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Classification of cancer 

From MIT Course: Statstical 

Learning Theory and Applications 



Traditional Classification of Cancer 
 

 More than 200 types of cancer are commonly defined 

 

 Clinicopathological Information further subdivides each cancer type 

 Demographic and Clinical history: gender, age, family history of cancer 

 Stage: size of tumor, lymph node involvement, presence of metastasis 

 Tumor specific: location, size, histology 

 Pathologists take a thin slice of tumor (biopsy or surgery). Under the 

microscope they can assign the histological type and determine the 

grade and prognosis based on 

 Appearance of the cells 

 Size and shape of the nuclei 

 Differentiation of the tumor (how much the cell resemble normal cells)  

 Number of mitosis 

 Invasiveness 



Histological Classification of Cancer 

Nature Reviews Clinical Oncology 

6, 718-730 (December 2009) 

Histological special types of 

breast cancer 

a | Mucinous carcinoma. b | Neuroendocrine carcinoma. c | Micropapillary carcinoma. d |Papillary carcinoma. 

e | Medullary carcinoma. f | Metaplastic carcinoma. g | Secretory carcinoma. h | Adenoid cystic carcinoma. i | 

Apocrine carcinoma. j | Lipid-rich carcinoma. k | Glycogen-rich carcinoma. l | Acinic cell carcinoma. 



Traditional Classification of Cancer 
 

 These clinico-pathological parameters currently determine the 

therapy 

 

 Some problems with this approach: 

 It depends on the histological section used 

 It depends on the pathologist:  

 In bladder cancer, a study showed that the concordance between pathologists 

in assigning grade/stage was of ~70% 

 This is worse for gliomas 

 Patients with the same clinicopathological parameters  

 Sometimes follow different clinical course. 

 Respond differently to therapy 

 

 These problems suggest that we need a further classification 



Molecular Classification of cancers 

 
 The systematic profiling of various cancer types was amongst the 

first applications transcriptomics. The seminal paper in the field is  

 Golub et al. for class discovery and prediction in AML and ALL 



Example of molecular classification of Breast Cancer 

 
 We aim to discover homogeneous subtypes within a collection of 

tumors  (data from www.thelancet.com Vol 365, pag 671, 2005) 

 

 

 

 

 

 

 

 

 

 Notice that the histology characterization coincides very closely with 

the molecular-based grouping. 

p = 12,065 genes  

(reduced to 400) 

n = 286 patients 



How was the grouping done? 

 
 First they reduced the number of features to 400 by only using the 

ones that have the highest variance across the 286 patients.  

 

 The genes and patients were reordered so that they show the same 

properties according to their expression in the two dimensions. This 

makes the visualization more intuitive. 

 

 A dendrogram allows us to visualize the hierarchical tree like 

structure of the data. 

 

 This way to visualize a large data matrix is called a heatmap and was 

popularized in comp bio by Michael Eisen.  



What does the grouping tell us? 

 
 The classical subtypes based on biomarkers and mitosis (ER, HER2, 

and proliferation) are largely recovered (but not completely) if we cut 

the dendrogram at a depth corresponding to 4 clusters. 

 

 This suggests that a  automatic and biologically relevant 

classification of cancers from omics is possible. 

 

 Let us focus on the algorithms for grouping. The ones that we just 

showed are called clustering or unsupervised classification. 

 

 There is a universe of clustering methods. Next will just see a few. 



Clustering 

From 

https://steema.com/wp/blog/2015/06/01/clustering-

visualization/ 



Clustering 

 
 Let X be and n x p matrix, with p genes measured in n samples 

 

 Distance: Clustering requires a notion of similarity or distance. If we 

want to group samples into a small number k << n, we need that the 

elements within a group (cluster) be more similar than elements of 

different groups. Popular distances are the lq distance 

 

 

 

 l2 is clearly the Euclidian distance, and l1 is the Manhattan distance. 

Or the Pearson correlation similarity 

 

 

 

 



Clustering 

 
 If the data needs to be normalized, a Pearson correlation is a good 

choice 

 

 

 

 

where  

 

 

Pearson is a similarity coefficient. It can be transformed into a distance 

by the operation 1-r. When the mutual relation between two samples is 

non-linear, other choices may be more appropriate, such as the 

Spearman correlation or the Mutual Information. 

|| X =



Hierarchical clustering 

 
 Several algorithms exist. 

