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Introduction and definitions

πji : probability for a walker on node i to “jump” on
node j in one time step∑

j

πji = 1
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Introduction and definitions

So, given...

G (V ,E ): a simple graph, with N = |V | nodes and
K = |E | edges (no self-loops, no multiple edges)

Adjacency matrix: A = {aij}
aij = 1 if node i and node j are connected by an edge
(aij = 0 otherwise)

Transition matrix: Π = {πij}
πji : probability for a walker on node i to “jump” on
node j in one time step

Occupation probability: pi(t) is the probability of
finding a walker on node i at time t
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Introduction and definitions

...a random walk is a...

discrete-time (jumps occur at equally-spaced time steps)

time-invariant (πji(t1) = πji(t2)∀t1, t2)

stochastic process (at each step the identity of the destination
node is a random variable)

A random walk on a graph G (V ,E ) is a Markov chain defined by the
transition matrix Π on the state space V .
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Introduction and definitions

Motion rule

P(t) = {pi (t)} is the occupation probability distribution at time t

∑
i∈V pi (t) = 1 ∀t

One-step evolution:

pi (t + 1) =
∑
j

πij × pj(t)

Or equivalently
P(t + 1) = ΠP(t)

τ -step evolution:

P(t + τ) = ΠP(t + τ − 1) = Π2P(t + τ − 2) = . . . = ΠτP(t)
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Introduction and definitions

Question: If we know that the walker was at node i at
time 0, where can we find it after t time steps??
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Introduction and definitions

Stationary occupation probability

P(t + 1) = ΠP(t)

(1)

Does the limit:
lim
t→∞

P(t)

exist?

Can we find a P∗ such that P∗ = ΠP∗ , i.e., a fixed point for the
dynamics of Eq. (1)?
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Introduction and definitions

Perron-Frobenius theorem...

Given a non-negative irreducible (aperiodic) matrix M = {mij}
The largest eigenvalue λmax of M (in modulus) is real and positive

λmax is simple

The eigenvector associated to λmax is the only positive eigenvector of
M
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Introduction and definitions

...plus the power method...

If M is a non-negative irreducible aperiodic matrix, then the sequence
of vectors

x(t + 1) = Mx(t)

converges to a vector x̃ which is parallel to the eigenvector associated
to the largest eigenvalue of M
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Introduction and definitions

...give the answer

P(t + 1) = ΠP(t) (2)

If Π is irreducible and aperiodic (G is connected and contains one odd
cycle)

=⇒
lim
t→∞

P(t)

exists and is equal to the first eigenvector of Π

which is positive and is called the stationary occupation probability
distribution associated to Π
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Plain random walks

Outline

1 Introduction and definitions

2 Plain random walks
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Plain random walks

Simplest example: “The Drunken”
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Plain random walks

The drunken equation (Plain random walk)

Transition probability:

πji =
aij∑
j aij

=
aij
ki

Stationary probability distribution:

p∗i =
ki

2K
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Plain random walks

P∗ for plain random walks

Probability of going from i to j in t steps:

Wi→j(t) =
∑

j1,j2,...,jt−1

πj1,j × πj2,j1 × . . .× πj ,jt−1

Wi→j(t) =
∑

j1,j2,...,jt−1

aij1
ki
×

aj1j2
kj1
× . . .×

ajt−1j

kjt−1

Probability of going from j to i in t steps:

Wj→i (t) =
∑

j1,j2,...,jt−1

ajj1
kj
×

aj1j2
kj1
× . . .×

ajt−1i

kit−1
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Plain random walks

...

By comparing Wi→j and Wj→i (undirected graphs):∑
j1,j2,...,jt−1

aij1
ki
× . . .×

ajt−1j

kjt−1

∑
j1,j2,...,jt−1

ajj1
kj
× . . .×

ajt−1i

kjt−1

we get:
Wi→jki = Wj→ikj

but if a stationary probability distribution exists, then

p∗i = lim
t−>∞

Wi→j (∀i ∈ V )

p∗j ki = p∗i kj

and by imposing the normalisation condition
∑

j p
∗
j = 1 we get:∑

j

p∗j ki =
∑
j

p∗i kj ⇒ p∗i =
ki

2K

V.Nicosia (QMUL) Random Walks Sept. 30th 2015 21 / 55



Plain random walks

...

