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Classification of cancer



Traditional Classification of Cancer

More than 200 types of cancer are commonly defined

Clinicopathological Information further subdivides each cancer type
Demographic and Clinical history: gender, age, family history of cancer
Stage: size of tumor, lymph node involvement, presence of metastasis
Tumor specific: location, size, histology

Pathologists take a thin slice of tumor (biopsy or surgery). Under the
microscope they can assign the histological type and determine the
grade and prognosis based on

Appearance of the cells

Size and shape of the nuclei

Differentiation of the tumor (how much the cell resemble normal cells)

Number of mitosis

Invasiveness



Histological Classification of Cancer

Histological special types of
breast cancer

Nature Reviews Clinical Oncology
6, 718-730 (December 2009)

a | Mucinous carcinoma. b | Neuroendocrine carcinoma. ¢ | Micropapillary carcinoma. d |Papillary carcinoma.




Traditional Classification of Cancer

= These clinico-pathological parameters currently determine the
therapy

=  Some problems with this approach:
= It depends on the histological section used

= It depends on the pathologist:

= In bladder cancer, a study showed that the concordance between pathologists
in assigning grade/stage was of ~70%

= This is worse for gliomas
= Patients with the same clinicopathological parameters
- Sometimes follow different clinical course.

- Respond differently to therapy




REPORTS
Molecular Classification of
Cancer: Class Discovery and
Class Prediction by Gene
Expression Monitoring

T. R. Golub,’?*} D, K. Slonim,"f P. Tamayo,! C. Huard,’
M. Gaasenbeek,? J. P. Mesirov,! H. Coller,’ M. L. Loh,?
J. R. Downing,® M. A. Caligiuri,* C. D. Bloomfield,*

E. S. Lander'5*

Although cancer classification has improved over the past 30 years, there has
been no general approach for identifying new cancer classes (class discovery)
or for assigning tumors to known classes (class prediction). Here, a generic
approach to cancer classification based on gene expression monitoring by DNA
microarrays is described and applied to human acute leukemias as a test case.
A class discovery procedure automatically discovered the distinction between
acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) without
previous knowledge of these classes. An automatically derived class predictor
was able to determine the class of new leukemia cases. The results demonstrate
the feasibility of cancer classification based solely on gene expression moni-
toring and suggest a general strategy for discovering and predicting cancer
classes for other types of cancer, independent of previous biological knowledge.

Molecular Classification of cancers

The systematic profiling of various cancer types was amongst the
first applications transcriptomics. The seminal paper in the field is

Golub et al. for class discovery and prediction in AML and ALL

SCIENCE VOL 286 15 OCTOBER 1999



Example of molecular classification of Breast Cancer

= We aim to discover homogeneous subtypes within a collection of
tumors (data from www.thelancet.com Vol 365, pag 671, 2005)

cA N

p =12,065 genes
(reduced to 400)

R T AL R i ind

n = 286 patients
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vw*w%,:rw ‘ -<-,a~ ) - :
W ER-/HERZ2-
B ER+/HER2- High Prolif
B ER+/HER2- Low Prolif
B HERZ+

= Notice that the histology characterization coincides very closely with
the molecular-based grouping.



How was the grouping done?

= First they reduced the number of features to 400 by only using the
ones that have the highest variance across the 286 patients.

= The genes and patients were reordered so that they show the same
properties according to their expression in the two dimensions. This
makes the visualization more intuitive.

= A dendrogram allows us to visualize the hierarchical tree like
structure of the data.

= This way to visualize a large data matrix is called a heatmap and was
popularized in comp bio by Michael Eisen.



What does the grouping tell us?

= The classical subtypes based on biomarkers and mitosis (ER, HERZ2,
and proliferation) are largely recovered (but not completely) if we cut
the dendrogram at a depth corresponding to 4 clusters.

= This suggests that a automatic and biologically relevant
classification of cancers from omics is possible.

= Let us focus on the algorithms for grouping. The ones that we just
showed are called clustering or unsupervised classification.

= There is a universe of clustering methods. Next will just see a few.



From
https://steema.com/wp/blog/2015/06/01/clustering-

Clustering




Clustering

Let X be and n x p matrix, with p genes measured in n samples

Distance: Clustering requires a notion of similarity or distance. If we
want to group samples into a small number k << n, we need that the
elements within a group (cluster) be more similar than elements of
different groups. Popular distances are the |, distance

, is clearly the Euclidian distance, and |, is the Manhattan distance.
Or the Pearson correlation similarity



Clustering

= |f the data needs to be normalized, a Pearson correlation is a good
choice

P
k=1

o (K= X2y 5 (K — K )?

where

Pearson is a similarity coefficient. It can be transformed into a distance
by the operation 1-r. When the mutual relation between two samples is
non-linear, other choices may be more appropriate, such as the
Spearman correlation or the Mutual Information.



Hierarchical clustering

= Several algorithms exist.
Agglomerative: bottom up clustering
Divisive: when groups are divided in a top down strategy.

