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o 7ji: probability for a walker on node / to “jump” on
node j in one time step
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o G(V,E): asimple graph, with N = |V| nodes and
K = |E| edges (no self-loops, no multiple edges)

o Adjacency matrix: A= {aj}
aj = 1 if node / and node j are connected by an edge
(aj = 0 otherwise)

o Transition matrix: N = {m;}
7ji: probability for a walker on node / to “jump” on
node j in one time step

o Occupation probability: p;(t) is the probability of
finding a walker on node i at time t
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e discrete-time (jumps occur at equally-spaced time steps)

o time-invariant (7;(t1) = m;i(t2)Vty, to)

e stochastic process (at each step the identity of the destination
node is a random variable)

A random walk on a graph G(V/, E) is a Markov chain defined by the
transition matrix I1 on the state space V.
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P(t) = {pi(t)} is the occupation probability distribution at time t

Yiev pi(t) =1Vt
One-step evolution:

pi(t+1) =Y x pi(t)
j

Or equivalently
P(t+1) =MNP(t)
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P(t) = {pi(t)} is the occupation probability distribution at time t

Yiev pi(t) =1Vt
One-step evolution:

pi(t+1) =Y x pi(t)
j

Or equivalently
P(t+1) =MNP(t)

@ T-step evolution:

P(t+7)=NP(t+7—-1)=M?P(t+7—-2)=...=TN"P(t)
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Question: If we know that the walker was at node / at
time 0, where can we find it after t time steps??
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P(t+1)=NP(t) (1)

@ Does the limit:
lim P(t)

t—o0

exist?
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Introduction and definitions

Stationary occupation probability

nnnnnnnnn

P(t+1) =NP(t) (1)

@ Does the limit:
lim P(t)

t—o00
exist?
@ Can we find a P* such that P* =T1P* , i.e., a fixed point for the
dynamics of Eq. (1)?
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Introduction and definitions
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Perron-Frobenius theorem...

Given a non-negative irreducible (aperiodic) matrix M = {m;;}
@ The largest eigenvalue A\pax of M (in modulus) is real and positive
@ Apnax IS simple

@ The eigenvector associated to Apax is the only positive eigenvector of
M
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@ If M is a non-negative irreducible aperiodic matrix, then the sequence

of vectors
x(t+1) = Mx(t)

converges to a vector X which is parallel to the eigenvector associated
to the largest eigenvalue of M
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P(t+1) =MNP(t) (2)

e If s irreducible and aperiodic (G is connected and contains one odd
cycle)
° —
lim P
(213, L)
exists and is equal to the first eigenvector of Il

@ which is positive and is called the stationary occupation probability
distribution associated to [1
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The drunken equation (Plain random walk)

@ Transition probability:

ajj

dij
23 ki

@ Stationary probability distribution:
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@ Probability of going from j to j in t steps:
Wisj(t) = ) Mg X Ty X oo X T,
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Plain random walks
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P* for plain random walks
@ Probability of going from j to j in t steps:

Wisj(t) = ) Mg X Ty X oo X T,

J1f2yeft—1
2 2. 2.
Wi,(t) = Z %x%x...x%
12y ' g et

3J25 0 Jt—1

@ Probability of going from j to / in t steps:

ajj. aj,j aj._ i
Wisi(t) = Y 2B ks T
kJ le kit71

12 ift—1
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By comparing W_,; and W,_,; (undirected graphs):
2 ai . 2
i >< .. X g i X V. >< g
2 ki Kje 1 2 ki Kje 1

J1a2sede—1 J1a2seadt—1
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By comparing W_,; and W,_,; (undirected graphs):

dij i dje_1i
Z kiX...Xk. Z ijXk

J1d2efe—1 Je-1 J1d2eife—1 Jt-1

we get:
Wi jki = W ikj
but if a stationary probability distribution exists, then

pi = Jim Wiy (vieV)
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By comparing W_,; and W,_,; (undirected graphs):

dij i dje_1i
Z kiX...Xk. Z ijXk

J1d2efe—1 Je-1 J1d2eife—1 Jt-1

we get:
Wi jki = W ikj

but if a stationary probability distribution exists, then
p; = lim W, (VieV)

t—>00

pi ki = p; ki

and by imposing the normalisation condition ZJ- p; =1 we get:
ILTED SRS S
J J
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@ First passage (hitting) time 7j: the average number of steps required
to a walker to travel from node i to node j (notice: 7 # 7j;!!!)
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Let's time our walker!

