Part 3

Synaptic models

Purpose of synaptic modeling

- To capture the following facts:
- 1. Some neurons have stronger and more lasting influences over a given neuron than others
- 2. Some of these influences are excitatory (increase the likelihood of spike emission) while some are inhibitory (decrease this likelihood)
- 3. The strength of the influence of a neuron over another one changes over time as a function of the activities of both neurons (synaptic plasticity)

Types of synapses

Nature Reviews | Neuroscience

Types of synapses

Electrical

- 2 neurons linked together by gap junctions
- Rapid communication
- Bidirectional communication
- Excitation/inhibition at the same synapse
- Occur between neurons and glia

Chemical

- Signal transduction
- Excitatory or inhibitory
- Slower communication
- Unidirectional communication
- More plastic

Electrical synapses

An action potential in the presynaptic neuron causes the postsynaptic neuron to be depolarized within a fraction of millisecond

Neuroscience, 2nd edition.

Purves D, Augustine GJ, Fitzpatrick D, et al., editors.

Sunderland (MA): Sinauer Associates, 2001

Gap junction coupling can be modeled by a single resistance connecting the 2 cells (see equivalent circuit to the left). The corresponding equations are given below the figure. The cell-cell coupling coefficient is k and the transjunctional current is $I_{\rm GI}$

Chemical Synapses

- Excitatory or inhibitory
- Ionotropic (fast) and metabotropic (slow)
- Many neurotransmitters, but the most common in the cortex are:
 - Glutamate (usually excitatory)
 - γ-aminobutyric acid (GABA) (usually inhibitory)
- Dynamics depends on receptor type:
 - Glutamate receptors: AMPA/Kainate and NMDA
 - GABA receptors: GABA_A and GABA_B
- Short-term and long-term synaptic plasticity

Postsynaptic potentials

- Excitatory postsynaptic potential (EPSP): Transient depolarization of the postsynaptic membrane by presynaptic release of neurotransmitter
- Inhibitory postsynaptic potential (IPSP): Transient hyperpolarization of the postsynaptic membrane by presynaptic release of neurotransmitter

Postsynaptic potentials summation

Temporal summation: (spikes from the **same** cell arriving at successive times)

Spatial summation: (spikes from **different** cells arriving at the same time)

Ionotropic and Metabotropic Synapes

Ionotropic: fast

Metabotropic: slow

Synaptic receptors

Glutamate

- Ionotropic
 - AMPA/Kainate: earlyEPSP
 - NMDA: activated
 when cell is already
 depolarized (late
 EPSP)

GABA

- Ionotropic
 - $-GABA_{A}$
- Metabotropic
 - GABA_R

Synaptic models

 There are many models, the most common in network models assumes a synaptic current

$$I_{\rm syn} = g(t) \left(V_{\rm post} - V_{\rm rev} \right)$$

- $V_{rev} = -75$ mv (inhibitory synapses) and $V_{rev} = 0$ (excitatory synapses)
- g(t) = synaptic conductance of **postsynaptic** cell
- Synaptic delays can also be introduced

Synaptic conductance

 The time course of g(t) can be modeled by kinetic equations but in general fixed time course functions are used

Fixed functions used to model g(t)

(a)
$$g(t) = ar{g} \exp \left(-rac{t-t_j}{ au}
ight)$$

(b)
$$g(t) = ar{g} \, rac{t-t_j}{ au} \exp iggl(-rac{t-t_j}{ au} iggr)$$

(alpha function)

$$\text{(c)} \ \ g(t) = \bar{g} \, \frac{\tau_1 \tau_2}{\tau_1 - \tau_2} \left(\exp \left(- \, \frac{t - t_j}{\tau_1} \right) - \exp \left(- \, \frac{t - t_j}{\tau_2} \right) \right)$$

Synaptic inputs in the LIF model

(also valid for other IF models)

 Current-based model: Each presynaptic spike generates a postsynaptic current pulse in neuron i

$$aurac{dV_i}{dt} = -V_i + RI_i^{syn}(t)$$
 Fixed function $I_i^{syn}(t) = \sum_j w_{ij} \sum_f lphaig(t-t_j^{(f)}ig)$

