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The grandest discoveries of science
have been vut the rewards
¢ =~ Of accurate measurement

*  and patient long-continued
labour in the minute sifting
' of numerical results.

High throughput measurements:
The age of omics



Systems Biology deals with four main tasks
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What do we need to measure In cancer
research

Given what we saw in the Lecture 1, we need to measure the elements
of the genome that are disregulated, as well as their functional
conseguences.

At the DNA level sequence (static)
= Mutations, Copy number alterations, Loss of heterozygosity, Translocations

Epigenetics (static)
= DNA methylation, histone modifications (methylation, acetylation)

At the RNA level, quantify amount (functional)
© Non-coding RNA, microRNA, mRNA, splice variants




What do we need to measure in cancer
research

At the protein level
= Protein amounts, phosphorylation and other postranslational modifications.

Interactions maps
= Protein (e.g. TF)-DNA interactions, protein-protein interactions

Phenotypes
- Cell viability, patient survival, Patient response to treatment




Omics Technologies

1 - Genomics
- mutations

= DNA Copy nlmlber
-LOH

- translocations

2 - MicroRNAomics

3 - Transcriptomics
- Spliceosomics

4 - Proteomics

- Kinomics

chromosome

miRNA coding DNA

\DOOOD:

protein 1 protein 2

4 %

protein kinase protein complex

5 - Epigenomics

- Acetylomics

- Methylomics

6 - Interactomics

- protein-DNA

- protein-protein




Many biological experiments involve sequencing
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DNA Technology Milestones

Electophoresis (Milestone 1)

Discovery of DNA ligase (Milestone 2)
FISH (Milestone 3)

Discovery of restriction enzymes (Milestone 4)
Discovery of reverse transcriptase (Mile
Cloning (Milestone 2)

Southern blot (Milestone 6)

DNA sequencing (Milestone 7)

RFLP concept (Milestone 8)

P-element-mediated manipulation of
the fly genome (Milestone 9)

Whole genome shotgun (Milestone 10)
RFLP realization (Milestone 8)

PCR (Milestone 11)

DNA fingerprinting (Milestone 12)
YACs (Milestone 13)

Site-directed mutagenesis of the
mouse genome (Milestone 9)

ChIP (Milestone 14)

h

BLAST — the key to comparative genomics
(Milestone 15)

BACs (Milestone 13)

Microarray technology (Milestone 16)

h

RNAi (Milestone 17)
Sequencing by synthesis (Milestone 18)

Full-length cDNA technologies (Milestone 5)

Launch of UCSC Genome Browser (Milestone 19)

DNA assembly programs (Milestone 20)

ENSEMBL — an example of a gene
annotation tool (Milestone 21)

HapMap (Milestone 22)

Sequencing by ligation/polony sequencing
(Milestone 18)

Genome-wide maps of DNA methylation
(Milestone 23)

From Nature Milestones, DNA Technologies




Sanger Sequencing

Proc. Natl. Acad. Sci. USA
Vol. 74, No. 12, pp. 5463-5467, December 1977
Biochemistry

DNA sequencing with chain-terminating inhibitors

(DNA polymerase/nucleotide sequences/bacteriophage $X174)

F. SANGER, S. NICKLEN, AND A. R. COULSON

Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 2QH, England

Contributed by F. Sanger, October 3, 1977

ABSTRACT A new method for determining nucleotide se-
quences in DNA is described. It is similar to the “plus and
minus” method [Sanger, F. & Coulson, A. R. (1975) J. Mol. Biol.
94, 441-448) but makes use of the 2',3'-dideoxy and arabinonu-
cleoside analogues of the normal deoxynucleoside triphosphates,
which act as specific chain-terminating inhibitors of DNA
lymerase. The technique has been applied to the DNA of
acteriophafe ¢X174 and is more rapid and more accurate than
either the plus or the minus melhon:r.

a stereoisomer of ribose in which the 3’-hydroxyl group is ori-
ented in trans position with respect to the 2’-hydroxyl group.
The arabinosyl (ara) nucleotides act as chain terminating in-
hibitors of Escherichia coli DNA polymerase I in a manner
comparable to ddT (4), although synthesized chains ending in
3’ araC can be further extended by some mammalian DNA
polymerases (5). In order to obtain a suitable pattern of bands
from which an extensive sequence can be read it is necessary




Automatized Sanger
Sequencing

_ARTICLES- B __NATURE VOL. 321 12 JUNE 1986

Fluorescence detection in automated
DNA sequence analysis
Lloyd M. Smith, Jane Z. Sanders, Robert J. Kaiser, Peter Hughes, Chris Dodd,

