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High throughput measurements: 
The age of omics 



Systems Biology deals with four main tasks 
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What do we need to measure in cancer 
research 

Given what we saw in the Lecture 1, we need to measure the elements 
of the genome that are disregulated, as well as their functional 
consequences. 
 
At the DNA level sequence (static) 

 Mutations, Copy number alterations, Loss of heterozygosity, Translocations 
 

Epigenetics (static) 
 DNA methylation, histone modifications (methylation, acetylation) 

 
At the RNA level, quantify amount (functional) 

 Non-coding RNA, microRNA, mRNA, splice variants 

 



 
 
 
At the protein level 

 Protein amounts, phosphorylation and other postranslational modifications. 

 
Interactions maps 

 Protein (e.g. TF)-DNA interactions, protein-protein interactions 
 

Phenotypes 
 Cell viability, patient survival, Patient response to treatment 

 

What do we need to measure in cancer 
research 



Omics Technologies 



Many biological experiments involve sequencing 



DNA Technology Milestones 

From Nature Milestones, DNA Technologies 



Sanger Sequencing 



Automatized Sanger 
Sequencing 



Sanger Sequencing 



Progress in sequencing 
2003 – First genome 

 was a mixture of several volunteers 
 Took 13 years (1990-2003), 3,000 scientists, $2.7 Billion 
 Technology: Sanger Sequencing 

 
2007 – Second Genome 

 J.C.Venter’s genome 
 Took 4 years (2003-2007), 30 scientists, $100 Million 
 Technology: Improved Sanger Sequencing 

 

2008 – Third Genome 
 James Watson 
 Took 4.5 months (2008), ~30 scientists, $1.5 Million 
 Technology: 454 (second generation, pyrosequencing) 

 

end 2014 – ~ 250,000 Genomes 
 Today sequencing costs < $1K 
 Second GenerationTechnologies: 454 (defunct), Solid, Illumina (market leader),  
 Third Generation Technologies: PacBio, Oxford nanopores 

 



Sequencing is now at ~$1K 



RNA-seq 



Illumina sequencing 

Before Library Construc;on 

1. Poly-A Selection (Total RNA 
mRNA) 

2. mRNA fragmentiaton 

3. First strand synthesis 

4. Second strand synthesis 

Library Construction 

Poly A-based cDNA synthesis 



Illumina sequencing 
Library Construction 

Prepare for adapter ligation Adapter ligation 



Illumina sequencing 

Attach DNA to Surface Bridge Amplification 

Flow cell with oligos 



Illumina sequencing 
Bridge amplification 

Fragments become 
double stranded 

Denature the ds 
molecules 



Illumina sequencing 
Bridge amplification 

Complete Amplification 

Sequencing by Synthesis 

Determine 1st base 



Illumina sequencing 
Sequencing by Synthesis 

Image 1st base Determine 2nd base 



Illumina sequencing 
Sequencing by Synthesis 

Image 2nd base Sequence over multiple Cycles 



Other Sequencing Technologies 

Emulsion PCR, electrical detection of pH change 

Single cell, optical detection, long reads 

Ion Torrent 

PacBio 



Other Sequencing Technologies 

Single cell, electrical detection, long reads Oxford Nanopore 





Mapping RNA-seq reads to a reference genome 
reveals expression 

SOX2 Gene 



Units of RNA-seq 
 

• More reads map to longer genes.  
 

• If comparing different genes, use RPKM: Read Per Kilobase 
Transcript Per Million Reads. 
 

• If comparing genes to genes across different patients: CPM or Counts 
Per Million reads (Out of 1M reads, how many mapped to a given 
gene.) 
 



Noise characteristics 
 

 Low technical noise (~Poisson distribution)  
 Biological noise can be big 



ChIP-seq 



Regulatory Genomics and the Biology of 
Transcription Factors 

 
 There are 1,500 TF in humans 
 Transcription factor (TF) binds to DNA and controls transcription: 
 promotes or represses the recruitment of the RNA polymerase 

 
 



TF determine gene regulatory circuits 
 

 There are 1,500 TF in humans 
 

 They activate or silence target genes 
 

 The connectivity of TFs to targets 
defines transcriptional regulation 
networks 
 

 Many network motifs present such as: 
 Feed-forward loops (ensure signals) 
 Fan-outs (amplify signals) 
 Feed-back loops (create pulses) 
 see Uri Alon’s work 

 
 Networks reveal cell logic 

Rick Young, MIT 
(Pioneer of ChIP-chip & ChIP-Seq) 



ChIP-Seq: study TF-DNA interactions 

 ChIP-Seq: Chromatin Immuno-precipitation followed by 
sequencing 
 

 Selects proteins out with an antibody specific to that protein 
 

 Sequences any of the DNA that is “sticking” to the selected 
proteins. 
 

 From the reads, can we identify where the proteins are binding 



ChIP-Seq protocol 



ChIP-Seq Example: OCT4 binding in SOX2 Region 
in mouse ES cells 

Slide from David Gifford, MIT OpenCourseWare 



The ENCODE Project    https://www.encodeproject.org
  





Cancer omics:  
Learning from patient cohorts 



The Cancer Genome Atlas (TCGA) 
 A resource of matched tumor  and normal tissues from 11,000 

patients with 12 cancer types 
 
 
 
 
 
A lot of data available. Go to  
https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp 
To explore data download 

 Cervical cancer 
 Cholangiocarcinoma 
 Esophageal carcinoma 
 Liver hepatocellular carcinoma 
 Mesothelioma 
 Pancreatic ductal adenocarcinoma 
 Paraganglioma & Pheochromocytoma 

 Sarcoma 
 Testicular germ cell cancer 
 Thymoma 
 Uterine carcinosarcoma 
 Uveal melanoma 

 

https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp
https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp
https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp


The Cancer Genome Atlas (TCGA) 
 
 The Cancer Genome Atlas (TCGA) Research Network 

has reported integrated genome-wide studies of twelve 
distinct malignancies in 3,527 cases 
 
 
 
 

 
 
 
 



 

 Classical classification of cancer is based on cell of origin. 
 Cancer genomics has found, additionally, that each tissue type can 

be further divided into 3 to 4 molecular subtypes  
 

 This paper asks the question: Is 
there an alternative taxonomy 
beyond the tissue of origin? 
Based on 6 omics platforms: 

 A pan-cancer classification. 
 
