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Background

Observations of the Milky Way’s Galactic Center (GC) indicate a paucity of red giants (RGs) with the ages of ∼ 108−109 years relative to the younger population of stars in the GC (Buchholz
et al. 2009). It has recently been proposed that the relative lack of RGs can be explained by the interaction with the accretion disk that is expected to have existed around the central SMBH,
which subsequently fragmented and formed a stellar disk (Alexander et al. 2008, Amaro-Seoane & Chen 2014). The interactions occur when a star has an orbital trajectory that intersects
the plane of the accretion disk (Dai et al. 2010). Because they have compact cores surrounded by tenuous outer layers, RGs are particularly vulnerable to collisions with the central accretion
disk, which can lead to large amounts of mass loss from the impacting star and occasionally, to its disruption. Both of these effects can in principle lower the luminosity of the RG star and
remove it from the observable population of stars in the GC. The goal of my project is test this hypothesis by the means of high resolution simulations.

Figure 1
Sequence of 3D snapshots of gas density immediately after the star impacted the disk (starting from the far left). The snapshots

are from a simulation where the stellar velocity is 600 km/s and the gas density is 2.97× 10−6
g/cm

3
. ”Onion structure” depicts the

surfaces of equal density and color marks the density magnitude. The density is highest at the center of the star (blue) and the

shape of surfaces indicates the ram pressure experienced by the star which is moving downward.

Figure 2
Illustration of the star-disk collision scenario (Image

credit: Nayakshin et al. 2003).

Figure 3
Sequence of 2D snapshots of gas temperature immediately after the star impacted the disk (starting from the far left). The

snapshots are from a simulation where the stellar velocity is 600 km/s, the gas density is 2.97× 10−6
g/cm

3
, and the temperature of

the gas during this impact is ∼ 4.24 × 106 K. The psuedocolor gradient indicates blue as the ”cooler” regions and orange/red and

the ”hotter” regions. The left panel indicates that the star immediately forms a hot parabolic shaped ”shocked” region of gas. The

middle and right panels show a fully developed bow shock that has formed upstream from the star and is partly shielding it from

the ram pressure stripping of the outer layers.
Numerical Methods

We use a 3D parallel hydrodynamics code (Cheng
& Evans 2013) to model the collision of a star with
the accretion disks of varying densities in a computa-
tional box with the size of 4R∗ (whereR∗ is the radius
of the star). The adopted values of the gas densities
(9.42×10−8−2.97×10−6 g/cm−3) are consistent with
the gravitationally unstable accretion disk in different
stages of fragmentation. The adopted impact veloci-
ties of the star (300−900 km/s) correspond to stellar
orbits with semi-major axis in the range of ∼ 10−2 to
∼ 10−1 parsecs from the central SMBH. In addition
to the gas density and impact velocity, we also ex-
plore the effects of the stellar structure and repeated
collisions of the star with the disk on the final struc-
ture of the star.

Figure 4

Mass of the RG star crossing the accretion disk as a function of time in units of

dynamical time of the star. The mass-loss curve corresponds to the same simula-

tion as in Figures 1 & 3. We measure a mass-loss of ≈ 16%, indicating that the

star has lost a significant fraction of its envelope which leaves the compact RG

core exposed. Comparable and larger mass-loss is likely to decrease the luminosity

of the star and remove it from the observable population of RGs in the GC.

Conclusions
The idea that RG stars can be significantly damaged in collisions with an accretion disk around the
SMBH is a viable hypothesis that can explain a relative lack of the late type stars in the Galactic
Center. We test this theoretical prediction by carrying out simulations of encounters of RG stars with
such a disk for a range of physical parameters that characterize different possible RG orbits as well as
densities and temperatures of the accretion disk. Our runs indicate that conditions for significant mass
stripping of impacting RG stars can be achieved only within ∼ 0.1 pcs from the SMBH, if the accretion
disk is gravitationally unstable and has fragmented into high density clumps and is more likely if the
stars have multiple impacts with the disk. This study can furthermore shed light on the properties of
stars as well as the structure of impacted accretion disks in extreme environments close to the SMBH
(Syer et al. 1990, Nayakshin 2003).
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Milky Way today: portrait of a quiescent galaxy

• GC is remarkably underluminous

• Dominated by steady radio and sub-mm 
emission, ~1036 erg/s 

• Occasional flaring in IR and X-rays,  
~1036 erg/s

Credit: www.haydenplanetarium.org

7. Accretion and emission close to the                 
central black hole 
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Starformation in GC

• Central, Arches, and Quintuplet clusters 
all formed stars 2−7 Myr ago (Figer 08)

• Each contains ~104 M⊙  in stars, has very 
high central density, and some of the 
most massive stars (>100 M⊙) in the 
Galaxy (Krabbe+ 95, Paumard+ 06)

Chandra, Red: 1-4 keV, Green 4-6 keV, Blue: 6-9 keV

Credit: NASA/CXC/UMass/Q.D.Wang et al.

50 pc



The Central Parsec

• 96% of observed stars are ~1Gyr old RG 
and HB stars M~0.5-4M⊙ 

• Young stars at <1 pc appear to be confined 
to two disks with different inclinations  
(Genzel+ 03, Tanner+ 06, Paumard+ 06)

• ~100 WR and O-type stars: M~10-60M⊙ , 
~106 yr old

!
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Deficit of old stars

• Distribution of old stars contrasted by steeply rising population of young stars 
(Genzel 03, Paumard 06, Buchholz+ 09, Do+ 09, Bartko+ 10)

R. M. Buchholz et al.: Composition of the galactic center star cluster 11

Table 5. Stars classified in the GC using the method described in
Sect.2.7.

class number
early type quality 1 277
early type quality 2 25
early type quality 3 10
late type quality 1 2955
late type quality 2 2231
foreground 58
very red stars 24
noisy sources 334

tected through all filters or excluded due to too large photometric
uncertainties and thus did not make it on the common list. The
same effects are probably relevant for the 329 sources classified
by Maness et al. (2007), while in addition, parts of this sample
are outside of the area covered by our data. We only used the 266
sources that are also present in our dataset for comparison.
67 of the 78 known early type sources were also classified as
early type here, 7 had too noisy SEDs and 4 were classified
as late type. Of these 4 sources, 3 are borderline cases where
a clear identification is very difficult with our method (sources
224, 612 and 1772 resp. E36, E89 and E7 in the Paumard list).
Source 3778 (E37 in the Paumard list) shows a clear CO ab-
sorption feature. Paumard et al. (2006) classify this source as a
potential O8-9 supergiant, but at the same time give it a K band
magnitude of 14.8 and an absolute magnitude of -3.3. This is in-
consistent with our expectations, since such a source should be
at least two magnitudes brighter (see Tab.3). We therefore ignore
this source for the uncertainty estimation. This leads us to 3 out
of 77 sources classified erroneously and 7 out of 77 sources not
classified, which corresponds to 3.9% respectively 9.1%. A few
well known sources like IRS 16SW and IRS 15NE have noisy
SEDs, which in the case of IRS 16SW is probably due to the
intrinsic variability of that source. But in general, noisy SEDs
mostly stem from problems with the photometry: here, too faint
or saturated sources are the biggest issues.
Since the known early type sources are concentrated in the in-
ner 0.5 pc, these values can be adopted as the uncertainties of
the number of early type stars in the innermost few arcseconds
identified in this work.
258 of the 266 known late type sources have been classified as
late types by our method. The SEDs of 7 sources were too noisy
and one was classified as early type (source 363, 96 in Maness
list). Source 363 does not show a clear CO feature despite being
bright enough, and a comparison of the Maness and Paumard
lists shows that there is an early type source 0.17” from its po-
sition (assuming that the positions given in these works use the
same reference frame). In the imaging data that we have used for
this work, there is only a single source present at the location of
source E87 (Paumard) resp. 96 (Maness). It appears sufficiently
isolated to rule out confusion with another source. This leads us
to the assumption that Paumard et al. (2006) and Maness et al.
(2007) are looking at the same source there, but classify it dif-
ferently.
In order to derive an upper limit for the uncertainty and thus the
confidence in our method, we assume one erroneous classifica-
tion in the area covered by the SINFONI observations. In this
region (north of Sgr A*, mostly outside of 0.5 pc), we find a to-
tal number of 11 sources classified as early type, including the
one star of disputed type. If we assume one of these classifica-
tions to be erroneous, this leads us to an uncertainty of ∼9% for
our number of early type stars outside of 0.5 pc. We consider this

an acceptable level of confidence, considering the low density of
early type stars we measure this far out.
To be on the conservative side, we adopt this value,±9%, as the
uncertainty of the total number of all early type stars, i.e. in the
entire field of view. It has to be considered, however, that the
low total number of sources available for the determination of
this uncertainty level limits the confidence in it.

3.3. Structure of the cluster

Fig.11 shows the projected stellar density for the total popu-
lation, the early and late type stars. For comparison, we also
show the projected density of the early type stars provided by
Paumard et al. (2006). Only stars brighter than 15.5 mag have
been considered here, in order to allow a clear separation of early
and late type stars and to make a completeness correction unnec-
essary (see Schödel et al. (2007)).
The projected density profile of the late type stars is practically
flat within a radius of ∼10”. Within the innermost 5”, it can even
be fitted with a power law with a positive slope, i.e. the projected
density increases with the distance to the center. This flattening
or even inversion of the projected surface density profile of the
late-type stars combined with the steeply increasing density of
early-type stars towards SgrA* explains the dip in CO band head
absorption strength found in early spectroscopic observations of
low spatial resolution (Allen et al., 1990; Sellgren et al., 1990;
Haller et al., 1996). We discuss this in detail in §3.4.
A dip in the density can be observed at a radius of ∼5” that
has already been observed by Schödel et al. (2007) in deep
(magK ≤ 17.5) star counts. Zhu et al. (2008) also find a dip at 0.2
pc, which corresponds to the 5” given here and in Schödel et al.
(2007). This dip is a significant feature in the density profiles. It
is both present in the late- and early-type population, although
with a low significance in the latter, due to the small number of
early-type stars. The cause for this feature is probably extinc-

Fig. 11. Azimuthally averaged stellar surface density plotted against
the distance to Sgr A* for Ks magnitudes magKs < 15.5. No complete-
ness correction has been applied here, but the data can be assumed to
be complete down to magKs ∼ 15.5 (Schödel et al., 2007). The green
points describe the distribution of early type stars, while red stands for
late type quality 1 stars and dark blue for all detected stars. This also in-
cludes stars rated as noisy and bright enough late type quality 2 sources.
The early type stars given in Paumard et al. (2006) are shown in light
blue for comparison. The solid lines indicate the power laws fitted to
the data.

Buchholz+ 09

+ early

+ early
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+ all
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But why the central deficit of old stars?