Charles R. Connell’, Cheryl Heiner’, Stephen B. H. Kent & Leroy E. Hood

Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
* Applied Biosystems, Inc., Foster City, California 94404, USA

We have developed a method for the partial automation of DNA sequence analysis. Fluorescence detection of the DNA
fragments is accomplished by means of a fluorophore covalently attached to the oligonucleotide primer used in enzymatic
DNA sequence analysis. A different coloured fluorophore is used for each of the reactions specific for the bases A, C, G
and T. The reaction mixtures are combined and co-electrophoresed down a single polyacrylamide gel tube, the separated
luorescent bands of DNA are detected near the bottom of the tube, and the sequence information is acquired directly by
computer.



Sanger Sequencing

1 Reaction mixture
* Primer and DNA template » DNA polymerase
* ddNTPs with flourochromes » dNTPs (dATP, dCTP, dGTP, and dTTP)
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Progress in sequencing

2003 — First genome
= was a mixture of several volunteers
= Took 13 years (1990-2003), 3,000 scientists, $2.7 Billion
= Technology: Sanger Sequencing

2007 — Second Genome

= J.C.Venter’s genome
= Took 4 years (2003-2007), 30 scientists, $100 Million
= Technology: Improved Sanger Sequencing

2008 — Third Genome

= James Watson
= Took 4.5 months (2008), ~30 scientists, $1.5 Million
= Technology: 454 (second generation, pyrosequencing)

end 2014 — ~ 250,000 Genomes




Sequencing is now at ~$1K




RNA-seq



lllumina sequencing

Library Construction

Figure 2: Optimized TruSeq RMNA Sample Proparation

Before Library Construc;on

- 1. Poly-A Selection (Total RNA->
MRNA)

2. mMRNA fragmentiaton
3. First strand synthesis

4. Second strand synthesis




lllumina sequencing

Library Construction

Prepare for adapter ligation

Figure 4: Adapter Ligation Results in Sequence-Reaady P5
Constructs without PCR .
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Flow cell with oligos

lllumina sequencing

Bridge Amplification

~. Adapter

v, DNA
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Bind single-stranded fragments randomly to the inside surface of the flow

i ok Add unlabeled nucleotides and enzyme to initiate solid-phase bridge

amplification.




lllumina sequencing

Bridge amplification

Fragments become Denature the ds
double stranded molecules
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The enzyme incorporates nucleotides to build double-stranded bridges on
the solid-phase substrate. Denaturation leaves single-stranded templates anchored to the substrate.




lllumina sequencing

Bridge amplification Sequencing by Synthesis

Complete Amplification Determine 15t base
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Several million dense clusters of double-stranded DNA are generated in [ The first sequencing cycle begins by adding four labeled reversible
each channel of the flow cell. terminators, primers, and DNA polymerase.




lllumina sequencing

Sequencing by Synthesis

Image 15t base Determine 2" base

four labeled reversible

he emitted fluorescence from each cluster is captured
and the entified.




lllumina sequencing

Sequencing by Synthesis

Image 2"? base Sequence over multiple Cycles

After laser excitation, the image is captured as before, and the identity of | The sequencing cycles are repeated to determine the sequence of bases in
the second base is recorded. a fragment, one base at a time.




Other Sequencing Technologies

Emulsion PCR, electrical detection of pH change

(A) Ion Torrent PGM

sequentially added and washed

y

ol 1y lon Torrent

PacBio




Other Sequencing Technologies

Single cell, electrical detection, long reads Oxford Nanopore

(C) GridION - exonuclease sequencing (D) GridION - strand sequencing

Motor enzyme
exonuclease

rrent
disruption




RNA-Seq: millions of short reads from fragmented mRNA

Extract RNA from
cells/tissue

Select RNA fraction of interest
(poly(A), ribo-minus and others)

AAA
AAM

AAA
AAA

l Fragment and reverse transcribe

——
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—

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Pepke, Shirley, Barbara Wold, et al. "Computation for ChIP-seq and RMA-seq Studies." Nature Methods & (2009): 522-32.

Pepke et. al. Nature Methods 2009




Mapping RNA-seq reads to a reference genome
reveals expression

SOX2 Gene




Units of RNA-seq

More reads map to longer genes.

If comparing different genes, use RPKM: Read Per Kilobase
Transcript Per Million Reads.