 



 

mRNA expression yielded 16 clusters of patients 
amongst the 12 tumor types 

Apresentador
Notas de apresentação
Using the platform corrected mRNAseq data, genes were filtered for those present in 70% of samples and then the top 6,000 most variable genes were selected. ConsensusClusterPlus R-package [10] was used to identify clusters in the data using 1000 iterations, 80% sample resampling from 2 to 20 clusters (k2 to k20) using hierarchical clustering with average innerLinkage and finalLinkage and Pearson correlation as the similarity metric. Eleven main groups were identified when 16 clusters were used (Figure S1A). These 11 groups were observed to be stable through the use of 20 clusters (K20) and significant in pairwise comparisons of the 11 main clusters with SigClust [11]. The subtypes were deposited into Synapse (syn1715788). 



CNV yielded 8 clusters of patients amongst the 12 
tumor types 

Apresentador
Notas de apresentação
Generation and GISTIC analysis of somatic copy number alteration data from SNP6.0 arrays is described elsewhere [15]. For copy number based clustering, tumors were clustered based on thresholded copy number at reoccurring alteration peaks from GISTIC analysis. Tumors were hierarchical clustered in R based on Euclidean distance using Ward’s method. The number of cluster groups was chosen based on cophenetic distances generated from clustering. For comparison of broad and focal alteration between cluster of cluster groups, frequency of alterations in each cluster group was compared to the average frequency of all other groups by chi squared tests with an added Bonferroni correction to control for multiple testings. See Figures S1C and S4A-C. The input data matrix for SCNA clustering is available in Synapse at syn1710678 and the subtype assignments are at syn1712142. 



How did they clustered using the 6 genomic 
platforms? 

For each sample (patient) and each genomic platform the 
authors created a binary vector of size = # of clusters 

Patient k cluster assignment in each platform 

CNV 
RNA-seq 

…… 

Then concatenate the clusters 

Patient k represented by binary vector across platforms 
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Apresentador
Notas de apresentação
Generation and GISTIC analysis of somatic copy number alteration data from SNP6.0 arrays is described elsewhere [15]. For copy number based clustering, tumors were clustered based on thresholded copy number at reoccurring alteration peaks from GISTIC analysis. Tumors were hierarchical clustered in R based on Euclidean distance using Ward’s method. The number of cluster groups was chosen based on cophenetic distances generated from clustering. For comparison of broad and focal alteration between cluster of cluster groups, frequency of alterations in each cluster group was compared to the average frequency of all other groups by chi squared tests with an added Bonferroni correction to control for multiple testings. See Figures S1C and S4A-C. The input data matrix for SCNA clustering is available in Synapse at syn1710678 and the subtype assignments are at syn1712142. 



Perform patient clustering on the binary vectors 

... 

Patient 1 
Patient 2 
Patient 3 
  
 
 
 
 
 
Patient 3576 

Apresentador
Notas de apresentação
Generation and GISTIC analysis of somatic copy number alteration data from SNP6.0 arrays is described elsewhere [15]. For copy number based clustering, tumors were clustered based on thresholded copy number at reoccurring alteration peaks from GISTIC analysis. Tumors were hierarchical clustered in R based on Euclidean distance using Ward’s method. The number of cluster groups was chosen based on cophenetic distances generated from clustering. For comparison of broad and focal alteration between cluster of cluster groups, frequency of alterations in each cluster group was compared to the average frequency of all other groups by chi squared tests with an added Bonferroni correction to control for multiple testings. See Figures S1C and S4A-C. The input data matrix for SCNA clustering is available in Synapse at syn1710678 and the subtype assignments are at syn1712142. 



 

Consensus Clustering yielded 13 Pan Cancer clusters 



 

• This paper’s results suggest that ‘‘cell-of-
origin’’ rather than pathway based features 
dominate the molecular taxonomy of diverse 
tumor types. 

• However, based on this study, one in ten 
cancer patients would be classified differently 
by this new molecular taxonomy versus our 
current tissue-of-origin tumor classification 
system. 



 

• If used to guide therapeutic decisions, this reclassification would affect a 
significant number of patients to be considered for nonstandard treatment 
regimens. 



Proposed homework 
Read:  The Cancer Genome Atlas Research Network, Multiplatform 
Analysis of 12 Cancer Types Reveals Molecular Classification within and 
across Tissues of Origin, Cell 158, 929–944, August 14, 2014. Bring 1 
important take home message 
 
Or 
Read:  Trapnell et. al, Differential gene and transcript expression analysis 
of RNA-seq experiments with TopHat and Cufflinks, Nat Protoc. 
1;7(3):562-78, March 2012. Try to make sense of the RNA-seq. 
 

Or 
Explore the TCGA (The Cancer Genome Atlas) (cancergenome.nih.gov) 
Data Portal (tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp) dataportal. Try to 
download some files. 
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