 Agglomerative: bottom up clustering 

 Divisive: when groups are divided in a top down strategy. 

 

 Linkage function: how the distance between clusters of patients are 

computed. Given two groups of patients A and B, we have 

 Average Linkage 

 

 

 

 

 Centroid Linkage 



Hierarchical agglomerative clustering 
 
 Algorithm for agglomerative clustering 

Start with all instances in their own cluster.  

Until there is only one cluster: 

      Among the current clusters, determine the two  

           clusters, ci and cj, that are most similar. 

      Replace ci and cj with a single cluster ci  cj  

 

d1 

d2 

d3 

d4 

d5 

d1,d2 d4,d5 

d3 

d3,d4,d5 

 all samples 

d1 d2 d4 d5 



Dendrograms 

• At the end of the process 

clusters are obtained by cutting 

the dendrogram at a desired 

level 

• each connected component 

forms a cluster. 

 



Partitioning Algorithms 

Goal: Construct a partition of a dataset D of n patients into a set of k 

clusters 

Given a k, find a partition of k clusters that optimizes the chosen 

partitioning criterion 

• Global optimal: exhaustively enumerate all partitions (impractical) 

 

• Heuristic methods: k-means and k-medoids algorithms 

• k-means (MacQueen’67): Each cluster is represented by the 

centroid of the cluster 

• k-medoids or PAM (Partition around medoids) (Kaufman & 

Rousseeuw’87): Each cluster is represented by one of the 

objects in the cluster   

 

E(K) = S j=1

K SxÎCj
d2(x,mj )



K-means algorithm 

Given K, the K-means algorithm is implemented in 4 steps: 

• 1. Randomly assign objects into k nonempty subsets 

• 2. Compute seed points as the centroids of the clusters of 

the current partition.  The centroid is the center (mean point) 

of the cluster. 

• 3. Assign each object to the cluster with the nearest seed 

point.   

• 4. Go back to Step 2, stop when no more new assignment. 

 



K-means algorithm: simple example 
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• Often terminates at a local optimum. Run many times and choose 

the one that gives the minimum of the cost function 

 

• Need to specify K, the number of clusters, in advance. Chose the K 

at the “elbow” of E(K) vs K. 

• Trouble with noisy data and outliers 

• Not suitable to discover clusters with non-convex shapes 

E(K) = S j=1

K SxÎCj
d2(x,mj )



Identifying Differential Expression 

From 

https://steema.com/wp/blog/2015/06/01/clustering-

visualization/ 



Differential Expression Analysis 

• This area of Systems Biology aims to answer the following question: 

• Given two conditions (Treated vs Untreated, Cancer vs Control, 

etc.), which are the genes that are expressed more in one condition 

than in the other? 

 

• Is this difference statistically significant? 

 

• Many classic statistical tests are available 



Uses of Differential Expression Queries 

 
 To find genes that are  markers of health/disease 

status/progression 

 

 To find genes that are  markers of certain phenotypes 

 

 To find the pathways that are specific to a phenotype 

 

 To find the genes that respond to a drug or other 
perturbations 

 

 To find genes that change in time t vs. time t0 



Classifying leukemia (Golub et al 1999) 

genes upregulated in 

ALL compared to AML 

genes upregulated in 

AML compared to ALL 

class labels: 111111111111111111111111111 00000000000 



Identifying differential expressed genes 
Welch-t test 
 

Assume X1, …,Xm are gene expression values for a given gene in 

condition 2 and Y1, …,Yn correspond condition 2. 

 

We compute 

 

 

 

 

 

 

 

and define the  t statistics as 
 
 
 

s1
2 =                          

/m    s2
2 =                          /n    

     =              

/n    

    =              

/m    

  t =                               
(s1

2/m + s2
2/n)1/2 



Identifying differential expressed genes 
Welch-t test 
 
 
 
 

  t =                               
(s1

2/m + s2
2/n)1/2 

If there were no effect (i.e., the means are the same), there should be a 5% 

of genes that have |t| > 1.96. Instead, we have a proportion of 1045/3052 = 

34% >> 5%.  