By comparing Wi→j and Wj→i (undirected graphs):∑
j1,j2,...,jt−1

aij1
ki
× . . .×

ajt−1j

kjt−1

∑
j1,j2,...,jt−1

ajj1
kj
× . . .×

ajt−1i

kjt−1

we get:
Wi→jki = Wj→ikj

but if a stationary probability distribution exists, then

p∗i = lim
t−>∞

Wi→j (∀i ∈ V )

p∗j ki = p∗i kj

and by imposing the normalisation condition
∑

j p
∗
j = 1 we get:∑

j

p∗j ki =
∑
j

p∗i kj ⇒ p∗i =
ki

2K

V.Nicosia (QMUL) Random Walks Sept. 30th 2015 21 / 55



Plain random walks

...

By comparing Wi→j and Wj→i (undirected graphs):∑
j1,j2,...,jt−1

aij1
ki
× . . .×

ajt−1j

kjt−1

∑
j1,j2,...,jt−1

ajj1
kj
× . . .×

ajt−1i

kjt−1

we get:
Wi→jki = Wj→ikj

but if a stationary probability distribution exists, then

p∗i = lim
t−>∞

Wi→j (∀i ∈ V )

p∗j ki = p∗i kj

and by imposing the normalisation condition
∑

j p
∗
j = 1 we get:∑

j

p∗j ki =
∑
j

p∗i kj ⇒ p∗i =
ki

2K

V.Nicosia (QMUL) Random Walks Sept. 30th 2015 21 / 55



Plain random walks

...

By comparing Wi→j and Wj→i (undirected graphs):∑
j1,j2,...,jt−1

aij1
ki
× . . .×

ajt−1j

kjt−1

∑
j1,j2,...,jt−1

ajj1
kj
× . . .×

ajt−1i

kjt−1

we get:
Wi→jki = Wj→ikj

but if a stationary probability distribution exists, then

p∗i = lim
t−>∞

Wi→j (∀i ∈ V )

p∗j ki = p∗i kj

and by imposing the normalisation condition
∑

j p
∗
j = 1 we get:∑

j

p∗j ki =
∑
j

p∗i kj ⇒ p∗i =
ki

2K

V.Nicosia (QMUL) Random Walks Sept. 30th 2015 21 / 55



Plain random walks

...

By comparing Wi→j and Wj→i (undirected graphs):∑
j1,j2,...,jt−1

aij1
ki
× . . .×

ajt−1j

kjt−1

∑
j1,j2,...,jt−1

ajj1
kj
× . . .×

ajt−1i

kjt−1

we get:
Wi→jki = Wj→ikj

but if a stationary probability distribution exists, then

p∗i = lim
t−>∞

Wi→j (∀i ∈ V )

p∗j ki = p∗i kj

and by imposing the normalisation condition
∑

j p
∗
j = 1 we get:∑

j

p∗j ki =
∑
j

p∗i kj ⇒ p∗i =
ki

2K

V.Nicosia (QMUL) Random Walks Sept. 30th 2015 21 / 55



Plain random walks

Let’s time our walker!

First passage (hitting) time τij : the average number of steps required
to a walker to travel from node i to node j (notice: τij 6= τji !!!)

Return time ri : the average number of steps required to a walker
started at node i to come back to i (ri = τii )

Average first passage time T :

T =
1

N(N − 1)

∑
i

∑
j

τij

Average return time R:

R =
1

N

∑
i

ri

Coverage time: average time needed for a walker to visit all the nodes
of the graph
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Plain random walks

Interesting facts

Return time

ri =
1

p∗i

.... so for plain random walks we have:

ri =
2K

ki

Fundamental matrix Z = {zij}

Z = (I − Πᵀ + W )−1

τij =
zjj − zij

p∗j

Coverage time: I am sure you don’t want to know!
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Plain random walks

Entropy rate

(i0, i1, i2, . . . , it)

P(i0, i1, i2, . . . , it) ∑
i0,i1,...,it

P(i0, i1, i2, . . . , it) = 1

Entropy rate:

h = lim
t→∞

−1

t

∑
i0,i1,...,it

P(i0, i1, i2, . . . , it) logP(i0, i1, i2, . . . , it)

h measures the dispersiveness of the walk

h is maximal when all the trajectories of infinite length have equal
probability
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h measures the dispersiveness of the walk

h is maximal when all the trajectories of infinite length have equal
probability
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Variations on the theme

Outline

1 Introduction and definitions

2 Plain random walks

3 Variations on the theme

4 Using random walks
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Variations on the theme

First Problem
G is not primitive =⇒ no stationary occupation

probability (limit cycles)
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Variations on the theme

The Lazy
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Variations on the theme

Lazy random walk
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Variations on the theme

Lazy random walk
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Variations on the theme

The “Lazy” equation (lazy RW)

P(t + 1) = ((1− p)I + pΠ)P(t)

If G is connected then M = (1− p)I + pΠ is primitive (degenerate
odd-length cycles)
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Variations on the theme

Second problem:
G is directed =⇒ walkers will remain trapped on nodes

having kout = 0 and nodes with kin = 0 will never be
visited
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Variations on the theme

The “Smart”
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Variations on the theme
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Variations on the theme

The “Smart” equation (RW with teleportation)

The walker moves to one node uniformly chosen at random in the
graph (teleportation) with probability q...