• Born this way (Alexander 07; Preto & AS 10; Merritt 10; Lady Gaga 11)

• Ejection of stars by an IMBH - SMBH binary 

• Top-heavy IMF close to the SMBH

• Star-star collisions 

• Star-disk collisions 

Credit: Digital Sky LLC
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But why the central deficit of old stars?

• Born this way 

• Ejection of stars by an IMBH - SMBH binary 

• Top-heavy IMF close to the SMBH 
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• Star-disk collisions 
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But why the central deficit of old stars?

• Born this way 

• Ejection of stars by an IMBH - SMBH binary 

• Top-heavy IMF close to the SMBH 

• Star-star collisions 

• Star-disk collisions (AS & Chen 14)

Credit: Digital Sky LLC



Star-disk collisions
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Credit: Armitage, Zurek & Davies 96

Amaro-Seoane & Chen 14

• RGs’ extended, tenuous envelopes 
removed in collisions with the fragmenting 
disk.

• RGs with R=150R⊙ lose 50% of mass in 
~10 impacts with clumps of surface 
density 104 g/cm2



Star-disk collisions

Post-MS stellar evolution calculated with MESA (MacLeod+ 12)

Amaro-Seoane & Chen 14

• RGs’ extended, tenuous envelopes 
removed in collisions with the clumpy 
disk.

• RGs with R=150R⊙ lose 50% of mass in 
~10 impacts with clumps of surface 
density 104 g/cm2

• Smaller RGs and HB stars with R~10R⊙ 
require more impacts or denser clumps. 

The Astrophysical Journal, 757:134 (18pp), 2012 October 1 MacLeod, Guillochon, & Ramirez-Ruiz
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Figure 1. Radius (left) and mean density (right) evolution of post-MS stars. In the left panel, stages are marked as main sequence (MS), red giant (RG), horizontal
branch (HB), and asymptotic giant branch (AGB). In the right panel, we plot the mean density of stars between 0.95 and 5 M! as a function of fractional lifetime. The
mean density describes the stars’ vulnerability to tidal disruption (Equation (1)). Periods of low density occupy an increasing portion of the lifetime of more massive
stars.
(A color version of this figure is available in the online journal.)

When helium burning eventually ignites, it does so in degenerate
material, causing a dynamic event known as the helium core
flash. Above about 2.2 M!, helium ignition occurs off-center in
nondegenerate material and the star does not reach as extreme
radii while on the RG branch (Maeder 2009).

Following helium ignition, the core expands and the star
stably burns helium to carbon and oxygen for a period of about
τhb ∼ 108 yr along the horizontal branch (HB). During this
time the core mass grows significantly as hydrogen continues to
burn to helium in a shell surrounding the core (Maeder 2009).
Finally, the star may ascend to the tip of the giant branch one
final time as its carbon–oxygen core becomes degenerate. Stars
above (about) 9 M! will go through additional burning phases
(Maeder 2009). For the intermediate-mass stars considered here,
at the tip of the AGB, the stars’ luminosity becomes so great
that the bulk of the envelope is driven off via a combination of
strong winds and thermal pulses, eventually exposing the bare
carbon–oxygen core—a proto-white dwarf (Habing & Olofsson
2003).

In the left panel of Figure 1, we show typical evolutionary
stages for stars with 1.4 M! and 2.87 M! zero-age MS (ZAMS)
mass. For simplicity, we define here the transition from the MS
to the subgiant portion of the RG branch as being when a star first
exceeds 2.5 times its ZAMS radius. The post-MS evolution is a
very sensitive function of the initial stellar mass. In particular,
the peak radii and timescales of the RG and AGB phases vary
considerably with mass. A common feature is that while on
the giant branch, stars with a wide range of masses spend
considerable time having radii in the range ∼5–20 R! and brief
phases above 100 R!. The tidal radius of a star, Equation (1),
is a time-varying function that depends on the mean stellar
density, as rt(t) ∝ M∗(t)−1/3R∗(t) ∝ ρ̄∗(t)−1/3. The right panel
of Figure 1 illustrates the variation in stellar evolution profiles
with initial mass and that these late phases of stellar evolution
give rise to brief periods in which the star becomes orders
of magnitude more vulnerable to tidal disruption than it is on
the MS.

2.3. Tidal Disruption Basics Applied to Evolved Stars

Tidal disruptions occur when stars are scattered into suffi-
ciently low angular momentum orbits that they pass within the

tidal radius at pericenter, rt = (Mbh/M∗)1/3R∗. We denote the
impact parameter of an encounter in terms of the ratio of the
tidal radius, rt, to the pericenter distance, rp, as β = rt/rp, such
that β & 1 signifies a deep encounter. Tidal disruptions are only
observable if they occur outside the black hole’s Schwarzschild
radius rs = 2GMbh/c

2. In terms of rs, the tidal radius may be
rewritten as

rt/rs ≈ 23.5
(

M∗

M!

)−1/3 (
Mbh

106 M!

)−2/3 (
R∗

R!

)
. (4)

For Mbh ! 108 M!, solar-type stars will be swallowed whole,
producing no observable flare. The precise value of this black
hole mass cutoff is almost certainly modulated to some extent
by the black hole’s spin and innermost stable circular orbit
(Kesden 2012; Haas et al. 2012). Although stellar remnants
such as white dwarfs are expected to be numerous in galactic
center environments (e.g., Alexander 2005), we do not consider
them here since they will be swallowed whole by black holes
Mbh ! 105 M! (Luminet & Pichon 1989; Rosswog et al. 2008a,
2008b).

A characteristic encounter timescale in tidal disruption events
is the pericenter passage time. This timescale is equivalent
to the stellar dynamical time, rt/vp ≈

√
R3/GM = tdyn,

for encounters with pericenter at the tidal radius, rp = rt,
regardless of stellar structure or evolutionary state. Considering
encounters of varying impact parameter, the passage timescale
becomes tp ∼ β−1tdyn. During the encounter, material is stripped
from the stellar core and spread into two tidal tails. The
material in one of the tails is unbound from the black hole
and ejected on hyperbolic trajectories. The other is bound to
the black hole and will return on a wide range of elliptical
orbits. Following Rees (1988), we can derive the fallback time
of the most bound material, tfb, by assuming that the star
is initially on a parabolic orbit, Eorb = 0. Then, Emin ≈
−β2GM∗/R∗(Mbh/M∗)1/3, and the corresponding Keplerian
period, tfb = 2πGMbh(−2Emin)−3/2, can be recast as

tfb ≈ 0.11β−3
(

Mbh

106 M!

)1/2 (
M∗

M!

)−1 (
R∗

R!

)3/2

yr. (5)
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• RGs’ extended, tenuous envelopes 
removed in collisions with the clumpy 
disk.

• RGs with R=150R⊙ lose 50% of mass in 
~10 impacts with clumps of surface 
density 104 g/cm2

• Smaller RGs and HB stars with R~10R⊙ 
require more impacts or denser clumps. 
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Background

Observations of the Milky Way’s Galactic Center (GC) indicate a paucity of red giants (RGs) with the ages of ∼ 108−109 years relative to the younger population of stars in the GC (Buchholz
et al. 2009). It has recently been proposed that the relative lack of RGs can be explained by the interaction with the accretion disk that is expected to have existed around the central SMBH,
which subsequently fragmented and formed a stellar disk (Alexander et al. 2008, Amaro-Seoane & Chen 2014). The interactions occur when a star has an orbital trajectory that intersects
the plane of the accretion disk (Dai et al. 2010). Because they have compact cores surrounded by tenuous outer layers, RGs are particularly vulnerable to collisions with the central accretion
disk, which can lead to large amounts of mass loss from the impacting star and occasionally, to its disruption. Both of these effects can in principle lower the luminosity of the RG star and
remove it from the observable population of stars in the GC. The goal of my project is test this hypothesis by the means of high resolution simulations.

Figure 1
Sequence of 3D snapshots of gas density immediately after the star impacted the disk (starting from the far left). The snapshots

are from a simulation where the stellar velocity is 600 km/s and the gas density is 2.97× 10−6
g/cm

3
. ”Onion structure” depicts the

surfaces of equal density and color marks the density magnitude. The density is highest at the center of the star (blue) and the

shape of surfaces indicates the ram pressure experienced by the star which is moving downward.

Figure 2
Illustration of the star-disk collision scenario (Image

credit: Nayakshin et al. 2003).

Figure 3
Sequence of 2D snapshots of gas temperature immediately after the star impacted the disk (starting from the far left). The

snapshots are from a simulation where the stellar velocity is 600 km/s, the gas density is 2.97× 10−6
g/cm

3
, and the temperature of

the gas during this impact is ∼ 4.24 × 106 K. The psuedocolor gradient indicates blue as the ”cooler” regions and orange/red and

the ”hotter” regions. The left panel indicates that the star immediately forms a hot parabolic shaped ”shocked” region of gas. The

middle and right panels show a fully developed bow shock that has formed upstream from the star and is partly shielding it from

the ram pressure stripping of the outer layers.
Numerical Methods

We use a 3D parallel hydrodynamics code (Cheng
& Evans 2013) to model the collision of a star with
the accretion disks of varying densities in a computa-
tional box with the size of 4R∗ (whereR∗ is the radius
of the star). The adopted values of the gas densities
(9.42×10−8−2.97×10−6 g/cm−3) are consistent with
the gravitationally unstable accretion disk in different
stages of fragmentation. The adopted impact veloci-
ties of the star (300−900 km/s) correspond to stellar
orbits with semi-major axis in the range of ∼ 10−2 to
∼ 10−1 parsecs from the central SMBH. In addition
to the gas density and impact velocity, we also ex-
plore the effects of the stellar structure and repeated
collisions of the star with the disk on the final struc-
ture of the star.

Figure 4

Mass of the RG star crossing the accretion disk as a function of time in units of

dynamical time of the star. The mass-loss curve corresponds to the same simula-

tion as in Figures 1 & 3. We measure a mass-loss of ≈ 16%, indicating that the

star has lost a significant fraction of its envelope which leaves the compact RG

core exposed. Comparable and larger mass-loss is likely to decrease the luminosity

of the star and remove it from the observable population of RGs in the GC.