If comparing genes to genes across different patients: CPM or Counts
Per Million reads (Out of 1M reads, how many mapped to a given
gene.)

paired-end reads




Noise characteristics

= Low technical noise (~Poisson distribution)
» Biological noise can be big
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ChIP=Seq uses chromatin

immunoprecipifation and

massively parallel sequencing
to locate qenaome— wide

protein—=DNA binding events

ChiP-seq



Regulatory Genomics and the Biology of
Transcription Factors

= There are 1,500 TF in humans
= Transcription factor (TF) binds to DNA and controls transcription:
= promotes or represses the recruitment of the RNA polymerase

Activators

Repressors

Coactivators TATA box Core promoter

Basal factors



TF determine gene regulatory circuits

There are 1,500 TF in humans Environmental Stimulus

|

Signal Transduction Pathways

They activate or silence target genes

The connectivity of TFs to targets
defines transcriptional regulation Activators

networks t

Many network motifs present such as:
Feed-forward loops (ensure signals)
Fan-outs (amplify signals)

Feed-back loops (create pulses)
see Uri Alon’s work
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Networks reveal cell logic

Rick Young, MIT
(Pioneer of ChlP-chip & ChIP-Seq)



ChIP-Seq: study TF-DNA interactions

= ChIP-Seq: Chromatin Immuno-precipitation followed by
sequencing

= Selects proteins out with an antibody specific to that protein

= Sequences any of the DNA that is “sticking” to the selected
proteins.

= From the reads, can we identify where the proteins are binding




ChlP-Seq protocol

Crosslink
proteins to
binding sites
in living cells

Enrich for protein-
bound DNA
fragments with
antibodies

Harvest cells
and fragment
DNA

Sequence
ChIP DNA

Sequence
whole cell
extract
(WCE) DNA
(control)




ChIP-Seq Example: OCT4 binding in SOX2 Region
In mouse ES cells
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Slide from David Gifford, MIT OpenCourseWare




The ENCODE Project https://www.encodeproject.org

ARTICLE

do0i:10.1038/naturell1247

An integrated encyclopedia of DNA

elements in the human genome

The ENCODE Project Consortium*

The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is
unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription,
transcription factor association, chromatin structure and histone modification. These data enabled us to assign
biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many
discovered candidate regulatory elements are physically associated with one another and with expressed genes,
providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical
correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation.
Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an
expansive resource of functional annotations for biomedical research.




Scientists in the Encyclopedia of DNA Elements Conmsortium have applied 24 experiment
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Cancer omics:
Learning from patient cohorts



The Cancer Genome Atlas (TCGA)

A resource of matched tumor and normal tissues from 11,000
patients with 12 cancer types

= Cervical cancer Sarcoma

» Cholangiocarcinoma Testicular germ cell cancer

» Esophageal carcinoma Thymoma

» Liver hepatocellular carcinoma Uterine carcinosarcoma

= Mesothelioma Uveal melanoma

= Pancreatic ductal adenocarcinoma
» Paraganglioma & Pheochromocytoma

A lot of data available. Go to
https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp

To explore data download



https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp
https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp
https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp

The Cancer Genome Atlas (TCGA)

= The Cancer Genome Atlas (TCGA) Research Network
has reported integrated genome-wide studies of twelve
distinct malignancies in 3,527 cases

Cell 158, 929944, August 14, 2014 ©2014 Elsevier Inc. 929

Multiplatform Analysis of 12 Cancer Types
Reveals Molecular Classification
within and across Tissues of Origin




= (Classical classification of cancer is based on cell of origin.

= Cancer genomics has found, additionally, that each tissue type can
be further divided into 3 to 4 molecular subtypes

Exome seq
Pan-TCGA mRNA seq
» This paper asks the question: Is o e
there an alternative taxonomy s @
beyond the tissue of origin?
Based on 6 omics platforms: (A @®p "
= A pan-cancer classification. pr@ @4 B | onavien Aray B

UCECH




MRNA expression yielded 16 clusters of patients
amongst the 12 tumor types

Breast
Kidney
Clear Cell
AML

Rectum Endometria

Ovarian BLCA
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LUSC
READ

. UCEC



Apresentador
Notas de apresentação
Using the platform corrected mRNAseq data, genes were filtered for those present in 70% of samples and then the top 6,000 most variable genes were selected. ConsensusClusterPlus R-package [10] was used to identify clusters in the data using 1000 iterations, 80% sample resampling from 2 to 20 clusters (k2 to k20) using hierarchical clustering with average innerLinkage and finalLinkage and Pearson correlation as the similarity metric. Eleven main groups were identified when 16 clusters were used (Figure S1A). These 11 groups were observed to be stable through the use of 20 clusters (K20) and significant in pairwise comparisons of the 11 main clusters with SigClust [11]. The subtypes were deposited into Synapse (syn1715788). 