- $t_j^{(f)}$ are the spike times of presynaptic neuron j
- w_{ij} is the synaptic efficacy (weight) of the synapse from neuron j to neuron i

Synaptic inputs in the LIF model

(also valid for other IF models)

• Conductance-based model: Each presynaptic spike generates a **change in the conductance** of the postsynaptic membrane with time course $g(t - t_j^{(f)})$

$$aurac{dV_i}{dt} = -V_i + RI_i^{syn}(t)$$

$$I_i^{syn}(t) = -\sum_j w_{ij} \sum_f g\Big(t-t_j^{(f)}\Big)(V_i(t)-V_{rev})$$

Short-term plasticity

Experimental recordings showing depression (A) and facilitation (B) of excitatory cortical synapses in a slice of rat somatosensory cortex. A. Markram & Tsodykes, 1996. B. Markran et al., 1998

Simulation of facilitation (left) and depression (right): sequence of 4 presynaptic spikes followed by a 5th spike 400 ms after (Gerstner & Kistler, 2002)

Synaptic conductance given by

$$g(t) = \overline{g}p_s p_{rel}$$

- p_s = probability that a postsynaptic channel opens given that a transmitter was released by presynaptic neuron → modeled by an α function
- p_{rel} = probability that a transmitter is released by presynaptic neuron following the arrival of an action potential
- p_{rel} is affected by synaptic facilitation and depression

$$\tau_{p} \frac{dp_{rel}}{dt} = p_0 - p_{rel} + f_F \left(1 - p_{rel} \right) \sum_{i} \delta \left(t - t_{j} \right)$$

$$\tau_{p} \frac{dp_{rel}}{dt} = p_{0} - p_{rel} - f_{D} p_{rel} \sum_{j} \delta(t - t_{j})$$

Excitatory/Inhibitory synaptic balance

Upper panels: Spikes not put by hand (V is allowed to change according to input)

Lower panels: Spikes generated in the usual way

To keep firing rates from differing too greatly between the two cases, the value of reset voltage is higher in B than in A

Activity-dependent synaptic plasticity

- Widely believed as the basic phenomenon underlying learning and memory
- Hebb (1949): <u>if input from neuron A often</u> <u>contributes to the firing of neuron B, then the</u> <u>synapse from A to B should be strengthened</u>
- More recently, Hebb's suggestion has been generalized to include decreases in strength arising from repeated failure of neuron A to be involved in the activation of neuron B

LTP and LTD

Synaptic weight (w_{ii})

 Simplest synaptic model, mostly used by firing rate models but good to illustrate synaptic plasticity rules

Neurons that fire together wire together

Spike-timing dependent plasticty (STDP)

 The relative timing of pre- and postsynaptic affects the sign and amplitude of the activityinduced changes in synaptic efficacy

Zhang et al., 1998 (Fig. 8.2B from Dayan & Abbott, 2001)

Models of long-term plasticity

$$I_{\text{syn}} = \overline{g} \cdot s(t) \cdot \left(V_{\text{post}} - V_{\text{rev}}\right)$$

- Changes in \overline{g} (to model incorporation or removal of channels)
- Implemented by hand or through a learning rule
- The time-scale of \overline{g} changes is much slower than the one of membrane potential dynamics

Example of learning rule (Hebb's rule)

Other implementations

Sinal de ativação **External inputs** Time intervals at which the activation neuron $I_1(t)$ sends signals to representation neurons (time varying) 1Δ Intervalos de tempo em que o Padrões externos 2Δ neurônio de ativação envia sinais (variáveis no tempo) para os neurônios de representação 3Δ $I_3(t)$ Neurônios de representação Sinal de ativação Neural "Context" $I_1(t)$ sinapses inibitórias $I_2(t)$ Padrões externos (variáveis no tempo) $I_3(t)$ Neurônio "vencedor" da competição

> Neurônios de representação