Conclusions
The idea that RG stars can be significantly damaged in collisions with an accretion disk around the
SMBH is a viable hypothesis that can explain a relative lack of the late type stars in the Galactic
Center. We test this theoretical prediction by carrying out simulations of encounters of RG stars with
such a disk for a range of physical parameters that characterize different possible RG orbits as well as
densities and temperatures of the accretion disk. Our runs indicate that conditions for significant mass
stripping of impacting RG stars can be achieved only within ∼ 0.1 pcs from the SMBH, if the accretion
disk is gravitationally unstable and has fragmented into high density clumps and is more likely if the
stars have multiple impacts with the disk. This study can furthermore shed light on the properties of
stars as well as the structure of impacted accretion disks in extreme environments close to the SMBH
(Syer et al. 1990, Nayakshin 2003).
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the plane of the accretion disk (Dai et al. 2010). Because they have compact cores surrounded by tenuous outer layers, RGs are particularly vulnerable to collisions with the central accretion
disk, which can lead to large amounts of mass loss from the impacting star and occasionally, to its disruption. Both of these effects can in principle lower the luminosity of the RG star and
remove it from the observable population of stars in the GC. The goal of my project is test this hypothesis by the means of high resolution simulations.
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Sequence of 3D snapshots of gas density immediately after the star impacted the disk (starting from the far left). The snapshots

are from a simulation where the stellar velocity is 600 km/s and the gas density is 2.97× 10−6
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. ”Onion structure” depicts the

surfaces of equal density and color marks the density magnitude. The density is highest at the center of the star (blue) and the

shape of surfaces indicates the ram pressure experienced by the star which is moving downward.

Figure 2
Illustration of the star-disk collision scenario (Image

credit: Nayakshin et al. 2003).

Figure 3
Sequence of 2D snapshots of gas temperature immediately after the star impacted the disk (starting from the far left). The

snapshots are from a simulation where the stellar velocity is 600 km/s, the gas density is 2.97× 10−6
g/cm

3
, and the temperature of

the gas during this impact is ∼ 4.24 × 106 K. The psuedocolor gradient indicates blue as the ”cooler” regions and orange/red and

the ”hotter” regions. The left panel indicates that the star immediately forms a hot parabolic shaped ”shocked” region of gas. The

middle and right panels show a fully developed bow shock that has formed upstream from the star and is partly shielding it from

the ram pressure stripping of the outer layers.
Numerical Methods

We use a 3D parallel hydrodynamics code (Cheng
& Evans 2013) to model the collision of a star with
the accretion disks of varying densities in a computa-
tional box with the size of 4R∗ (whereR∗ is the radius
of the star). The adopted values of the gas densities
(9.42×10−8−2.97×10−6 g/cm−3) are consistent with
the gravitationally unstable accretion disk in different
stages of fragmentation. The adopted impact veloci-
ties of the star (300−900 km/s) correspond to stellar
orbits with semi-major axis in the range of ∼ 10−2 to
∼ 10−1 parsecs from the central SMBH. In addition
to the gas density and impact velocity, we also ex-
plore the effects of the stellar structure and repeated
collisions of the star with the disk on the final struc-
ture of the star.

Figure 4

Mass of the RG star crossing the accretion disk as a function of time in units of

dynamical time of the star. The mass-loss curve corresponds to the same simula-

tion as in Figures 1 & 3. We measure a mass-loss of ≈ 16%, indicating that the

star has lost a significant fraction of its envelope which leaves the compact RG

core exposed. Comparable and larger mass-loss is likely to decrease the luminosity

of the star and remove it from the observable population of RGs in the GC.

Conclusions
The idea that RG stars can be significantly damaged in collisions with an accretion disk around the
SMBH is a viable hypothesis that can explain a relative lack of the late type stars in the Galactic
Center. We test this theoretical prediction by carrying out simulations of encounters of RG stars with
such a disk for a range of physical parameters that characterize different possible RG orbits as well as
densities and temperatures of the accretion disk. Our runs indicate that conditions for significant mass
stripping of impacting RG stars can be achieved only within ∼ 0.1 pcs from the SMBH, if the accretion
disk is gravitationally unstable and has fragmented into high density clumps and is more likely if the
stars have multiple impacts with the disk. This study can furthermore shed light on the properties of
stars as well as the structure of impacted accretion disks in extreme environments close to the SMBH
(Syer et al. 1990, Nayakshin 2003).
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Fig. 1.— Left: Initial density profiles of the simulated RGs: Γ = 5/3 (blue, solid) and 4/3 (red, dashed). Right: Initial column density

profiles for the same two models. Horizontal lines at 10
7
and 10

8
g cm

−2
correspond to column densities of the simulated clumps. The

”kink” in the Γ = 4/3 profile close to the surface of the star is a numerical artifact (see the text). [Use the same color scheme for density

profiles in both panels. Right panel: Stretch the y-axis a little so that the range of column densities is between 10
3
and whatever maximum

you have now. Make the tick marks on the y-axis more visible. Use solid lines of any color for horizontal lines in the right panel (both

black or both green).].

We assume that the velocity of star-disk encounter is
comparable to the orbital velocities of the stars about the
center of the NSC, which within the radius of r ≤ 0.5 pc
correspond to v∗ = (GM•/r)1/2 � 200 km s−1 (Trippe
et al. 2008). Here we account for the mass of the black
hole in the GC (M• = 4.3 × 106 M⊙; Ghez et al. 2008;
Gillessen et al. 2009) and neglect the contribution due
to the mass of the enclosed NSC stars, which at r ≤
0.5 pc is about an order of magnitude lower than that of
the SMBH (Schödel et al. 2009). We therefore simulate
the initial encounter velocities in the range from 150 to
1200 km s−1, as outlined in Table 1.
Note that the orbital velocity of the RG decreases over

the course of the simulation due to the exchange of linear
momentum with the accretion disk. We continuously ad-
just the reference frame of the computational domain so
that the star remains at rest and centered on the domain
throughout the simulation.

2.2. Properties of the Fragmenting Accretion Disk

We assume that before fragmentation the nuclear ac-
cretion disk had characteristics of a geometrically thin
and optically thick disk supported by gas pressure, in
which the opacity is dominated by electron scattering
(Shakura & Sunyaev 1973). The surface density and half-
height of such a disk are

Σ� 3× 103g cm−2α−4/5
0.1 ṁ3/5

0.1 r
−3/5
0.5 M4/5

• (1)

h� 5× 1015cmα−1/10
0.1 ṁ1/5

0.1 r
21/20
0.5 M−3/20

• (2)

where α = 0.1α0.1 is the constant that characterizes the
efficiency of angular momentum transport in the disk,
ṁ = 0.1ṁ0.1 is the accretion rate onto the black hole in
units of the Eddington accretion rate3, r0.5 is the radius
in the disk in units of 0.5 pc, and M• is the mass of the
black hole in the GC.
Because of its relatively low surface density (compared

to the star), the encounter with the disk of such proper-
ties leaves the 10R⊙ RG mostly unscathed. We choose
this setup as a numerical test of the stability of the star

3
Eddington accretion rate is ṀE ≈ 0.1M⊙ yr

−1 η−1
0.1 M• and

η = 0.1 η0.1 is the radiative efficiency of accretion.

placed in a low density background flow (run A0 in Ta-
ble 1 and the Appendix) and in the remainder of the
paper consider collisions of the RG star with the higher
density clumps.
The initial properties of the accretion disk imply that

clumps that form from it as a consequence of fragmenta-
tion and runaway collapse of gas clouds must have radii
smaller than the disk half-thickness h

Rc � min {
�

Mc/πΣc, h} (3)

where Rc, Mc and Σc are the clump radius, mass, and
surface density, respectively. It also follows that the sur-
face density of the clump must be larger than that of
the disk initially. We choose clump surface densities
Σc = 107 and 108 g cm−2, for which the RG losses a
non-negligible amount of its outer envelope due to strip-
ping (Figure 1).
Following the approach by ASC, who conjecture that

the clumps must be sufficiently massive to produce the
Wolf-Rayet and O-type stars (WR/O) in the observed
stellar disk in the GC, we adopt a clump mass of Mc =
102M⊙. We use equation 3 to estimate the clump radius,
Rc, and list the corresponding values in Table 1.
As mentioned, the clump is introduced by prescribing

a continuous flow of gas from one boundary of the com-
putational domain. The inflowing gas has density and
pressure which represent a particular clump of column
density Σc. The velocity of the inflowing gas is deter-
mined by the RGs orbital velocity. In a majority of the
simulations, this inflowing gas is continually injected into
the domain, simulating a star impacting a clump once
and never exiting. However, in order to investigate the
effect of a repeated impacts with a clump, simulations are
also carried out in which the RG travels through multi-
ple, discrete slabs of gas. The thickness of each slab is
determined by the clump crossing time (see equation 7,
§2.3). The examples of “continuous” and “repeated im-
pact” simulations are the runs A7 and RA7, respectively.

2.3. Characteristic time scales

We use the dynamical time as a natural time unit in
our simulations

tdyn =
R3/2

∗

(GM∗)1/2
� 11.4 h R̃3/2

∗ M̃−1/2
∗ (4)

R∗ = 10R⊙   M∗ = 1M⊙    tdyn∼11hr

Barely any mass in the envelope 
beyond 0.5R
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Fig. 1.— Left: Initial density profiles of the simulated RGs: Γ = 5/3 (blue, solid) and 4/3 (red, dashed). Right: Initial column density

profiles for the same two models. Horizontal lines at 10
7
and 10

8
g cm

−2
correspond to column densities of the simulated clumps. The

”kink” in the Γ = 4/3 profile close to the surface of the star is a numerical artifact (see the text). [Use the same color scheme for density

profiles in both panels. Right panel: Stretch the y-axis a little so that the range of column densities is between 10
3
and whatever maximum

you have now. Make the tick marks on the y-axis more visible. Use solid lines of any color for horizontal lines in the right panel (both

black or both green).].

We assume that the velocity of star-disk encounter is
comparable to the orbital velocities of the stars about the
center of the NSC, which within the radius of r ≤ 0.5 pc
correspond to v∗ = (GM•/r)1/2 � 200 km s−1 (Trippe
et al. 2008). Here we account for the mass of the black
hole in the GC (M• = 4.3 × 106 M⊙; Ghez et al. 2008;
Gillessen et al. 2009) and neglect the contribution due
to the mass of the enclosed NSC stars, which at r ≤
0.5 pc is about an order of magnitude lower than that of
the SMBH (Schödel et al. 2009). We therefore simulate
the initial encounter velocities in the range from 150 to
1200 km s−1, as outlined in Table 1.
Note that the orbital velocity of the RG decreases over

the course of the simulation due to the exchange of linear
momentum with the accretion disk. We continuously ad-
just the reference frame of the computational domain so
that the star remains at rest and centered on the domain
throughout the simulation.