First passage (hitting) time 7;: the average number of steps required
to a walker to travel from node i to node j (notice: 7 # 7j;!!!)
Return time r;: the average number of steps required to a walker
started at node / to come back to i (r; = 7;)

Average first passage time T

1
T= N(N—I)ZZJ:TU

@ Average return time R:

1
RINZI‘;

@ Coverage time: average time needed for a walker to visit all the nodes
of the graph
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Plain random walks
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Interesting facts

@ Return time

1
ri = —
Pi
@ .... so for plain random walks we have:
2K
ri=—
i ki

e Fundamental matrix Z = {z;}
Z=(-Nn"+w)?!

Zi — Zi:
_ y
Tij = *

Pj
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Plain random walks

@ Queen Mary

Interesting facts

@ Return time

1
ri = —
Pi
@ .... so for plain random walks we have:
2K
ri=—
i ki

e Fundamental matrix Z = {z;}
Z=(-Nn"+w)?!

Zjj — zZjj

Ti =T

Pj

@ Coverage time: | am sure you don't want to know!
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o P(io, il, i2, PN it)
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> Plioyiviay .o yie) = 1
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°

Z P(io, i1, 2, - - -

105115+t
@ Entropy rate:

] 1
lim ——
t

h

Z P(i07 il, i27 .

10,115--+51t

Random Walks
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o (i, i1, h2y..yit)
o P(io, il, i2, PN it)
(]

> Plioyiviay .o yie) = 1

10511551t

Entropy rate:

h= lim —= g P(io, i1y 2y - - ., it) log P(io, i1, i2y - - -, ft)
t—oo t 4 .
105115---51t

@ h measures the dispersiveness of the walk
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Variations on the theme
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First Problem
G is not primitive = no stationary occupation
probability (limit cycles)
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Lazy random walk

A 5
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Variations on the theme
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Lazy random walk
p ‘ Moves with
6 probability p
\—_1——_—‘; Remains still
with probability
1—»p

p
6
@
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P(t+1) = ((1 = p) + pM)P(t)
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The “Lazy” equation (lazy RW)

@ Queen Mary

nnnnnnnnnn

P(t+1) = ((1 = p) + pM)P(t)

e If G is connected then M = (1 — p)/ + pl1 is primitive (degenerate
odd-length cycles)
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Variations on the theme
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Second problem:
G is directed = walkers will remain trapped on nodes
having k,,: = 0 and nodes with k;, = 0 will never be
visited
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Variations on the theme

. . . @Queenl\/lary
The “Smart” equation (RW with teleportation)

University of London

@ The walker moves to one node uniformly chosen at random in the
graph (teleportation) with probability g...
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The “Smart” equation (RW with teleportation)

University of London

@ The walker moves to one node uniformly chosen at random in the
graph (teleportation) with probability g...

@ ... or it uses the standard transition matrix of the plain random walk
with probability (1 — q)
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The “Smart” equation (RW with teleportation)

@ Queen Mary

University of London

@ The walker moves to one node uniformly chosen at random in the
graph (teleportation) with probability g...

@ ... or it uses the standard transition matrix of the plain random walk
with probability (1 — q)

@ In formula: q
¢ji(q) = 5 + (1= q)m;i
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@ ... or it uses the standard transition matrix of the plain random walk
with probability (1 — q)
@ In formula:
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@ which in vectorial form reads:
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with probability (1 — q)
@ In formula:
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Variations on the theme
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Third problem:
In plain walks pf o< k; (WWW)
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Variations on the theme
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. . o Queen Vary
The “Snob” equation (Biased RW)

@ Transition probability:
aijfj

B Zg ajefy

where f; = f(x;)
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Variations on the theme

The “Snob” equation (Biased RW)

@ Transition probability:
T —
7 Z( ajefy

where f; = f(x;)
@ Stationary probability distribution:

«  Cifi
SR/
where:
= aif;
¢
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Variations on the theme

