Some multiplex dynamics that I find interesting

Vincenzo Nicosia

School of Mathematical Sciences, Queen Mary University of London (UK)

Oct. 5th 2015
v.nicosia@qmul.ac.uk
http://www.maths.qmul.ac.uk/~vnicosia/
SUPERDIFFUSION
Opinion dynamics in multiplex networks: Reaction-diffusion systems and synchronisation
\[
\frac{dx_i^{[\alpha]}}{dt} = D^{[\alpha]} \sum_j a_{ij}^{[\alpha]} (x_j^{[\alpha]} - x_i^{[\alpha]}) + D_x (x_i^{[\beta]} - x_i^{[\alpha]})
\]
Opinion dynamics

Reaction-diffusion systems

Synchronisation

Vincenzo Nicosia

Multiplex networks

\[
\frac{dx_i^{[\alpha]}}{dt} = D^{[\alpha]} \sum_j a_{ij}^{[\alpha]} (x_j^{[\alpha]} - x_i^{[\alpha]}) + D_x (x_i^{[\beta]} - x_i^{[\alpha]})
\]
\[\frac{dx_i^{[\alpha]}}{dt} = D^{[\alpha]} \sum_j a_{ij}^{[\alpha]} (x_j^{[\alpha]} - x_i^{[\alpha]}) + D_x (x_i^{[\beta]} - x_i^{[\alpha]}) \]

\[\dot{x} = -\mathcal{L}\dot{x} \]

\[\mathcal{L} = \begin{pmatrix} D^{[\alpha]} L^{[\alpha]} + D_x I & -D_x I \\ -D_x I & D^{[\beta]} L^{[\beta]} + D_x I \end{pmatrix} \]

Where \(L^{[\alpha]}, L^{[\beta]} \) **are the Laplacians of the two layers**
\[\dot{x} = -\mathcal{L} \dot{x} \]

DIFFUSION TIME-SCALE

\[\tau = \frac{1}{\lambda_{\text{min}}} \]

where \(\lambda_{\text{min}} \) *is the smallest non-zero eigenvalue of* \(\mathcal{L} \)
Opinion dynamics and reaction-diffusion systems in multiplex networks.
Opinion dynamics and reaction-diffusion systems in Multiplex networks.

\[D_x \approx 0 \quad \lambda_{\min} = \min(\lambda_2^\alpha, \lambda_2^\beta) \]
Opinion dynamics and reaction-diffusion systems in multiplex networks.

\[D_x \simeq 0 \quad \lambda_{\text{min}} = \min(\lambda_2^\alpha, \lambda_2^\beta) \]

\[D_x \to \infty \quad \lambda_{\text{min}} = \frac{\lambda_s}{2} \geq \frac{\lambda_2^\alpha + \lambda_2^\beta}{2} \geq \min(\lambda_2^\alpha, \lambda_2^\beta) \]
ISING MODEL
Opinion dynamics

Reaction-diffusion systems

Synchronisation

Vincenzo Nicosia

Multiplex networks
SPIN on layer 1

Coherence

SPIN on layer 2

\[F_i^{[\alpha]} = J_i \sum_{j=1}^{N} a_{ij}^{[\alpha]} s_j^{[\alpha]} + \gamma \frac{\chi_i}{J_i} \sum_{\beta \neq \alpha}^{M} s_i^{[\beta]} + h_i^{[\alpha]} \]

Relative weight of coherence
Opinion dynamics

Reaction–diffusion systems

Synchronisation

Vincenzo Nicosia

Multiplex networks
VOTER MODEL
Opinion dynamics Reaction-diffusion systems Synchronisation

Vincenzo Nicosia Multiplex networks
Opinion dynamics, Reaction-diffusion systems, Synchronisation, Multiplex networks.

\[N(1 - q) \]
Opinion dynamics Reaction-diffusion systems Synchronisation

\[q \]

\[\mu^{\text{aggr}}_1 \]

\[\omega=0.0 \]
\[\omega=0.3 \]
\[\omega=0.7 \]
\[\omega=1.0 \]