2.2. Properties of the Fragmenting Accretion Disk

We assume that before fragmentation the nuclear ac-
cretion disk had characteristics of a geometrically thin
and optically thick disk supported by gas pressure, in
which the opacity is dominated by electron scattering
(Shakura & Sunyaev 1973). The surface density and half-
height of such a disk are

Σ� 3× 103g cm−2α−4/5
0.1 ṁ3/5

0.1 r
−3/5
0.5 M4/5

• (1)

h� 5× 1015cmα−1/10
0.1 ṁ1/5

0.1 r
21/20
0.5 M−3/20

• (2)

where α = 0.1α0.1 is the constant that characterizes the
efficiency of angular momentum transport in the disk,
ṁ = 0.1ṁ0.1 is the accretion rate onto the black hole in
units of the Eddington accretion rate3, r0.5 is the radius
in the disk in units of 0.5 pc, and M• is the mass of the
black hole in the GC.
Because of its relatively low surface density (compared

to the star), the encounter with the disk of such proper-
ties leaves the 10R⊙ RG mostly unscathed. We choose
this setup as a numerical test of the stability of the star

3
Eddington accretion rate is ṀE ≈ 0.1M⊙ yr

−1 η−1
0.1 M• and

η = 0.1 η0.1 is the radiative efficiency of accretion.

placed in a low density background flow (run A0 in Ta-
ble 1 and the Appendix) and in the remainder of the
paper consider collisions of the RG star with the higher
density clumps.
The initial properties of the accretion disk imply that

clumps that form from it as a consequence of fragmenta-
tion and runaway collapse of gas clouds must have radii
smaller than the disk half-thickness h

Rc � min {
�

Mc/πΣc, h} (3)

where Rc, Mc and Σc are the clump radius, mass, and
surface density, respectively. It also follows that the sur-
face density of the clump must be larger than that of
the disk initially. We choose clump surface densities
Σc = 107 and 108 g cm−2, for which the RG losses a
non-negligible amount of its outer envelope due to strip-
ping (Figure 1).
Following the approach by ASC, who conjecture that

the clumps must be sufficiently massive to produce the
Wolf-Rayet and O-type stars (WR/O) in the observed
stellar disk in the GC, we adopt a clump mass of Mc =
102M⊙. We use equation 3 to estimate the clump radius,
Rc, and list the corresponding values in Table 1.
As mentioned, the clump is introduced by prescribing

a continuous flow of gas from one boundary of the com-
putational domain. The inflowing gas has density and
pressure which represent a particular clump of column
density Σc. The velocity of the inflowing gas is deter-
mined by the RGs orbital velocity. In a majority of the
simulations, this inflowing gas is continually injected into
the domain, simulating a star impacting a clump once
and never exiting. However, in order to investigate the
effect of a repeated impacts with a clump, simulations are
also carried out in which the RG travels through multi-
ple, discrete slabs of gas. The thickness of each slab is
determined by the clump crossing time (see equation 7,
§2.3). The examples of “continuous” and “repeated im-
pact” simulations are the runs A7 and RA7, respectively.

2.3. Characteristic time scales

We use the dynamical time as a natural time unit in
our simulations

tdyn =
R3/2

∗

(GM∗)1/2
� 11.4 h R̃3/2

∗ M̃−1/2
∗ (4)
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”kink” in the Γ = 4/3 profile close to the surface of the star is a numerical artifact (see the text). [Use the same color scheme for density

profiles in both panels. Right panel: Stretch the y-axis a little so that the range of column densities is between 10
3
and whatever maximum

you have now. Make the tick marks on the y-axis more visible. Use solid lines of any color for horizontal lines in the right panel (both

black or both green).].

We assume that the velocity of star-disk encounter is
comparable to the orbital velocities of the stars about the
center of the NSC, which within the radius of r ≤ 0.5 pc
correspond to v∗ = (GM•/r)1/2 � 200 km s−1 (Trippe
et al. 2008). Here we account for the mass of the black
hole in the GC (M• = 4.3 × 106 M⊙; Ghez et al. 2008;
Gillessen et al. 2009) and neglect the contribution due
to the mass of the enclosed NSC stars, which at r ≤
0.5 pc is about an order of magnitude lower than that of
the SMBH (Schödel et al. 2009). We therefore simulate
the initial encounter velocities in the range from 150 to
1200 km s−1, as outlined in Table 1.
Note that the orbital velocity of the RG decreases over

the course of the simulation due to the exchange of linear
momentum with the accretion disk. We continuously ad-
just the reference frame of the computational domain so
that the star remains at rest and centered on the domain
throughout the simulation.

2.2. Properties of the Fragmenting Accretion Disk

We assume that before fragmentation the nuclear ac-
cretion disk had characteristics of a geometrically thin
and optically thick disk supported by gas pressure, in
which the opacity is dominated by electron scattering
(Shakura & Sunyaev 1973). The surface density and half-
height of such a disk are
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where α = 0.1α0.1 is the constant that characterizes the
efficiency of angular momentum transport in the disk,
ṁ = 0.1ṁ0.1 is the accretion rate onto the black hole in
units of the Eddington accretion rate3, r0.5 is the radius
in the disk in units of 0.5 pc, and M• is the mass of the
black hole in the GC.
Because of its relatively low surface density (compared

to the star), the encounter with the disk of such proper-
ties leaves the 10R⊙ RG mostly unscathed. We choose
this setup as a numerical test of the stability of the star

3
Eddington accretion rate is ṀE ≈ 0.1M⊙ yr

−1 η−1
0.1 M• and

η = 0.1 η0.1 is the radiative efficiency of accretion.

placed in a low density background flow (run A0 in Ta-
ble 1 and the Appendix) and in the remainder of the
paper consider collisions of the RG star with the higher
density clumps.
The initial properties of the accretion disk imply that

clumps that form from it as a consequence of fragmenta-
tion and runaway collapse of gas clouds must have radii
smaller than the disk half-thickness h

Rc � min {
�

Mc/πΣc, h} (3)

where Rc, Mc and Σc are the clump radius, mass, and
surface density, respectively. It also follows that the sur-
face density of the clump must be larger than that of
the disk initially. We choose clump surface densities
Σc = 107 and 108 g cm−2, for which the RG losses a
non-negligible amount of its outer envelope due to strip-
ping (Figure 1).
Following the approach by ASC, who conjecture that

the clumps must be sufficiently massive to produce the
Wolf-Rayet and O-type stars (WR/O) in the observed
stellar disk in the GC, we adopt a clump mass of Mc =
102M⊙. We use equation 3 to estimate the clump radius,
Rc, and list the corresponding values in Table 1.
As mentioned, the clump is introduced by prescribing

a continuous flow of gas from one boundary of the com-
putational domain. The inflowing gas has density and
pressure which represent a particular clump of column
density Σc. The velocity of the inflowing gas is deter-
mined by the RGs orbital velocity. In a majority of the
simulations, this inflowing gas is continually injected into
the domain, simulating a star impacting a clump once
and never exiting. However, in order to investigate the
effect of a repeated impacts with a clump, simulations are
also carried out in which the RG travels through multi-
ple, discrete slabs of gas. The thickness of each slab is
determined by the clump crossing time (see equation 7,
§2.3). The examples of “continuous” and “repeated im-
pact” simulations are the runs A7 and RA7, respectively.

2.3. Characteristic time scales

We use the dynamical time as a natural time unit in
our simulations

tdyn =
R3/2

∗

(GM∗)1/2
� 11.4 h R̃3/2

∗ M̃−1/2
∗ (4)
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disk with γ = 5/3 lies at tcoolΩ ! 3 (e.g., Gammie 2001; Rice
et al. 2003).

3.2. Low-resolution runs
The low resolution runs make use of a rather massive (and

therefore thick) disk and, if they fragment at all, are not ex-
pected to produce very many fragments (as the most unstable
length scale is always of order H). Consequently, the anal-
ysis of these low resolution runs is limited to if, when and
where they fragment, and the number of fragments produced:
there are too few fragments to allow detailed analysis of their
properties. In these runs the density is allowed to increase
without limit, so the simulations simply stop when the den-
sity becomes sufficiently high to force a very small timestep.
Typically this occurs 1–2 (local) orbital periods after the first
fragments form, and only a small fraction of the gas is ac-
creted into clumps before the simulations stop.
In order to compare the fragmentation properties of runs

with different eccentricities, we require a simple method to
quantify the behavior (masses, velocities, positions, etc.) of
the fragments that form. We define fragments (or “clumps”)
to be bound objects containing at least 128 SPH particles
(i.e., with at least double the number of nearest neighbors).
The clumps are first identified by locating peaks in the den-
sity distribution, and are then tested for bound-ness. For sim-
plicity we calculate the potential energy of pairs of particles
using a slightly simplified gravitational potential of the form
Gm/(r+h), where h is the local SPH smoothing length: this is
sufficiently accurate for our purposes, and is faster to compute
than convolution with the rather complex smoothing function
used by GADGET2. The masses of individual clumps are de-
termined by ranking particles by total energy (potential plus
kinetic plus thermal) and iterating outwards until the first un-
bound particle is reached. We define the position and velocity
of each clump as the mean values of all of the SPH parti-
cles bound to that clump. While somewhat cumbersome, we
prefer this method of identifying clumps to a geometric one
(using, for example, concentric shells) as it allows accurate
treatment of non-spherical clumps, and we apply this method
identically to all of our simulations (both here and in the high-
resolution runs discussed below).

3.2.1. Fragmentation boundary for e "= 0
Our first aim was to study the effect of eccentricity on the

overall stability of the disk against fragmentation. The en-
ergy liberated by circularization of an eccentric orbit (with a
fixed angular momentum) is given simply by the product of
e2 and the total energy of the corresponding circular orbit, so
in principle this represents a large energy reservoir that could
stabilize the disk against fragmentation. However, in our sim-
ulations this energy is not liberated sufficiently quickly to
prevent fragmentation: all of the eccentric disks with β = 3
fragmented (apart from that with e = 0.75, see below), while
none of the models with β = 5 showed any evidence for frag-
mentation despite running for several outer orbital times (see
Fig.1)5. Moreover, the fact that the disk with e = 0.75 and
β = 3 did not fragment is likely an artefact of our numeri-
cal set-up. In this simulation the major-to-minor axis ratio
of the disk is so large that when the inner disk precesses it
approaches the outer edge of the disk. At this point density
waves are reflected back off the outer edge of the disk, and

5 Visualizations of our SPH simulations were created using SPLASH: see
Price (2007) for details.

FIG. 1.— Snapshots of disk midplane density in the central region of the
low-resolution runs with e = 0.5: the upper panel shows a model with β =
3 (simulation ECC.50), the lower β = 5 (simulation ECC.50B5). Both are
plotted on the same (logarithmic) density scale, and both are shown for t =
112.5. The β = 3 run has fragmented, while the β = 5 run remains stable. The
major axis of the disk was initially aligned with the x-axis: the precession of
the inner disk is clearly seen in both snapshots.

appear to stabilize the disk against fragmentation. In prin-
ciple this could be a physical effect, but it is not clear that
a real disk would have such a sharp outer edge with such a
large major-to-minor axis ratio. Additional simulations with
a much larger dynamical range in semi-major axis (and there-
fore a much larger particle number) are required to investigate
this further. We therefore conclude that the disk eccentric-
ity has little or no effect on the location of the fragmentation
boundary, except possibly at very high eccentricity (e! 0.75).
In a sense, this can be attributed to our choice of initial con-

ditions. Our disks were set up so that the angle of pericenter
was constant with radius, and consequently none of the ini-
tial streamlines intersect. We expect the circularization en-
ergy to be liberated by shocks, which arise when differential
precession of the disk causes different orbital streamlines to
intersect. In our models the central body provides a point-
mass potential, and the only non-point-mass contribution to
the potential (i.e., the part that causes precession) comes from
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disk with γ = 5/3 lies at tcoolΩ ! 3 (e.g., Gammie 2001; Rice
et al. 2003).