CNV vyielded 8 clusters of patients amongst the 12
tumor types
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Apresentador
Notas de apresentação
Generation and GISTIC analysis of somatic copy number alteration data from SNP6.0 arrays is described elsewhere [15]. For copy number based clustering, tumors were clustered based on thresholded copy number at reoccurring alteration peaks from GISTIC analysis. Tumors were hierarchical clustered in R based on Euclidean distance using Ward’s method. The number of cluster groups was chosen based on cophenetic distances generated from clustering. For comparison of broad and focal alteration between cluster of cluster groups, frequency of alterations in each cluster group was compared to the average frequency of all other groups by chi squared tests with an added Bonferroni correction to control for multiple testings. See Figures S1C and S4A-C. The input data matrix for SCNA clustering is available in Synapse at syn1710678 and the subtype assignments are at syn1712142. 


How did they clustered using the 6 genomic
platforms?

For each sample (patient) and each genomic platform the
authors created a binary vector of size = # of clusters

Patient k cluster assignment in each platform

Then concatenate the clusters

Patient k represented by binary vector across platforms

O000O0OO0OO0OO1O0O0O0OO0O0OO0OO0OCODO O 0O001O0O00O0


Apresentador
Notas de apresentação
Generation and GISTIC analysis of somatic copy number alteration data from SNP6.0 arrays is described elsewhere [15]. For copy number based clustering, tumors were clustered based on thresholded copy number at reoccurring alteration peaks from GISTIC analysis. Tumors were hierarchical clustered in R based on Euclidean distance using Ward’s method. The number of cluster groups was chosen based on cophenetic distances generated from clustering. For comparison of broad and focal alteration between cluster of cluster groups, frequency of alterations in each cluster group was compared to the average frequency of all other groups by chi squared tests with an added Bonferroni correction to control for multiple testings. See Figures S1C and S4A-C. The input data matrix for SCNA clustering is available in Synapse at syn1710678 and the subtype assignments are at syn1712142. 


Perform patient clustering on the binary vectors

Patient1 [N I

Patient2 | I 1
Patient 3 | I e

Patient 3576 I N | —


Apresentador
Notas de apresentação
Generation and GISTIC analysis of somatic copy number alteration data from SNP6.0 arrays is described elsewhere [15]. For copy number based clustering, tumors were clustered based on thresholded copy number at reoccurring alteration peaks from GISTIC analysis. Tumors were hierarchical clustered in R based on Euclidean distance using Ward’s method. The number of cluster groups was chosen based on cophenetic distances generated from clustering. For comparison of broad and focal alteration between cluster of cluster groups, frequency of alterations in each cluster group was compared to the average frequency of all other groups by chi squared tests with an added Bonferroni correction to control for multiple testings. See Figures S1C and S4A-C. The input data matrix for SCNA clustering is available in Synapse at syn1710678 and the subtype assignments are at syn1712142. 


Consensus Clustering yielded 13 Pan Cancer clusters
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Reclassification
of cancer types

Converged Same tissue
diverged origin

oV

Ovary

UCEC

BRCA/Luminal KIRC

. Breast Kidney

BRCA/Basal . GBM
. Breast Glioblastoma

This paper’s results suggest that “cell-of-
origin” rather than pathway based features
dominate the molecular taxonomy of diverse
tumor types.

However, based on this study, one in ten
cancer patients would be classified differently
by this new molecular taxonomy versus our
current tissue-of-origin tumor classification
system.



Cluster of Cluster Assignments
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« If used to guide therapeutic decisions, this reclassification would affect a

significant number of patients to be considered for nonstandard treatment
regimens.



Proposed homework

Read: The Cancer Genome Atlas Research Network, Multiplatform
Analysis of 12 Cancer Types Reveals Molecular Classification within and
across Tissues of Origin, Cell 158, 929-944, August 14, 2014. Bring 1
Important take home message

Or

Read: Trapnell et. al, Differential gene and transcript expression analysis
of RNA-seq experiments with TopHat and Cufflinks, Nat Protoc.
1;7(3):562-78, March 2012. Try to make sense of the RNA-seq.

Or

Explore the TCGA (The Cancer Genome Atlas) (cancergenome.nih.gov)
Data Portal (tcga-data.nci.nin.gov/tcga/tcgaHome?2.jsp) dataportal. Try to
download some files.
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