Our FDR is 5/34=~15% 

0.025 0.025 

0.17 0.17 

Null Hypothesis 



Identifying differential expressed genes 

A statistical test needs to be performed to determine if the value 
obtained for a given gene has a signal to noise ration bigger than 
expected by chance. 



Gi 

Noise based method: the USE-fold method

Univariate Method

Good when we 

don’t have 

replicas 





Genes@Work belongs to a class of methods 
called “biclustering” 

 These algorithms find statistical signal from the patterns (clusters) 

that are discovered in the data. 

 

 These algorithms identify genes w/ common pattern across a subset 

of conditions 

 

 The problem: Given an n x m matrix, A, find a set of submatrices, 

Bk, that satisfy some specific requirement that depend on the 

problem. 

 



Each methods emphasize a different set of 
genes   



How do we know that our results are not 
due to chance? 

 Statisticians developed a set of methods called hypothesis tests. In 

a nutshell, I want to see if the signal to noise statistics 

 

 

 

 

is considerably bigger when I use the right class labels  

 

 

Compared to the situation in which the class labels are randomized 

 

 

The assumption that the class labels are random is called the Null 

Hypothesis. I create an ensemble with many permutations of the 

class labels, and for each I compute a measure of the “signal to 

noise” ratio (SNR). 

 

True class labels: 111111111111111111111111111 00000000000 

Randomized class labels: 101110111110111101111101101 1010100101010 



How do we know that our results are not 
due to chance? 

 The resulting distribution of the randomized SNR (which we call the 

Null distribution) will be something like this 

 

 

 

 

 

 

 

 

 

 The blue area is the p-value, and tells me the probability of 

observing a SNR as the one I had in my experiment, if the labels 

were random. If the p-value is very small, I reject the null hypothesis. 

 

SNR 

P(SNR) 

SNRi 



Algorithms Diff Exp for RNA-Seq 

 There are a new suite of algorithms that find differential expression 

in RNA seq. They use different statistical assumptions that are 

specific to the digital nature of the data. 

 Cufflinks 

 DESeq from Wolfgang Huber 

 EdgeR from Gordon Smyth 

 Limma 

 Many use a type of statistical model called  Generalized Linear 

Models (GLM) 

 These still need systematic evaluation 



Assessing Biological 

significance 



Interpreting the results of differential expression 

 How can we assign a biological interpretation to the list of genes that 

we obtained using differential expression? 

 

  A god idea came in 2005 with this paper (8600 citations so far) 



Interpreting the results of differential expression 

 The algorithm proposed is called GSEA, and uses prior knowledge 

(Gene Sets) contrasted with the list of differentially expressed genes 

 

  Which prior knowledge? 

 MSigDB (Molecular Signatures DB) ~13000 gene signatures  

 http://software.broadinstitute.org/gsea/msigdb/index.jsp 

 

 BioCARTA pathways: http://cgap.nci.nih.gov/Pathways/BioCarta_Pathways 

 

 Gene Ontology 

http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://cgap.nci.nih.gov/Pathways/BioCarta_Pathways


A chunk of Gene Ontology 



Interpreting the results of differential expression 

GSEA applies Kolmogorov-Smirnof test to find assymmetrical distributions 

for defined blocks of genes in datasets whole distribution. 

Is this particular  Gene Set  enriched in my experiment? 



Interpreting the results of differential expression 

The Kolmogorov–Smirnov test is used to determine whether two 

probability distributions differ. 

Dataset distribution N
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Gene set 1 distribution 

Gene set 2 distribution 

Differential expression score 



Interpreting the results of differential expression 

ClassA    ClassB 

ttest cut-off 

FDR<0.05 

FDR<0.05 

...testing genes independently... 

Biological meaning? 