3.2. Low-resolution runs
The low resolution runs make use of a rather massive (and

therefore thick) disk and, if they fragment at all, are not ex-
pected to produce very many fragments (as the most unstable
length scale is always of order H). Consequently, the anal-
ysis of these low resolution runs is limited to if, when and
where they fragment, and the number of fragments produced:
there are too few fragments to allow detailed analysis of their
properties. In these runs the density is allowed to increase
without limit, so the simulations simply stop when the den-
sity becomes sufficiently high to force a very small timestep.
Typically this occurs 1–2 (local) orbital periods after the first
fragments form, and only a small fraction of the gas is ac-
creted into clumps before the simulations stop.
In order to compare the fragmentation properties of runs

with different eccentricities, we require a simple method to
quantify the behavior (masses, velocities, positions, etc.) of
the fragments that form. We define fragments (or “clumps”)
to be bound objects containing at least 128 SPH particles
(i.e., with at least double the number of nearest neighbors).
The clumps are first identified by locating peaks in the den-
sity distribution, and are then tested for bound-ness. For sim-
plicity we calculate the potential energy of pairs of particles
using a slightly simplified gravitational potential of the form
Gm/(r+h), where h is the local SPH smoothing length: this is
sufficiently accurate for our purposes, and is faster to compute
than convolution with the rather complex smoothing function
used by GADGET2. The masses of individual clumps are de-
termined by ranking particles by total energy (potential plus
kinetic plus thermal) and iterating outwards until the first un-
bound particle is reached. We define the position and velocity
of each clump as the mean values of all of the SPH parti-
cles bound to that clump. While somewhat cumbersome, we
prefer this method of identifying clumps to a geometric one
(using, for example, concentric shells) as it allows accurate
treatment of non-spherical clumps, and we apply this method
identically to all of our simulations (both here and in the high-
resolution runs discussed below).

3.2.1. Fragmentation boundary for e "= 0
Our first aim was to study the effect of eccentricity on the

overall stability of the disk against fragmentation. The en-
ergy liberated by circularization of an eccentric orbit (with a
fixed angular momentum) is given simply by the product of
e2 and the total energy of the corresponding circular orbit, so
in principle this represents a large energy reservoir that could
stabilize the disk against fragmentation. However, in our sim-
ulations this energy is not liberated sufficiently quickly to
prevent fragmentation: all of the eccentric disks with β = 3
fragmented (apart from that with e = 0.75, see below), while
none of the models with β = 5 showed any evidence for frag-
mentation despite running for several outer orbital times (see
Fig.1)5. Moreover, the fact that the disk with e = 0.75 and
β = 3 did not fragment is likely an artefact of our numeri-
cal set-up. In this simulation the major-to-minor axis ratio
of the disk is so large that when the inner disk precesses it
approaches the outer edge of the disk. At this point density
waves are reflected back off the outer edge of the disk, and

5 Visualizations of our SPH simulations were created using SPLASH: see
Price (2007) for details.

FIG. 1.— Snapshots of disk midplane density in the central region of the
low-resolution runs with e = 0.5: the upper panel shows a model with β =
3 (simulation ECC.50), the lower β = 5 (simulation ECC.50B5). Both are
plotted on the same (logarithmic) density scale, and both are shown for t =
112.5. The β = 3 run has fragmented, while the β = 5 run remains stable. The
major axis of the disk was initially aligned with the x-axis: the precession of
the inner disk is clearly seen in both snapshots.

appear to stabilize the disk against fragmentation. In prin-
ciple this could be a physical effect, but it is not clear that
a real disk would have such a sharp outer edge with such a
large major-to-minor axis ratio. Additional simulations with
a much larger dynamical range in semi-major axis (and there-
fore a much larger particle number) are required to investigate
this further. We therefore conclude that the disk eccentric-
ity has little or no effect on the location of the fragmentation
boundary, except possibly at very high eccentricity (e! 0.75).
In a sense, this can be attributed to our choice of initial con-

ditions. Our disks were set up so that the angle of pericenter
was constant with radius, and consequently none of the ini-
tial streamlines intersect. We expect the circularization en-
ergy to be liberated by shocks, which arise when differential
precession of the disk causes different orbital streamlines to
intersect. In our models the central body provides a point-
mass potential, and the only non-point-mass contribution to
the potential (i.e., the part that causes precession) comes from
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We assume that the velocity of star-disk encounter is
comparable to the orbital velocities of the stars about the
center of the NSC, which within the radius of r ≤ 0.5 pc
correspond to v∗ = (GM•/r)1/2 � 200 km s−1 (Trippe
et al. 2008). Here we account for the mass of the black
hole in the GC (M• = 4.3 × 106 M⊙; Ghez et al. 2008;
Gillessen et al. 2009) and neglect the contribution due
to the mass of the enclosed NSC stars, which at r ≤
0.5 pc is about an order of magnitude lower than that of
the SMBH (Schödel et al. 2009). We therefore simulate
the initial encounter velocities in the range from 150 to
1200 km s−1, as outlined in Table 1.
Note that the orbital velocity of the RG decreases over

the course of the simulation due to the exchange of linear
momentum with the accretion disk. We continuously ad-
just the reference frame of the computational domain so
that the star remains at rest and centered on the domain
throughout the simulation.

2.2. Properties of the Fragmenting Accretion Disk

We assume that before fragmentation the nuclear ac-
cretion disk had characteristics of a geometrically thin
and optically thick disk supported by gas pressure, in
which the opacity is dominated by electron scattering
(Shakura & Sunyaev 1973). The surface density and half-
height of such a disk are

Σ� 3× 103g cm−2α−4/5
0.1 ṁ3/5

0.1 r
−3/5
0.5 M4/5

• (1)

h� 5× 1015cmα−1/10
0.1 ṁ1/5

0.1 r
21/20
0.5 M−3/20

• (2)

where α = 0.1α0.1 is the constant that characterizes the
efficiency of angular momentum transport in the disk,
ṁ = 0.1ṁ0.1 is the accretion rate onto the black hole in
units of the Eddington accretion rate3, r0.5 is the radius
in the disk in units of 0.5 pc, and M• is the mass of the
black hole in the GC.
Because of its relatively low surface density (compared

to the star), the encounter with the disk of such proper-
ties leaves the 10R⊙ RG mostly unscathed. We choose
this setup as a numerical test of the stability of the star

3
Eddington accretion rate is ṀE ≈ 0.1M⊙ yr

−1 η−1
0.1 M• and

η = 0.1 η0.1 is the radiative efficiency of accretion.

placed in a low density background flow (run A0 in Ta-
ble 1 and the Appendix) and in the remainder of the
paper consider collisions of the RG star with the higher
density clumps.
The initial properties of the accretion disk imply that

clumps that form from it as a consequence of fragmenta-
tion and runaway collapse of gas clouds must have radii
smaller than the disk half-thickness h

Rc � min {
�

Mc/πΣc, h} (3)

where Rc, Mc and Σc are the clump radius, mass, and
surface density, respectively. It also follows that the sur-
face density of the clump must be larger than that of
the disk initially. We choose clump surface densities
Σc = 107 and 108 g cm−2, for which the RG losses a
non-negligible amount of its outer envelope due to strip-
ping (Figure 1).
Following the approach by ASC, who conjecture that

the clumps must be sufficiently massive to produce the
Wolf-Rayet and O-type stars (WR/O) in the observed
stellar disk in the GC, we adopt a clump mass of Mc =
102M⊙. We use equation 3 to estimate the clump radius,
Rc, and list the corresponding values in Table 1.
As mentioned, the clump is introduced by prescribing

a continuous flow of gas from one boundary of the com-
putational domain. The inflowing gas has density and
pressure which represent a particular clump of column
density Σc. The velocity of the inflowing gas is deter-
mined by the RGs orbital velocity. In a majority of the
simulations, this inflowing gas is continually injected into
the domain, simulating a star impacting a clump once
and never exiting. However, in order to investigate the
effect of a repeated impacts with a clump, simulations are
also carried out in which the RG travels through multi-
ple, discrete slabs of gas. The thickness of each slab is
determined by the clump crossing time (see equation 7,
§2.3). The examples of “continuous” and “repeated im-
pact” simulations are the runs A7 and RA7, respectively.

2.3. Characteristic time scales

We use the dynamical time as a natural time unit in
our simulations

tdyn =
R3/2

∗

(GM∗)1/2
� 11.4 h R̃3/2

∗ M̃−1/2
∗ (4)
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disk with γ = 5/3 lies at tcoolΩ ! 3 (e.g., Gammie 2001; Rice
et al. 2003).

3.2. Low-resolution runs
The low resolution runs make use of a rather massive (and

therefore thick) disk and, if they fragment at all, are not ex-
pected to produce very many fragments (as the most unstable
length scale is always of order H). Consequently, the anal-
ysis of these low resolution runs is limited to if, when and
where they fragment, and the number of fragments produced:
there are too few fragments to allow detailed analysis of their
properties. In these runs the density is allowed to increase
without limit, so the simulations simply stop when the den-
sity becomes sufficiently high to force a very small timestep.
Typically this occurs 1–2 (local) orbital periods after the first
fragments form, and only a small fraction of the gas is ac-
creted into clumps before the simulations stop.
In order to compare the fragmentation properties of runs

with different eccentricities, we require a simple method to
quantify the behavior (masses, velocities, positions, etc.) of
the fragments that form. We define fragments (or “clumps”)
to be bound objects containing at least 128 SPH particles
(i.e., with at least double the number of nearest neighbors).
The clumps are first identified by locating peaks in the den-
sity distribution, and are then tested for bound-ness. For sim-
plicity we calculate the potential energy of pairs of particles
using a slightly simplified gravitational potential of the form
Gm/(r+h), where h is the local SPH smoothing length: this is
sufficiently accurate for our purposes, and is faster to compute
than convolution with the rather complex smoothing function
used by GADGET2. The masses of individual clumps are de-
termined by ranking particles by total energy (potential plus
kinetic plus thermal) and iterating outwards until the first un-
bound particle is reached. We define the position and velocity
of each clump as the mean values of all of the SPH parti-
cles bound to that clump. While somewhat cumbersome, we
prefer this method of identifying clumps to a geometric one
(using, for example, concentric shells) as it allows accurate
treatment of non-spherical clumps, and we apply this method
identically to all of our simulations (both here and in the high-
resolution runs discussed below).