@ Queen Mary
ity of Lond

The “Snob” equation (Biased RW) -
@ Transition probability:
aijfj
i =
/ Zg ajefy
where f; = f(x;)
@ Stationary probability distribution:
pr = cifi
l Zj cifj

where:

= aif;
¢

o Entropy rate:
XA Y aifloa(f) — 3 e log()
B > cifi
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Variations on the theme

Degree-biased random walks

@ Queen Mary

University of London

o If f; = ki* we get degree-biased random walks
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Variations on the theme

Degree-biased random walks

@ Queen Mary

University of London

o If f; = ki* we get degree-biased random walks

@ Transition probability
a,'jqu

Ty — —————————
Ji
D¢ dicky’
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Variations on the theme

@ Queen Mary

Degree-biased random walks

o If f; = ki* we get degree-biased random walks

@ Transition probability
a,'jqu

Ty — —————————
Ji
D¢ dicky’

@ o > 0: the walker moves preferentially towards hubs
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Variations on the theme

Degree-biased random walks

@ Queen Mary

University of London

If f; = k* we get degree-biased random walks

Transition probability
a,'jqu

Ty — —————————
Ji
D¢ dicky’

« > 0: the walker moves preferentially towards hubs

« < 0: the walker moves preferentially towards poorly-connected
nodes

V.Nicosia (QMUL) Random Walks Sept. 30" 2015 38 /55



Variations on the theme

Degree-biased random walks

@ Queen Mary

University of London

If f; = k* we get degree-biased random walks

Transition probability
a,'jij

Ty — —————————
Ji
D¢ dicky’

« > 0: the walker moves preferentially towards hubs

« < 0: the walker moves preferentially towards poorly-connected
nodes

« = 0: plain random walk
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Variations on the theme

Stationary distribution of degree-biased walks

@ Queen Mary

University of London

pr = i
I Zz cefy
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Variations on the theme

Stationary distribution of degree-biased walks

@ Queen Mary

University of London

pr = i
I Zz cefy

b KTk
LXK ek
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Variations on the theme

. o : Y Queen Vary
Stationary distribution of degree-biased walks ’

University of London

pr = i
I Zz cefy

b KTk
LXK ek

@ The stationary probability pj depends both on the degree of i and on
the degree of the neighbours of i
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Variations on the theme

. c . . B @Quee“m\/lary
Stationary distribution of degree-biased walks

Universityof London

pr = i
I Zz cefy

o KT aik

@ The stationary probability pj depends both on the degree of i and on
the degree of the neighbours of i

@ — p* is determined by degree-degree correlations!
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Variations on the theme

Interesting facts

@ Queen Mary

University of London

o If G has no degree correlations:
kq+1
pi = '7+1
N(ko+1)
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Variations on the theme

Y

% Queen Mary

Interesting facts

o If G has no degree correlations:
kq+1
pi = '7+1
N(ko+1)

o Ifa=—1:
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Variations on the theme

. @ Queen Mary
Interesting facts

University of London

o If G has no degree correlations:

kq+1
P W)

o If = —1:
« 1
pi = N

Return time:
ri = N

The mean first-passage time T is minimal
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Outline

@ Queen Mary

University of London

O Using random walks
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Using random walks

The Explorer

X
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Using random walks

Random walks and modularity

@ Queen Mary

University of London

@ A partition P of the graph in communities
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Using random walks

Random walks and modularity

@ Queen Mary

University of London

@ A partition P of the graph in communities

. ajj
e Plain random walk 7;; = 2%
1
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. 0 Queen Vary
Random walks and modularity

@ A partition P of the graph in communities
@ Plain random walk 7j; = ‘z—”

e P(C,t) is the probability that a walker which started inside the
community C is found inside community C after t timesteps
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Y

Using random walks
WQf Queen Mary
‘of Londe

Random walks and modularity Rekies

@ A partition P of the graph in communities

@ Plain random walk 7j; = %

e P(C,t) is the probability that a walker which started inside the
community C is found inside community C after t timesteps

@ P(C,0) is the probability that a walker started within C is found in C
after an infinite number of steps...
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Using random walks

. @Quee“mvlary
Random walks and modularity

University of London

A partition P of the graph in communities

Plain random walk 7j; = ‘z—”
P(C, t) is the probability that a walker which started inside the
community C is found inside community C after t timesteps

P(C, ) is the probability that a walker started within C is found in C
after an infinite number of steps...