Vincenzo Nicosia
Multiplex networks
Opinion dynamics Reaction-diffusion systems Synchronisation

\[F(\omega) \]

\[d=2 \]
\[d=3 \]
\[d=4 \]

\[\omega \]

Vincenzo Nicosia Multiplex networks
AXELROD MODEL
Opinion dynamics Reaction-diffusion systems Synchronisation

Vincenzo Nicosia Multiplex networks

(a) classical social influence model
(b) layered social influence model

active bond frozen bond
Opinion dynamics Reaction-diffusion systems Synchronisation

Vincenzo Nicosia Multiplex networks

size of largest component

log time to steady state

A

B

C

D

0.001 0.01 0.1 1.0

p

0.001 0.01 0.1 1.0

p

0.001 0.01 0.1 1.0

p
TURING PATTERNS
You could have had here a nice slide with hawks and hares, and another slide with some of the beautiful patterns formed by the skin of fish and other animals.

BUT I was actually brutally forced to go out for a dessert yesterday night, and since I don't like desserts, we ended up drinking cerveza nacional and talking of Yom Kippur, knowledge, atheism, Monty Python, and other amenities, while a few of us tried to explain to the waiter that waffles and bananas cannot stay in the same plate......then I fell asleep...
Opinion dynamics

Reaction-diffusion systems

Synchronisation

Vincenzo Nicosia

Multiplex networks

Activator: $u_i(t)$

Inhibitor: $v_i(t)$
Reaction-diffusion systems

Opinion dynamics

Synchronisation

Vincenzo Nicosia

Multiplex networks

\[\begin{align*}
\frac{du(t)}{dt} &= F(u(t), v(t)) + \sigma[1] L[1] u(t) \\
\frac{dv(t)}{dt} &= G(u(t), v(t)) + \sigma[2] L[2] v(t)
\end{align*} \]
Linear Stability:

\[J = \begin{pmatrix} L^{[1]} + f_v I & f_v I \\ g_u I & \sigma (L^{[2]} + g_v I) \end{pmatrix} \]
Linear Stability:

\[J = \begin{pmatrix} L^{[1]} + f_u I & f_v I \\ g_u I & \sigma (L^{[2]} + g_v I) \end{pmatrix} \]

\[\lambda_1 < \lambda_2 < \ldots < \lambda_N = \lambda_M \]
Linear Stability:

\[
J = \begin{pmatrix}
L^{[1]} + f_u I & f_v I \\
g_u I & \sigma (L^{[2]} + g_v I)
\end{pmatrix}
\]

\[\lambda_1 < \lambda_2 < \ldots < \lambda_N = \lambda_M\]

Amplitude:

\[A = \sqrt{\sum_i (u_i - \bar{u})^2 + (v_i - \bar{v})^2}\]
What if we tune inter-layer correlations?

\[\rho_{\alpha,\beta} = \frac{\sum_i \left(R_i^{[\alpha]} - \overline{R}[\alpha]\right) \left(R_i^{[\beta]} - \overline{R}[\beta]\right)}{\sqrt{\sum_i \left(R_i^{[\alpha]} - \overline{R}[\alpha]\right)^2 \sum_j \left(R_j^{[\beta]} - \overline{R}[\beta]\right)^2}} \]
Opinion dynamics

Reaction-diffusion systems

Synchronisation

\[|v_i| \]

\(\text{node (i)} \)

\[0 200 400 600 800 1000 \]

\[0 0.2 0.4 0.6 0.8 \]

\[|v_i| \]

\(\text{STABLE} \)

\(\text{UNSTABLE} \)

Vincenzo Nicosia

Multiplex networks
Opinion dynamics

Reaction-diffusion systems

Synchronisation

\[r_i = \frac{k_i^{[2]}}{k_i^{[1]}} \]

\[\sim r^{-2.2} \]
SYNCHRONISATION
The "multiplex" brain
The "multiplex" brain

Neurons
(Activity)
The "multiplex" brain

Neurons (Activity) + Blood vessels (Energy)
Opinion dynamics, Reaction-diffusion systems, Multiplex networks.