3.2.1. Fragmentation boundary for e "= 0
Our first aim was to study the effect of eccentricity on the

overall stability of the disk against fragmentation. The en-
ergy liberated by circularization of an eccentric orbit (with a
fixed angular momentum) is given simply by the product of
e2 and the total energy of the corresponding circular orbit, so
in principle this represents a large energy reservoir that could
stabilize the disk against fragmentation. However, in our sim-
ulations this energy is not liberated sufficiently quickly to
prevent fragmentation: all of the eccentric disks with β = 3
fragmented (apart from that with e = 0.75, see below), while
none of the models with β = 5 showed any evidence for frag-
mentation despite running for several outer orbital times (see
Fig.1)5. Moreover, the fact that the disk with e = 0.75 and
β = 3 did not fragment is likely an artefact of our numeri-
cal set-up. In this simulation the major-to-minor axis ratio
of the disk is so large that when the inner disk precesses it
approaches the outer edge of the disk. At this point density
waves are reflected back off the outer edge of the disk, and

5 Visualizations of our SPH simulations were created using SPLASH: see
Price (2007) for details.

FIG. 1.— Snapshots of disk midplane density in the central region of the
low-resolution runs with e = 0.5: the upper panel shows a model with β =
3 (simulation ECC.50), the lower β = 5 (simulation ECC.50B5). Both are
plotted on the same (logarithmic) density scale, and both are shown for t =
112.5. The β = 3 run has fragmented, while the β = 5 run remains stable. The
major axis of the disk was initially aligned with the x-axis: the precession of
the inner disk is clearly seen in both snapshots.

appear to stabilize the disk against fragmentation. In prin-
ciple this could be a physical effect, but it is not clear that
a real disk would have such a sharp outer edge with such a
large major-to-minor axis ratio. Additional simulations with
a much larger dynamical range in semi-major axis (and there-
fore a much larger particle number) are required to investigate
this further. We therefore conclude that the disk eccentric-
ity has little or no effect on the location of the fragmentation
boundary, except possibly at very high eccentricity (e! 0.75).
In a sense, this can be attributed to our choice of initial con-

ditions. Our disks were set up so that the angle of pericenter
was constant with radius, and consequently none of the ini-
tial streamlines intersect. We expect the circularization en-
ergy to be liberated by shocks, which arise when differential
precession of the disk causes different orbital streamlines to
intersect. In our models the central body provides a point-
mass potential, and the only non-point-mass contribution to
the potential (i.e., the part that causes precession) comes from
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disk with γ = 5/3 lies at tcoolΩ ! 3 (e.g., Gammie 2001; Rice
et al. 2003).

3.2. Low-resolution runs
The low resolution runs make use of a rather massive (and

therefore thick) disk and, if they fragment at all, are not ex-
pected to produce very many fragments (as the most unstable
length scale is always of order H). Consequently, the anal-
ysis of these low resolution runs is limited to if, when and
where they fragment, and the number of fragments produced:
there are too few fragments to allow detailed analysis of their
properties. In these runs the density is allowed to increase
without limit, so the simulations simply stop when the den-
sity becomes sufficiently high to force a very small timestep.
Typically this occurs 1–2 (local) orbital periods after the first
fragments form, and only a small fraction of the gas is ac-
creted into clumps before the simulations stop.
In order to compare the fragmentation properties of runs

with different eccentricities, we require a simple method to
quantify the behavior (masses, velocities, positions, etc.) of
the fragments that form. We define fragments (or “clumps”)
to be bound objects containing at least 128 SPH particles
(i.e., with at least double the number of nearest neighbors).
The clumps are first identified by locating peaks in the den-
sity distribution, and are then tested for bound-ness. For sim-
plicity we calculate the potential energy of pairs of particles
using a slightly simplified gravitational potential of the form
Gm/(r+h), where h is the local SPH smoothing length: this is
sufficiently accurate for our purposes, and is faster to compute
than convolution with the rather complex smoothing function
used by GADGET2. The masses of individual clumps are de-
termined by ranking particles by total energy (potential plus
kinetic plus thermal) and iterating outwards until the first un-
bound particle is reached. We define the position and velocity
of each clump as the mean values of all of the SPH parti-
cles bound to that clump. While somewhat cumbersome, we
prefer this method of identifying clumps to a geometric one
(using, for example, concentric shells) as it allows accurate
treatment of non-spherical clumps, and we apply this method
identically to all of our simulations (both here and in the high-
resolution runs discussed below).

3.2.1. Fragmentation boundary for e "= 0
Our first aim was to study the effect of eccentricity on the

overall stability of the disk against fragmentation. The en-
ergy liberated by circularization of an eccentric orbit (with a
fixed angular momentum) is given simply by the product of
e2 and the total energy of the corresponding circular orbit, so
in principle this represents a large energy reservoir that could
stabilize the disk against fragmentation. However, in our sim-
ulations this energy is not liberated sufficiently quickly to
prevent fragmentation: all of the eccentric disks with β = 3
fragmented (apart from that with e = 0.75, see below), while
none of the models with β = 5 showed any evidence for frag-
mentation despite running for several outer orbital times (see
Fig.1)5. Moreover, the fact that the disk with e = 0.75 and
β = 3 did not fragment is likely an artefact of our numeri-
cal set-up. In this simulation the major-to-minor axis ratio
of the disk is so large that when the inner disk precesses it
approaches the outer edge of the disk. At this point density
waves are reflected back off the outer edge of the disk, and

5 Visualizations of our SPH simulations were created using SPLASH: see
Price (2007) for details.

FIG. 1.— Snapshots of disk midplane density in the central region of the
low-resolution runs with e = 0.5: the upper panel shows a model with β =
3 (simulation ECC.50), the lower β = 5 (simulation ECC.50B5). Both are
plotted on the same (logarithmic) density scale, and both are shown for t =
112.5. The β = 3 run has fragmented, while the β = 5 run remains stable. The
major axis of the disk was initially aligned with the x-axis: the precession of
the inner disk is clearly seen in both snapshots.

appear to stabilize the disk against fragmentation. In prin-
ciple this could be a physical effect, but it is not clear that
a real disk would have such a sharp outer edge with such a
large major-to-minor axis ratio. Additional simulations with
a much larger dynamical range in semi-major axis (and there-
fore a much larger particle number) are required to investigate
this further. We therefore conclude that the disk eccentric-
ity has little or no effect on the location of the fragmentation
boundary, except possibly at very high eccentricity (e! 0.75).
In a sense, this can be attributed to our choice of initial con-

ditions. Our disks were set up so that the angle of pericenter
was constant with radius, and consequently none of the ini-
tial streamlines intersect. We expect the circularization en-
ergy to be liberated by shocks, which arise when differential
precession of the disk causes different orbital streamlines to
intersect. In our models the central body provides a point-
mass potential, and the only non-point-mass contribution to
the potential (i.e., the part that causes precession) comes from

Σc = 107-8g/cm2   Rc = 1013-1014cm   Mc = 100M⊙   tlc∼1Gyr  tcc∼5-100tdyn
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Fig. 6.Ñ We take a slice through the z = 0 plane to show the density of the RG as it impacts (top left panel) and exits (top right panel)
the clump during RA7 256 from Table 1. The numbers in the top left of the Figures in panels are in units of tdyn and indicate when the
snapshot was taken in the simulation. The color bar below gives the pseudocolor legend in units of ρc,0.

clump, there will be a shear drop in the total mass. When
the RG exits the clump, some of the trailing gas retracts
and becomes gravitational bound to the star, increasing
its mass by a small amount. Though the left panel in
Figure 7 seems to indicated the RG losing more mass in
run A7 than run RA7, it needs to be taken into account
that the RG has passed through the clump more times in
A7 than in RA7. For the run A7, the RG passes through
the clump ∼ 12 times in 100tdyn, whereas in RA7 the RG
impacts and passes through the clump 5 times in 100tdyn.
However, after 12 impacts, the run RA7 loses ∼ 18% of
its total mass. This is significantly more than the total
mass loss in run A7. Thus, reimpacting a clump will
cause the RG to lose more mass relative to the continuous
case.
The kinetic energy as a function of time in the right

panel of Figure 7 is present mainly to illustrate how the
strength of subsequent impacts with a clump varies over
time. In fact, after ∼ 12 impacts the total change in
the kinetic energy for RA7 is ∆Ek = 1.9 × 1048 g cm2.
Surprisingly, this is only an ∼ 18% percent increase in
the total change in kinetic energy between run A7 and
RA7, whereas the total mass loss in these cases increases
∼ 122% between A7 and RA7. The behaviour of the
total change in momentum between these two runs is
similar.
In regards to the increased mass loss due to successive

impacts, it is shown in Armitage et al. (1996) that the
density gradient of the RG decreases when the star exits
the disk. This increases the suseptibility of RGs envelope
to stripping during subsequent impacts. ASC introduces
a factor, labeled floss, to measure the amount mass loss
during each successive impact relative to the mass loss
of the previous impact. In general, the factor floss will
take the form

floss(n) =
Mn+1

Mn
(11)

where Mi is the mass loss of the ith impact. One typ-
ically makes the assumption that Mn = floss(1)n−1M1.

TABLE 3
Values of floss

Run f(1) f(2) f(3) f(4) f(5) f(6)

A1 0.97 - - - - -
RA1 1.34 - - - - -
B1 0.87 - - - - -
A2 1.16 0.99 - - - -
A3 1.32 0.93 0.99 1.02 - -
A4 1.27 1.02 0.95 1.00 1.05 0.99
A5 0.82 0.97 - - - -
RA5 1.21 1.02 - - - -
A6 0.73 0.97 0.97 0.96 1.00 -
A7 1.26 0.81 0.91 0.94 0.97 0.96
RA7 1.69 1.10 1.14 1.07 0.97 1.02
B7 1.29 0.85 0.99 0.94 0.97 0.98
A8 0.78 1.60 0.93 0.86 0.93 0.96
A9 0.79 1.44 1.13 0.86 0.87 0.92

Note . — The character “-” appears in some
places because that particular simulation did not
run for a long enough time in order to calculate
that value.

Table 3 gives an explicited test of this assumption by
showing the evaluation of floss for a majority of the runs
in our study. The runs that one should focus on in Ta-
ble 3 are the repeated impacted runs (RA1, RA5, RA7)
and their continuum counterparts (A1, A5, A7). Cal-
culations of floss for all the runs are present simply for
comparison. Notice that the values in Table 3 seem to in-
dicate that f(n) → 1 for increasing n. In particular, this
behaviour is noticable in RA7 and A7. A possible expla-
nation for this behaviour is that the RG is slowing down
with each impact causing less mass to be lost on subse-
quent impacts. This “slowing down” may be balancing
out the increased susceptibilty of envelope stripping due
to the decrease in the density gradient of the RG once it
exits the clump.

