Errors in Scientific Computing

• Before computations:
 - Modeling: neglecting certain properties
 - Empirical data: not every input is known perfectly
 - Previous computations: data may be taken from other (error-prone) numerical methods
 - Sloppy programming (e.g. inconsistent conversions)

• During computations:
 - Truncation: a numerical method approximates a continuous solution
 - Rounding: computers offer only finite precision in representing real numbers
Example

- Computing the surface of the earth using

\[A = 4\pi r^2 \]

- This involves several approximations:
 - Modeling: the earth is not exactly a sphere
 - Measurement: earth's radius is an empirical number
 - Truncation: the value of \(\pi \) is truncated
 - Rounding: all numbers used are rounded due to arithmetic operations in the computer

- Total error is the sum of all errors, but one of them is often the dominant error
Representing Numbers (1)

- Real numbers have unlimited accuracy
- Yet computers “think” digital, i.e. in integer math => only a fixed range of numbers can be represented by a fixed number of bits => distance between two integers is 1
- We can reduce the distance through fractions (= fixed point), but that also reduces the range

<table>
<thead>
<tr>
<th></th>
<th>16-bit</th>
<th>32-bit</th>
<th>64-bit</th>
<th>28-bit / 4-bit</th>
<th>22-bit / 10-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>-32768</td>
<td>-2147483648</td>
<td>~ -9.2233 * 10^{-18}</td>
<td>-16777216.0000</td>
<td>-2048.000000</td>
</tr>
<tr>
<td>Max.</td>
<td>32767</td>
<td>2147483647</td>
<td>~ 9.2233 * 10^{-18}</td>
<td>16777215.9375</td>
<td>~ 2047.999023</td>
</tr>
<tr>
<td>Dist.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.0635</td>
<td>0.0009765625</td>
</tr>
</tbody>
</table>
Representing Numbers (2)

- Need a way to represent a wider range of numbers with a same number of bits
- Need a way to represent numbers with a reasonable amount of precision (distance)
- Same relative precision often sufficient:

 => Scientific notation:

 +/- (mantissa) * (base)^ +/- (exponent)

 Mantissa -> integer fraction
 Base -> 2
 Exponent -> a small integer
IEEE 754 Floating-point Numbers

- The IEEE 754 standard defines: storage format, result of operations, special values (infinity, overflow, invalid number), error handling => portability of compute kernels ensured

- Numbers are defined as bit patterns with a sign bit, an exponential field, and a fraction field
 - Single precision: 8-bit exponent, 23-bit fraction
 - Double precision: 11-bit exponent, 52-bit fraction
Values of Floating-Point Numbers

• Value: \((1 - \text{mantissa})/(2^{\text{fraction bits}}) \times 2^{\text{exponent-bias}} \)
 \[1.0 \leq \text{mantissa} < 2.0, \text{exponent} \geq 0\]

• Special case: 0.0 is all bits set to zero
 Special case: -0.0 is like 0.0 but sign bit is set
 More special cases: Inf, -Inf, NaN, -NaN

• Single precision: \(\sim \pm 1.2 \times 10^{-38} < x < \sim \pm 3.4 \times 10^{38} \)
 actual precision: \(\sim 7 \) decimal digits

• Double precision: \(\sim \pm 2.2 \times 10^{-308} < x < \sim \pm 1.8 \times 10^{308} \)
 actual precision: \(\sim 15 \) decimal digits
Density of Floating-point Numbers

- How can we represent so many more numbers in floating point than in integer? *We don't!*
- The number of unique bit patterns *has* to be the *same* as with integers of the same bitness
- There are 8,388,607 single precision numbers in $1.0 < x < 2.0$, but only 8191 in $1023.0 < x < 1024.0$
- => absolute precision depends on the magnitude
- => some numbers are not represented exactly
- => approximated using rounding mode (nearest)
Math with Floating Point Numbers

Addition:
- Right bitshift mantissa and increment exponent of smaller number until both exponents are the same
- Add mantissa of both numbers and bitshift until mantissa is between 1.0 and 2.0 again
- Only if both numbers have the same sign and the same exponent precision is preserved

Multiplication:
- Add exponents and multiply mantissa of both numbers
- Bitshift mantissa until its value is between 1.0 and 2.0
- No loss of precision; error is larger error of either number
Floating-Point Math Pitfalls

- Floating point math is commutative, but **not associative**! Example (single precision):
 \[1.0 + (1.5 \times 10^{38} + (-1.5 \times 10^{38})) = 1.0 \]
 \[(1.0 + 1.5 \times 10^{38}) + (-1.5 \times 10^{38}) = 0.0 \]

- => the result of a summation depends on the order of how the numbers are summed up
- => results may change significantly, if a compiler changes the order of operations for optimization
- => prefer adding numbers of same magnitude
- => avoid subtracting very similar numbers
How To Reduce Errors

- Use double precision unless you can be sure of error cancellation or using an imprecise model => collides with vectorization and GPU/MIC
- When summing numbers of different magnitude
 - Sort first and sum in ascending order
 - Sum in blocks (pairs) and then sum the sums
 - Use integer fraction, if range and precision allow it
- NOTE: summing numbers in parallel may give different results depending on parallelization
Floating Point Comparison

- Floating-point results are usually **inexact**
 => comparing for equality is **dangerous**
 Example: don't use a floating point number for controlling a loop count. Integers are made for it
- It is OK to use exact comparison:
 - When results **have** to be bitwise identical
 - To prevent division by zero errors
- => compare against expected absolute error
- => don't expect higher accuracy than possible
Floating Point vs. Math Library

- libm is part of standard C, thus it is ubiquitous
- Provides a large variety of mathematical functions / operations on floating-point numbers but not many alternatives for x86/x86_64 exist
- Focus is typically put on standard compliance
- The x86 floating point unit contains most of the functionality internally, but most as firmware; SSE and AVX do not provide these
- The x86 FPU log() is slower than GNU libm
Test Examples (1)

- **inverse**: computes $y = 1/x$ and $z = x*y$ and checks if the result is exactly 1.0. Compare compilation using `gfortran -O2` and `gfortran -O2 -ffast-math`
- **loop**: advance x from 0.0 to 1.0 in increments of 0.01. Compare looping over integer and real
- **epsilon**: determine the floating-point precision through searching for the largest epsilon for which $1.0 + \varepsilon = 1.0$. Start with $\varepsilon = 1.0$ and repeatedly dividing by 2.0
Test Examples (2)

- **sum_number**: compare summing accuracy depending on ascending or descending order. Find the smallest N where the sums differ.

- **paranoia**: IEEE-754 compliance test
 => use `make` to compile with different compiler flags for optimization and math accuracy.

- **mathopt**: compute windowed average with a two and three numbers wide window.
 => speed of division by 2 vs division by 3
 => impact of compiler flags vs. code rewrite.