Stability of a partition P:

R(t)=> P(C,t) = P(C,)

CeP
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Using random walks

o Stability of a partition P at time t:

R(t)=>_ P(C,t) - P(C,)

CeP
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Using random walks

University of London

0 Queen Mery
o Stability of a partition P at time t:

R(t)=>_ P(C,t) - P(C,)

ceP
@ At the stationary state P(C, o0) is the probability of finding two

walkers in the same community C
o If we consider t = A7 = 1 (discrete-time random walk), then we have:

ajj ki * % 1 k’k
R(1) = ﬁﬁ‘squ —PiPj0c.q = 2K Z <a’j B 2KJ> Oaic
ij i

V.Nicosia (QMUL) Random Walks Sept. 30" 2015 44 / 55



Using random walks

@ Queen Mary
ity of Land

University of London

o Stability of a partition P at time t:

R(t)=>_ P(C,t) - P(C,)

CeP

@ At the stationary state P(C, o0) is the probability of finding two
walkers in the same community C

o If we consider t = A7 = 1 (discrete-time random walk), then we have:
ajj ki

. 1 kik;
RO) =2 3 et~ pirbes = i 3= (3~ 3¢ ) e
IJ IJ

@ So the modularity of a partition is just the one-step stability of a plain
random walk on the graph with that partition
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The Engineer

@ Queen Mary

University of London
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Using random walks

. @Queemq Mary
Node centrality

Universityof London

Problem: how we measure the relative importance of
nodes?
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PageRank

@ Queen Mary
ity of Land

University of London

@ The “Smart” transition matrix (RW with teleportation):
_q
d(q) = Nll +(1—q)N

e ®(q) satisfies all the hypotheses of Perron-Frobenius

@ — the eigenvector of ®(q) associated to the first eigenvalue is the
centrality induced by ®(q)
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PageRank

@ Queen Mary
ity of Land

University of London

@ The “Smart” transition matrix (RW with teleportation):

®(q) = 411+ (1—q)

®(q) satisfies all the hypotheses of Perron-Frobenius

—> the eigenvector of ®(q) associated to the first eigenvalue is the
centrality induced by ®(q)

This eigenvector is used to compute the PageRank score of a node
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. \ Queen Mery
The Alchemist

x*

K

)
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Using random walks

@ Queen Mary

University of London

@ A plain random walk W defined by I1
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Using random walks

@ Queen Mary

University of London

@ A plain random walk W defined by I1
e (ip,f1,2,...): nodes visited by W
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Using random walks

@ Queen Mary

University of London

@ A plain random walk W defined by I1
e (ip,f1,2,...): nodes visited by W
e (Hj, Hi, Hi,...), where H; is k;, or k™, or C;
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Using random walks

@ Queen Mary

University of London

A plain random walk W defined by [1
(io, i1, f2, - . .): nodes visited by W
(Hiy, Hiy, Hiy, . ..), where H; is k;, or k", or C;

Look at the typical fluctuations of H; in an interval of length ¢ and
call them F(¢)
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Using random walks

@ Queen Mary

University of London

@ A plain random walk W defined by I1

e (ip,f1,2,...): nodes visited by W

e (Hj, Hi, Hi,...), where H; is k;, or k™, or C;

@ Look at the typical fluctuations of H; in an interval of length ¢ and
call them F(¢)

@ Look at how F(g) scales with the size £ (Detrended fluctuation

analysis)
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Using random walks

@ Queen Mary

University of London

ER

SF
Internet
SCN

0
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Using random walks

@ Queen Mary

University of London

! I j T
| PRE coauthorship. -
-
-

-

— T
+US Power Gri
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Using random walks

Y

% Queen Mary

University of London
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Using random walks

@ QueeMrJ Mary
Take-home message

Universityof London

Random walks at 9:00 am might be boring...
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Using random walks

0 Queen Mery
Take-home message

University of London

Random walks at 9:00 am might be boring...
...but are a nice process to understand the structure and
dynamics of complex networks ;)
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Using random walks

Y

% Queen Mary

University of London

THANK YOU!
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Using random walks

@ Queen Mary
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