= Linkage function: how the distance between clusters of patients are

computed. Given two groups of patients A and B, we have
Average Linkage

Centroid Linkage




Hierarchical agglomerative clustering

= Algorithm for agglomerative clustering
Start with all instances in their own cluster.
Until there is only one cluster:
Among the current clusters, determine the two
clusters, c¢;and c;, that are most similar.
Replace c;and c; with a single cluster ¢;u c;

all samples
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Dendrograms

« At the end of the process
clusters are obtained by cutting
the dendrogram at a desired
level

 each connected component
forms a cluster.




Partitioning Algorithms

Goal: Construct a partition of a dataset D of n patients into a set of k
clusters

Given a k, find a partition of k clusters that optimizes the chosen
partitioning criterion

« Global optimal: exhaustively enumerate all partitions (impractical)
E(K)=S[,S; ¢ d"(xm;)

* Heuristic methods: k-means and k-medoids algorithms

 k-means (MacQueen’67): Each cluster is represented by the
centroid of the cluster

» Kk-medoids or PAM (Partition around medoids) (Kaufman &
Rousseeuw’87): Each cluster is represented by one of the
objects in the cluster




K-means algorithm

Given K, the K-means algorithm is implemented in 4 steps:
« 1. Randomly assign objects into k nonempty subsets

« 2. Compute seed points as the centroids of the clusters of
the current partition. The centroid is the center (mean point)
of the cluster.

« 3. Assign each object to the cluster with the nearest seed
point.

« 4. Go back to Step 2, stop when no more new assignment.




K-means algorithm: simple example
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« Often terminates at a local optimum. Run many times and choose
the one that gives the minimum of the cost function

E(K)=S5S, ¢ d2(x, m))

* Need to specify K, the number of clusters, in advance. Chose the K
at the “elbow” of E(K) vs K.

* Trouble with noisy data and outliers

* Not suitable to discover clusters with non-convex shapes



From
https://steema.com/wp/blog/2015/06/01/clustering-

Identifying Differential Expression




Differential Expression Analysis

« This area of Systems Biology aims to answer the following question:

« Given two conditions (Treated vs Untreated, Cancer vs Control,
etc.), which are the genes that are expressed more in one condition
than in the other?

 |s this difference statistically significant?

« Many classic statistical tests are available




Uses of Differential Expression Queries

= To find genes that are markers of health/disease
status/progression

= To find genes that are markers of certain phenotypes
* To find the pathways that are specific to a phenotype

= To find the genes that respond to a drug or other
perturbations

= To find genes that change in time t vs. time t,



Classifying leukemia (Golub et al 1999)

class labels:  111111111111111111111111111 00000000000

genes upregulated in —>

ALL compared to AML \

genes upregulated in
AML compared to ALL




Identifying differential expressed genes
Welch-t test

Assume X,, ..., X, are gene expression values for a given gene in
condition 2 and Y, ...,Y,, correspond condition 2.

We compute

and define the t statistics as

(07%/m + 6,%/n)12




Identifying differential expressed genes
Welch-t test X—V

(0,2Im + o,2/n)12

Null Hypothesis

Histogram of t

Normal Distribution

Frequency

3,051 genes.

27 ALL vs. 11 AML samples

If there were no effect (i.e., the means are the same), there should be a 5%
of genes that have |t| > 1.96. Instead, we have a proportion of 1045/3052 =
34% >> 5%.

Our FDR is 5/34=~15%



Identifying differential expressed genes

Univariate Method
t-like score: the signal-to-noise method

Condition 2 ~onditi Probability
Condition 2 Condition 1
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A statistical test needs to be performed to determine if the value
obtained for a given gene has a signal to noise ration bigger than
expected by chance.



Univariate Method

Noise based method: the USE-fold method

Good when we
don’t have
replicas

5

10

10°
Replica 1




Genes@Work

Multivariate Q;gggg::gl
Method

pattern

| Nay s Ne .
R kg)(j )“k(ta) -1+ S

p = 1-exp{-Nj} Califano A, Stolovitzky G, Tu Y: "Analysis of gene expression
J microarrays for phenotype classification." Proc Int Conf Intell
Syst Mol Biol 2000, 8:75-85.




Genes@Work belongs to a class of methods
called “biclustering”

» These algorithms find statistical signal from the patterns (clusters)
that are discovered in the data.

= These algorithms identify genes w/ common pattern across a subset
of conditions

* The problem: Given an n x m matrix, A, find a set of submatrices,

Bk, that satisfy some specific requirement that depend on the
problem.




Each methods emphasize a different set of

Figure 1. Venn diagrams of the set of genes identified in the analysis of diffuse large B-cell
lymphoma and follicular lymphoma by each of three methods: the signal-to-noise ratio (SNR),
Genes@Work (G@W), and the t-score. The numbers indicate the number of genes in each of
the sets.

FL DLBCL FL

Current Opinlon In Structural Bioiogy




How do we know that our results are not
due to chance?