Interpreting the results of differential expression 
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Gene  

Set 1 
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Gene  
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Gene set 3 

enriched in Class B 

Gene set 2 

enriched in Class A 



GSEA: Key Features 

• We rank all genes based on their differential expression score 

 

• We identifies gene sets whose member genes are clustered either 

towards top or bottom of the ranked list (i.e. up- or down 

regulated) 

 

• We compute an enrichment score for each gene set 

 

• We do a permutation test to identify significantly enriched 

categories 



GSEA Algorithm: Definition of Enrichment Scores 
The equations 

ES(S,i) = Khit(S,i) – Kmiss(S,i)        Note Khit(S,N) = Kmiss(S,N) = 1  so  ES(S,N) = 0 

ES(S) = max deviation{ES(S,i)}   (greatest excursion of the ES(S,i) from 0) 

wj = measure of differential expression of gene j  between group A and group B 

3. Calculate maximum deviation from zero of Khit - Kmiss over 1 ≤ i ≤ N: 
 

for GSEA the default is t = 1, for Kolmogorov-Smirnov  t = 0 

= # genes in S 

 = # genes in platform 

where 

2.     Account for the locations of the genes in Gene Set S (‘‘hits’’) weighted by wj and 
the locations of genes not in S (‘‘misses’’) from the top of the list down to a given 
position i in L 

 

1.     Order the genes in a ranked list L so  wj  decreases from the top (j=1) to the bottom (j=N) 
of the list 

 

NH 



The running enrichment score for a positive ES gene set       

from the P53 GSEA example data set  
 

Zero crossing of ranking 
metric values 
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underlying running enrichment score figure copied from 
http://www.broadinstitute.org/gsea/datasets.jsp 
p53 dataset (gene set is lairPathway) 

+ - 

locations of genes in S 

p53 WT p53 MUT 

http://www.broadinstitute.org/gsea/datasets.jsp
http://www.broadinstitute.org/gsea/datasets.jsp


The running enrichment score for a negative ES gene set      

from the P53 GSEA example data set  

 

Zero crossing of 

ranking metric values 

ES(S)  
ru

n
n

in
g

 

e
n

ri
c
h

m
e
n

t 
 s

c
o

re
  

running enrichment score figure copied from 

http://www.broadinstitute.org/gsea/datasets.jsp 

p53 dataset (gene set is BRCA_UP) 

+ - 

locations of genes in S 

p53 WT p53 MUT 

http://www.broadinstitute.org/gsea/datasets.jsp
http://www.broadinstitute.org/gsea/datasets.jsp


Null distribution of  

enrichment scores 

Actual ES 

GSEA: Permutation Test 

• Randomize data (groups), rank genes again and 

repeat test 1000 times 

• Null distribution of 1000 ES for geneset 

 

 

 

 

 

 

• FDR q-value computed – corrected for gene set size 

and testing multiple gene sets 



Characterization of Intra-Tumor Heterogeneity 

in Hepatocellular Carcinoma 



15 cm 

Intra-tumoral Heterogeneity 
Histology 

Section #1: Moderate steatosis. 

Section #2: Moderate steatosis. Section #3: No steatosis. Bile production 

Section #4: Severe steatosis. 



Patient 1 

    4cm 

Patient 7 

   2.5cm 

Patient 6 

    7cm 

Patient 8 

       

Patient 9 

   11cm 

Patient 10 

    4.7cm 

Patient 3 

    3cm 

Patient 4 

  15.5cm 

Patient 5 

    6cm 

Sensitive 

Patient 2 

  6.5cm 

Resistant 

Nearest Template Prediction 
Sorafenib Resistance Signature 
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Gene Set Enrichment Analysis By Patient  

• Proliferation up in every sample 

• Immune, MTOR signaling, and metabolism, migration processes are 
variable 

• MYC signaling, DNA repair, protein pathways, and spermatogenesis are 
more homogeneous 



More on Cancer Heterogeneity 



Proposed homework 

Read:  Subramanian A, et al., Gene set enrichment analysis: a knowledge-

based approach for interpreting genome-wide expression profiles, Proc 

Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 

 

Or 

Read: Burrell RA1, McGranahan N, Bartek J, Swanton C., The causes and 

consequences of genetic heterogeneity in cancer evolution, Nature. 2013 

Sep 19;501(7467):338-45 

Or 

Explore MsigDB (http://software.broadinstitute.org/gsea/msigdb/index.jsp) 

at the Broad Institute 