Activity

Energy transport

Multiplex Prism
Opinion dynamics and reaction–diffusion systems

V. Nicosia, P. S. Skardal, V. Latora, A. Arenas. under review
Opinion dynamics on reaction-diffusion systems

V. Nicosia, P. S. Skardal, V. Latora, A. Arenas, under review

\[\dot{\varphi}_i(t) = \omega_i + \lambda \sum_j a_{ij} \sin(\varphi_j - \varphi_i) \]
Opinion dynamics in reaction-diffusion systems

Activity

Kuramoto Dynamics

\[\dot{\phi}_i(t) = \omega_i + \lambda \sum_j a_{ij} \sin(\varphi_j - \varphi_i) \]

Energy transport

Biased Random Walk

\[p_{i \rightarrow j} \propto e_{ij} f_j \]
Opinion dynamics in reaction-diffusion systems

V. Nicosia, P. S. Skardal, V. Latora, A. Arenas, under review

Kuramoto Dynamics

\[\dot{\phi}_i(t) = \omega_i + \lambda \sum_j a_{ij} \sin(\varphi_j - \varphi_i) \]

Biased Random Walk

\[p_{i \rightarrow j} \propto e_{ij} f_j \]
Opinion dynamics in reaction-diffusion systems

\[\dot{\varphi}_i(t) = \omega_i + \lambda \sum_j a_{ij} \sin(\varphi_j - \varphi_i) \]

(more energy \(\rightarrow\) higher frequency)

\[\omega_i \propto p_i \]
\[\dot{\varphi}_i(t) = \omega_i + \lambda \sum_j a_{ij} \sin(\varphi_j - \varphi_i) \]

(more energy -> higher frequency)

\[\omega_i \propto p_i \]

(More synapses -> more blood)

\[f_j = k_j^\alpha \]
Opinion dynamics and reaction-diffusion systems

Synchronization Layer

Synchronized cluster

Energy Transport Layer

Energy

Transport

V. Nicosia, P. S. Skardal, V. Latora, A. Arenas, under review
Kuramoto Dynamics

\[\dot{\varphi}_i(t) = \omega_i + \lambda \sum_j a_{ij} \sin(\varphi_j - \varphi_i) \]

Biased Random Walk

\[p_{i \rightarrow j} \propto e_{ij} f_j \]

Node state: \((\varphi_i, p_i)\)

\(\varphi_i \) phase (activity)

\(p_i \) fraction of walkers (energy)
Opinion dynamics in reaction-diffusion systems

\[r \approx 0 \quad \text{Incoherent} \]

\[r \approx 1 \quad \text{Synchronized} \]
Opinion dynamics and synchronization of Reaction-diffusion systems

V. Nicosia, P. S. Skardal, V. Latora, A. Arenas, under review
Opinion dynamics in Reaction-diffusion systems.

V. Nicosia, P. S. Skardal, V. Latora, A. Arenas, under review.
CONCLUSIONS
CONCLUSIONS

- SOMETIMES multiplex dynamics behave IN A DIFFERENT WAY w.r.t. their "monoplex" counterparts
CONCLUSIONS

- **SOMETIMES** multiplex dynamics behave IN A DIFFERENT WAY w.r.t. their "monoplex" counterparts

- **SOME** dynamical processes are BETTER UNDERSTOOD and studied as multiplex ones
CONCLUSIONS

- **SOMETIMES** multiplex dynamics behave **IN A DIFFERENT WAY** w.r.t. their "monoplex" counterparts

- **SOME** dynamical processes are **BETTER UNDERSTOOD** and studied as multiplex ones

- **IN SOME CASES** multiplex dynamics exhibit original new physics, which is GENUINELY (due to the) **MULTIPLEX**