... or it uses the standard transition matrix of the plain random walk
with probability (1− q)

In formula:
φji (q) =

q

N
+ (1− q)πji

which in vectorial form reads:

Φ(q) =
q

N
1 1 + (1− q)Π
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Variations on the theme

Third problem:
In plain walks p∗i ∝ ki (WWW)
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Variations on the theme

The “Snob”
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Variations on the theme
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Variations on the theme

The “Snob” equation (Biased RW)

Transition probability:

πji =
aij fj∑
` ai`f`

where fi = f (xi )

Stationary probability distribution:

p∗i =
ci fi∑
j cj fj

where:
ci =

∑
`

ai`f`

Entropy rate:

h =

∑
i fi
∑

j aij fj log(fj)−
∑

i fici log(ci )∑
i ci fi
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Variations on the theme

Degree-biased random walks

If fi = kαi we get degree-biased random walks

Transition probability

πji =
aijk

α
j∑

` ai`k
α
`

α > 0: the walker moves preferentially towards hubs

α < 0: the walker moves preferentially towards poorly-connected
nodes

α = 0: plain random walk
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Variations on the theme

Stationary distribution of degree-biased walks

p∗i =
ci fi∑
` c`f`

p∗i =
kαi
∑

j aijk
α
j∑

j k
α
j

∑
` aj`k

α
`

The stationary probability p∗i depends both on the degree of i and on
the degree of the neighbours of i

=⇒ p∗ is determined by degree-degree correlations!
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Variations on the theme

Interesting facts

If G has no degree correlations:

p∗i =
kα+1
i

N〈kα+1〉

If α = −1:

p∗i =
1

N

Return time:
ri = N

The mean first-passage time T is minimal
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Using random walks

Outline

1 Introduction and definitions

2 Plain random walks

3 Variations on the theme

4 Using random walks
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Using random walks

The Explorer
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Using random walks

Random walks and modularity

A partition P of the graph in communities

Plain random walk πji =
aij
ki

P(C, t) is the probability that a walker which started inside the
community C is found inside community C after t timesteps

P(C,∞) is the probability that a walker started within C is found in C
after an infinite number of steps...

Stability of a partition P:

R(t) =
∑
C∈P

P(C, t)− P(C,∞)
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Using random walks

Stability of a partition P at time t:

R(t) =
∑
C∈P

P(C, t)− P(C,∞)

At the stationary state P(C,∞) is the probability of finding two
walkers in the same community C
If we consider t = ∆τ = 1 (discrete-time random walk), then we have:

R(1) =
∑
i ,j

aij
ki

ki
2K

δci ,cj − p∗i p
∗
j δci ,cj =

1

2K

∑
i ,j

(
aij −

kikj
2K

)
δci ,cj

So the modularity of a partition is just the one-step stability of a plain
random walk on the graph with that partition
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Using random walks

The Engineer
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Using random walks

Node centrality

Problem: how we measure the relative importance of
nodes?
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Using random walks

PageRank

The “Smart” transition matrix (RW with teleportation):

Φ(q) =
q

N
1 1 + (1− q)Π

Φ(q) satisfies all the hypotheses of Perron-Frobenius

=⇒ the eigenvector of Φ(q) associated to the first eigenvalue is the
centrality induced by Φ(q)

This eigenvector is used to compute the PageRank score of a node
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Using random walks

The Alchemist
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Using random walks

A plain random walk W defined by Π

(i0, i1, i2, . . .): nodes visited by W

(Hi0 ,Hi1 ,Hi2 , . . .), where Hi is ki , or knni , or Ci

Look at the typical fluctuations of Hi in an interval of length ε and
call them F (ε)

Look at how F (ε) scales with the size ε (Detrended fluctuation
analysis)
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Using random walks
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Using random walks

V.Nicosia (QMUL) Random Walks Sept. 30th 2015 51 / 55



Using random walks

Taxonomy
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Using random walks

Take-home message

Random walks at 9:00 am might be boring...

...but are a nice process to understand the structure and
dynamics of complex networks ;)
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Using random walks

THANK YOU!
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Using random walks

References

J. Noh, H. Rieger, “Random Walks on Complex Networks”, Phys. Rev. Lett. 92, 118701 (2004).
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