3.3. The effect of the polytropic structure of the star

A final addition to this study are runs which simulate
a RG with a polytropic index of Γ = 4/3. The rele-
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TABLE 2
Simulation results. Run – simulation name. M – Mach number. Mi – impacted mass. pi

– impact momentum. Ei – impact energy. ∆p – total change in momentum. ∆Ek –
total change in kinetic energy. ∆M – total mass loss.

Run M Mi pi Ei ∆p ∆Ek ∆M/M∗
(M⊙) (g cm s−1) (erg) (g cm s−1) (erg)

A0 284 1.9× 10−6 1.1× 1035 1.7× 1042 1.4× 1037 4.7× 1044 10−7

A1 2.2 7.6× 10−3 4.5× 1038 6.8× 1045 3.8× 1038 1.0× 1046 9.2× 10−4

RA1 2.2 7.6× 10−3 4.5× 1038 6.8× 1045 5.2× 1038 1.4× 1046 9.8× 10−4

B1 2.2 7.6× 10−3 4.5× 1038 6.8× 1045 1037 1044 7.3× 10−4

B1 256 2.2 7.6× 10−3 4.5× 1038 6.8× 1045 1.3× 1036 6.5× 1042 6.0× 10−4

B1 300 2.2 7.6× 10−3 4.5× 1038 6.8× 1045 1.4× 1036 6.9× 1042 6.3× 10−4

B1 512 2.2 7.6× 10−3 4.5× 1038 6.8× 1045 7.5× 1035 3.7× 1042 3.5× 10−4

A2 4.4 7.6× 10−3 9.1× 1038 2.7× 1046 1.7× 1039 9.3× 1046 3.6× 10−3

A3 6.6 7.6× 10−3 1.3× 1039 6.1× 1046 4.2× 1039 3.1× 1047 8.2× 10−3

A4 9.0 7.6× 10−3 1.8× 1039 1.0× 1047 8.3× 1039 7.9× 1047 1.4× 10−2

A5 0.6 7.6× 10−2 2.2× 1039 1.7× 1046 3.4× 1039 4.5× 1046 1.5× 10−2

RA5 0.6 7.6× 10−2 2.2× 1039 1.7× 1046 3.7× 1039 4.9× 1046 1.8× 10−2

A6 1.2 7.6× 10−2 4.5× 1039 6.8× 1046 8.1× 1039 2.1× 1047 2.9× 10−2

A7 2.4 7.6× 10−2 9.1× 1039 2.7× 1047 3.4× 1040 1.6× 1048 8.1× 10−2

A7 64 2.4 7.6× 10−2 9.1× 1039 2.7× 1047 4.4× 1040 1.9× 1048 12× 10−2

A7 256 2.4 7.6× 10−2 9.1× 1039 2.7× 1047 3.3× 1040 1.5× 1048 8.6× 10−2

RA7 2.4 7.6× 10−2 9.1× 1039 2.7× 1047 4.5× 1040 1.9× 1048 18× 10−2

RA7 256 2.4 7.6× 10−2 9.1× 1039 2.7× 1047 1.3× 10−2

B7 300 2.4 7.6× 10−2 9.1× 1039 2.7× 1047 5.8× 10−2

A8 3.7 7.6× 10−2 1.3× 1040 6.1× 1047 9.6× 1040 5.9× 1048 21× 10−2

A9 5.0 7.6× 10−2 1.8× 1040 1.0× 1048 1.3× 1041 1.1× 1049 29× 10−2

Note. — The values in the last three columns are computed for a simulation of length tsim
in Table 1, not necessarily for the number of dynamical times shown in a Figure.
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Fig. 3.— Both panels show the total mass of the RG as a function of time for each of the main runs under study (A1-A9). Table 2 gives
the precise mass loss for each of these runs. In the second panel, the deviation from the linear trend of the total mass as a function of time
becomes noticeable.

disk, the thermal energy will transfer to kinetic energy

and the heated material will escape the stellar surface.

However, it is expected that ablation will contribute a

negligeble amount to the total mass loss in comparison

to the mass loss due to momentum transfer for our runs.

This expectation is supported by two observations. First,

for most of our runs, the star is never exiting the disk.

This means there will not be a chance for the thermal

energy generated by the shock to transfer to kinetic en-

ergy. Second, even if the star exits the disk, the impact

velocities are, for most runs, not high enough to generate

a powerful shock as would be generated in the supernova

case.

Considering Figure 3 again, observe that there is a

small, but growing, deviation from a linear trend in the

curves of Figure 3. This deviation is primarily due to

the fact the star is slowing down as it travels through

the clump. This means the mass loss due to momentum

transfer at each time step is steadily decreasing because

the critical radius is steadily increasing. Thus, the total

mass as a function of time will asymptotically approach

a constant value, assuming that the RG does not decom-

posed due to an impact. The time period over which

this process becomes noticable depends on the strength

of the impact.

In contrast to Figure 3, Figure 4 shows the central

density of the RG as a function of time. It is expected

that impacts will perturb the central density of the RG

from equilibrium. In most cases, the central density will

then experience damped and decaying oscillations, set-

Σc = 107 g/cm2  

1200 km/s  

900 km/s  

600 km/s  

300 km/s  

6 Kieffer & Bogdanović

TABLE 2
Simulation results. Run – simulation name. M – Mach number. Mi – impacted mass. pi

– impact momentum. Ei – impact energy. ∆p – total change in momentum. ∆Ek –
total change in kinetic energy. ∆M – total mass loss.

Run M Mi pi Ei ∆p ∆Ek ∆M/M∗
(M⊙) (g cm s−1) (erg) (g cm s−1) (erg)

A0 284 1.9× 10−6 1.1× 1035 1.7× 1042 1.4× 1037 4.7× 1044 10−7

A1 2.2 7.6× 10−3 4.5× 1038 6.8× 1045 3.8× 1038 1.0× 1046 9.2× 10−4

RA1 2.2 7.6× 10−3 4.5× 1038 6.8× 1045 5.2× 1038 1.4× 1046 9.8× 10−4

B1 2.2 7.6× 10−3 4.5× 1038 6.8× 1045 1037 1044 7.3× 10−4

B1 256 2.2 7.6× 10−3 4.5× 1038 6.8× 1045 1.3× 1036 6.5× 1042 6.0× 10−4

B1 300 2.2 7.6× 10−3 4.5× 1038 6.8× 1045 1.4× 1036 6.9× 1042 6.3× 10−4

B1 512 2.2 7.6× 10−3 4.5× 1038 6.8× 1045 7.5× 1035 3.7× 1042 3.5× 10−4

A2 4.4 7.6× 10−3 9.1× 1038 2.7× 1046 1.7× 1039 9.3× 1046 3.6× 10−3

A3 6.6 7.6× 10−3 1.3× 1039 6.1× 1046 4.2× 1039 3.1× 1047 8.2× 10−3

A4 9.0 7.6× 10−3 1.8× 1039 1.0× 1047 8.3× 1039 7.9× 1047 1.4× 10−2

A5 0.6 7.6× 10−2 2.2× 1039 1.7× 1046 3.4× 1039 4.5× 1046 1.5× 10−2

RA5 0.6 7.6× 10−2 2.2× 1039 1.7× 1046 3.7× 1039 4.9× 1046 1.8× 10−2

A6 1.2 7.6× 10−2 4.5× 1039 6.8× 1046 8.1× 1039 2.1× 1047 2.9× 10−2

A7 2.4 7.6× 10−2 9.1× 1039 2.7× 1047 3.4× 1040 1.6× 1048 8.1× 10−2

A7 64 2.4 7.6× 10−2 9.1× 1039 2.7× 1047 4.4× 1040 1.9× 1048 12× 10−2

A7 256 2.4 7.6× 10−2 9.1× 1039 2.7× 1047 3.3× 1040 1.5× 1048 8.6× 10−2

RA7 2.4 7.6× 10−2 9.1× 1039 2.7× 1047 4.5× 1040 1.9× 1048 18× 10−2

RA7 256 2.4 7.6× 10−2 9.1× 1039 2.7× 1047 1.3× 10−2

B7 300 2.4 7.6× 10−2 9.1× 1039 2.7× 1047 5.8× 10−2

A8 3.7 7.6× 10−2 1.3× 1040 6.1× 1047 9.6× 1040 5.9× 1048 21× 10−2

A9 5.0 7.6× 10−2 1.8× 1040 1.0× 1048 1.3× 1041 1.1× 1049 29× 10−2

Note. — The values in the last three columns are computed for a simulation of length tsim
in Table 1, not necessarily for the number of dynamical times shown in a Figure.
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Fig. 3.— Both panels show the total mass of the RG as a function of time for each of the main runs under study (A1-A9). Table 2 gives
the precise mass loss for each of these runs. In the second panel, the deviation from the linear trend of the total mass as a function of time
becomes noticeable.

disk, the thermal energy will transfer to kinetic energy

and the heated material will escape the stellar surface.

However, it is expected that ablation will contribute a

negligeble amount to the total mass loss in comparison

to the mass loss due to momentum transfer for our runs.

This expectation is supported by two observations. First,

for most of our runs, the star is never exiting the disk.

This means there will not be a chance for the thermal

energy generated by the shock to transfer to kinetic en-

ergy. Second, even if the star exits the disk, the impact

velocities are, for most runs, not high enough to generate

a powerful shock as would be generated in the supernova

case.

Considering Figure 3 again, observe that there is a

small, but growing, deviation from a linear trend in the

curves of Figure 3. This deviation is primarily due to

the fact the star is slowing down as it travels through

the clump. This means the mass loss due to momentum

transfer at each time step is steadily decreasing because

the critical radius is steadily increasing. Thus, the total

mass as a function of time will asymptotically approach

a constant value, assuming that the RG does not decom-

posed due to an impact. The time period over which

this process becomes noticable depends on the strength

of the impact.

In contrast to Figure 3, Figure 4 shows the central

density of the RG as a function of time. It is expected

that impacts will perturb the central density of the RG

from equilibrium. In most cases, the central density will

then experience damped and decaying oscillations, set-
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Fig. 4.— Both panels show the central density as a function of time for each of the main runs under study.

tling down to a new equilibrium value after many dynam-

ical times. The curves right the right panel of Figure 4

captures this behaviour. That is, the RG “rings” once it

impacts the clump and oscillates towards a new equilbir-

ium value as time passes. The curves in the left panel,

however, differ in that there is a non-linear behaviour.

Notice though that the stronger the impact in the left

panel (i.e., the larger v∗ is), the more the non-linearity is

smoothed out. Thus, this behaviour is due to the weaker

nature of the impacts in the left panel relative to the

right panel. For a very weak run in particular (e.g. A1),

once the RG has relaxed, the central density attempts

to restore to its original equilibrium value prior to the

impact.

