of channels)

* Implemented by hand or through a learning
rule

* The time-scale of € changes is much slower
than the one of membrane potential
dynamics



Example of learning rule (Hebb’s rule)

Neurdnio de saida
(resposta)

Change in ith synaptic
weight (Hebb’s rule)

B = learning rate;

S = activity of postsynaptic
neuron;

x; = activity of ith presynaptic
neuron

Neurdnios de entrada
(estimulos)
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Sinal de
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Other implementations
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