In addition to the Γ = 5/3 runs A1-A4 and A6-A9, we

study an collision in which the RG has an orbital veloc-

ity that is representative of a star which has an orbital

radius of 1 pc. In particular, we look at clump densi-

ties and pressures which result from Σc = 108 g cm−2

(as in A6-A9) but the orbital velocity is ∼ 150 km s−1.

This is run labeled A5 in Table 1 and Table 2. There are

two questions motivating run A5. The first question is

if the RG will lose a non-neglible amount of mass when

its orbital velocity is near the lower bound of velocities

observed in the GC. Indeed is does lose a non-neglible

amount of mass; after 100tdyn there is ∼ 2% mass loss

for the run A5. The second question is whether the sub-

sonic nature of the run effects the mass loss of the RG

is any substaintial way. To gain insight to this question,

visualizations of run A5 indicated that there is not a well-

defined bow shock driving into the RG as a consequence

of the impacts. This suggests that ablation would play

less of a role in this run and any other subsonic run.

To further exploit the relationship between total mass

loss and orbital velocity, Figure 5 shows the stars initial

orbital velocity verses total mass loss for Σc = 107 and

108 g cm−2. Though the Figure shows a linear fit to

both sets of data points, the relationship between initial

orbital velocity and total massloss appears to be nonlin-

ear for both values of Σc. The curves fitting the data

points in Figure 5 are polynomials resulting from basic

least squares regression. The fit corresponding to the

runs with Σc = 107 g cm−2 (the dotted curve in Fig-

ure 5) is

∆M7(v) = −4.5× 10
−3

+ 1.5× 10
−5v (9)
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Fig. 5.— The velocity of the RG, v∗, versus the mass loss ∆M for
Σc = 107 g cm−2 and Σc = 108 g cm−2. The data points represent
the total mass loss for runs A1-A9 over a period of 100tdyn. In
particular the green data points correpond to runs A1-A4 and the
red data points correspond to A5-A9.

where v is a velocity in units of km s−1. The polynomial

fit corresponding to the runs with Σc = 108 g cm−2 (the

solid curve in Figure 5) is

∆M8(v) = −4.4× 10
−2

+ 2.7× 10
−4v (10)

3.2. The effect of repeated impacts

The runs discussed thus far have simulated a RG con-

tinually traveling through a clump and never exiting. In

a realistic encounter, the RG would, at most, collide and

exit the disk twice during every complete orbit. To study

this, repeated impact versions of A1, A5, and A7 (la-

beled RA1, RA5, and RA7, respectively) are simulated.

In these runs, it is assumed that the RG impacts a clump

during every encounter with the disk and that each clump

in the simulation has the same mass and column density.

Furthermore, during each encounter with a clump the

RG spends ∼ tcc inside the clump before exiting (in fact,

tcc is decreasing every impact). For further simplifica-

tion, it is also assumed that the RG spends exactly tcc
inside each clump. Once the RG exits the clump, we

evolve the RG in a low density medium for 2tcc before

reintroducing another clump. A visualization of this is

provided by Figure 6.

The left and right panels of Figure 7 show the of the

total mass as a function of time and the kinetic energy of

the RG as a function of time for A7 and RA7. Focusing

on the left panel of Figure 7, once the RG impacts a

Star-disk Collisions in the GC 7

0.95

0.96

0.97

0.98

0.99

1

1.01

0 20 40 60 80 100

ρ
(ρ

c,
0
)

time (tdyn)

A1
A2
A3
A4

1

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 20 40 60 80 100

ρ
(ρ

c,
0
)

time (tdyn)

A6
A7
A8
A9

1

Fig. 4.— Both panels show the central density as a function of time for each of the main runs under study.

tling down to a new equilibrium value after many dynam-

ical times. The curves right the right panel of Figure 4

captures this behaviour. That is, the RG “rings” once it

impacts the clump and oscillates towards a new equilbir-

ium value as time passes. The curves in the left panel,

however, differ in that there is a non-linear behaviour.

Notice though that the stronger the impact in the left

panel (i.e., the larger v∗ is), the more the non-linearity is

smoothed out. Thus, this behaviour is due to the weaker

nature of the impacts in the left panel relative to the

right panel. For a very weak run in particular (e.g. A1),

once the RG has relaxed, the central density attempts

to restore to its original equilibrium value prior to the

impact.

In addition to the Γ = 5/3 runs A1-A4 and A6-A9, we

study an collision in which the RG has an orbital veloc-

ity that is representative of a star which has an orbital

radius of 1 pc. In particular, we look at clump densi-

ties and pressures which result from Σc = 108 g cm−2

(as in A6-A9) but the orbital velocity is ∼ 150 km s−1.

This is run labeled A5 in Table 1 and Table 2. There are

two questions motivating run A5. The first question is

if the RG will lose a non-neglible amount of mass when

its orbital velocity is near the lower bound of velocities

observed in the GC. Indeed is does lose a non-neglible

amount of mass; after 100tdyn there is ∼ 2% mass loss

for the run A5. The second question is whether the sub-

sonic nature of the run effects the mass loss of the RG

is any substaintial way. To gain insight to this question,

visualizations of run A5 indicated that there is not a well-

defined bow shock driving into the RG as a consequence

of the impacts. This suggests that ablation would play

less of a role in this run and any other subsonic run.

To further exploit the relationship between total mass

loss and orbital velocity, Figure 5 shows the stars initial

orbital velocity verses total mass loss for Σc = 107 and

108 g cm−2. Though the Figure shows a linear fit to

both sets of data points, the relationship between initial

orbital velocity and total massloss appears to be nonlin-

ear for both values of Σc. The curves fitting the data

points in Figure 5 are polynomials resulting from basic

least squares regression. The fit corresponding to the

runs with Σc = 107 g cm−2 (the dotted curve in Fig-
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Fig. 5.— The velocity of the RG, v∗, versus the mass loss ∆M for
Σc = 107 g cm−2 and Σc = 108 g cm−2. The data points represent
the total mass loss for runs A1-A9 over a period of 100tdyn. In
particular the green data points correpond to runs A1-A4 and the
red data points correspond to A5-A9.

where v is a velocity in units of km s−1. The polynomial

fit corresponding to the runs with Σc = 108 g cm−2 (the

solid curve in Figure 5) is

∆M8(v) = −4.4× 10
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Repeated impacts are more efficient at removing the RG envelope on 
account of the linear momentum and kinetic energy of the star. 
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Fig. 7.— The left panel shows the total mass as a function of time for the runs A7 and RA7. For the RA7, at 0tdyn the star enters the
clump and exits the clump at 8tdyn. After the RG exits the clump, it moves through vacuum until for 2tcc (or 16tdyn) where it re-enters
the clump. It is of interest to note that the plot of RA7 shows the RG regaining some of its mass after it exits the clump. This can also be
seen in panel (b) Figure 6, where once the RG exits the clump, the trailing gas will retract and become gravitationally bound to the star.
The panel on the right shows the kinetic energy of the RG as a function of time for both A7 and RA7.

4.2. The role of other physical processes

It is well known that accretion disks can harbor both
large and small scale magnetic fields. The simulations
presented here are purely hydrodynamical (e.g., we do
not model radiation or magnetic fields). Therefore, one
should consider what role, if any, ambient magnetic fields
in an accretion disk might play in a star-disk collision.
The question perhaps most relevant to this study is
whether magnetic fields in the disk help shield the star
from mass stripping.
The role of magnetic fields has been investigated thor-

oughly in the similar scenario of shocks impacting over-
dense clouds of gas in the interstellar medium (or inter-
galactic medium) where one considers either the shock to
be magnetized, the cloud to be magnetized, or both (Mac
Low et al. 1994; Fragile et al. 2005; Dursi 2007; Dursi &
Pfrommer 2008; Shin et al. 2008). In any scenario, one
generally finds that the presence of magnetic fields tends
to lessen the chance that the cloud will be destroyed.
For example, Fragile et al. (2005) used two-dimensional
numerical simulations to investigate the interactions be-
tween magnetized shocks and radiative clouds with dif-
ferent magnetic field strength and orientations. They
find that tension in magnetic field lines along the cloud
tend to suppress the growth of hydrodynamical insta-
bilities while external (internal) fields work to compress
(expand) the cloud, whether radiative cooling is present
or not. These findings suggest that the presence of mag-
netic fields will tend to protect the cloud from disruption
and begs the question of whether or not the inclusion of
magnetic fields in modeling star-disk collisions will have
a effect on the post-encounter stellar structure.
Another point of interest is the bow shock that forms in

front of the star shortly after impact (see the temperature
profile in Figure 2 for a visual of the shock). Though it

is likely the shock is prevents the star from losing mass
via momentum transfer, the shock will contribute to an
extra ablation component of the massloss.

5. CONCLUSIONS

This numerical study has provided evidence that a RG
of radius R∗ = 10R⊙ and mass M∗ = 1M⊙ experi-
ences significant mass stripping when impacting a dense
clump of gas in a fragmenting accretion disk. The fo-
cus remained solely on getting a measure of the mass
loss for different disk densities, stellar orbital velocities,
and polytropic indices. The total mass loss percent in a
particular encounter can range from anywhere between
∼ 1% and ∼ 25%. Though a 1% decrease in mass may
seem negligible, over the lifetime of the RG the loss may
accumulate causing an significant alteration in the lumi-
nosity of the RG.
A more extensive study is of interest. Future work

includes an analysis of the contribution of different mass
loss mechanisms, the hydrodynamical instabilities that
appear on the surface of the star as it passes through
the disk (e.g., Kelvin-Helmholtz instabilities), the post-
encounter stellar structure, and the role of other physical
processes such as magnetic fields and radiation.
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So, can star-disk collisions explain the missing RGs in the GC?

• RG and HB stars with R~10R⊙ must collide with clumps 10s of times.  

• Compact clumps with  Σc >107 g/cm2  needed to strip significant fraction of stellar mass.
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So, can star-disk collisions explain the missing RGs in the GC?

• RG and HB stars with R~10R⊙ must collide with clumps 10s of times.  

• Compact clumps with  Σ >107 g/cm2  needed to strip significant fraction of stellar mass.

• Larger Nc and and co-planar orbit can shorten the average collision time by a few mags.

• Not impossible!

Γcoll =
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Numerical convergence tests
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Fig. 8.— This Figure shows the central density for run A0 as a function of time to demonstrate the stability of the RG as a function of

time. Note that the central density stays above 0.98ρc,0 for ∼ 200tdyn.
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Fig. 9.— The right panel shows the convergence of the central density ρc upon increasing resolution for the run labeled A7 in Table 1.

The left shows the convergence of the RGs total mass as a function of time upon increasing resolution for the same run. Observe that

A7 256 loses more mass in 100tdyn than A7. This is a result of the lower resolution of A7 compared to A7 256 which makes the RG to

slow down more 100tdyn.
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