= Statisticians developed a set of methods called hypothesis tests. In
a nutshell, I want to see if the signal to noise statistics

Hiy — J'-*'r'l:l:u

SNR, =
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"'Tr[l] —|_ C 12}

IS considerably bigger when | use the right class labels

True class labels: 111111111111111111111111111 00000000000

Compared to the situation in which the class labels are randomized

Randomized class labels:  101110111110111101111101101 1010100101010

The assumption that the class labels are random is called the Null
Hypothesis. | create an ensemble with many permutations of the
class labels, and for each | compute a measure of the “signal to
noise” ratio (SNR).



How do we know that our results are not
due to chance?

= The resulting distribution of the randomized SNR (which we call the
Null distribution) will be something like this

P(SNR)

o T,
rd

= The blue area is the p-value, and tells me the probability of
observing a SNR as the one | had in my experiment, if the labels
were random. If the p-value is very small, | reject the null hypothesis.



Algorithms Diff Exp for RNA-Seq

» There are a new suite of algorithms that find differential expression
iIn RNA seq. They use different statistical assumptions that are
specific to the digital nature of the data.

o Cufflinks

o DESeq from Wolfgang Huber
o EdgeR from Gordon Smyth

o Limma

= Many use a type of statistical model called Generalized Linear
Models (GLM)

» These still need systematic evaluation




Assessing Biological
significance



Interpreting the results of differential expression

= How can we assign a biological interpretation to the list of genes that
we obtained using differential expression?

= Agodidea came in 2005 with this paper (8600 citations so far)

Gene set enrichment analysis: A knowledge-based
approach for interpreting genome-wide
expression profiles

Aravind Subramanian®™®, Pablo Tamays™=, Yamsi K. Mootha™®, Sayan I'n1||.|ll.r'|l'.-rir-;l'.-’_. Benjamin L. Ebert™",
Michael & Gillette™!, Amanda Paulovich®, Scott L Pameroy”, Todd B Galub®™®, Eric 5. Lander®="=, and Jill P. Mesirov®™*




Interpreting the results of differential expression

» The algorithm proposed is called GSEA, and uses prior knowledge
(Gene Sets) contrasted with the list of differentially expressed genes

=  Which prior knowledge?

o MSigDB (Molecular Signatures DB) ~13000 gene signatures
= http://software.broadinstitute.org/gsea/msigdb/index.jsp

o BioCARTA pathways: http://cgap.nci.nin.gov/Pathways/BioCarta_Pathways

o Gene Ontology



http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://cgap.nci.nih.gov/Pathways/BioCarta_Pathways
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Interpreting the results of differential expression

GSEA applies Kolmogorov-Smirnof test to find assymmetrical distributions
for defined blocks of genes in datasets whole distribution.

Gene Sal
Database
Malecular
Frofile Data
i | Run GSEA

JEnfiched
Sets

Is this particular enriched in my experiment?



Interpreting the results of differential expression

The Kolmogorov—Smirnov test is used to determine whether two
probability distributions differ.
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Interpreting the results of differential expression

ClassA ClassB

0000000 EEmEMEMAS SSEmIEmEILE . g9000000000000000 — FDR<0.05

Options

aqual)

not equal)

Parametric (use all
available error
astimate)

Monparametric

................. <+«— FDR<0.05

******» Biological meaning?

Parametric (variances

Parametric (variances

...testing genes independently...

Specific test name:
Analyzing 2 groups

Student’s T-test

Welch t-test

Welch t-test using error
maodel variances

Wilcoxon-Mann-Whitney
1est




Interpreting the results of differential expression

Gene Gene Gene
ClassA ClassB SE Set 2
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GSEA: Key Features

We rank all genes based on their differential expression score

We identifies gene sets whose member genes are clustered either
towards top or bottom of the ranked list (i.e. up- or down
regulated)

We compute an enrichment score for each gene set

We do a permutation test to identify significantly enriched
categories




GSEA Algorithm: Definition of Enrichment Scores
The equations

w; = measure of differential expression of gene j between group A and group B

Order the genes in a ranked list L so w; decreases from the top (j=1) to the bottom (j=N)
of the list

Account for the locations of the genes in Gene Set S (“hits”’) weighted by w; and
the locations of genes not in S (“‘misses’’) from the top of the list down to a given
positioniinL

It
Kus.y= 511 where

gjes Z
J<i
for GSEA the default is t = 1, for Kolmogorov-Smirnov t=0
. 1 N, = i
Kmiss(S,l) = Z H # genes -In S
wes (N = Nu) N =# genes in platform
J<i

3. Calculate maximum deviation from zero of K, ;.- K ;.. over 1 <i < N:

miss

ES(S,i) = K,;,(S, 1)) — K,
ES(S) = max deviation{ES(S,i)} (greatest excursion of the ES(S,i) from 0)

iss(S,1) Note K, .(S,N) =K .. (S,N) =1 so ES(S,N) =0



The running enrichment score for a positive ES gene set
from the P53 GSEA example data set

GSEA_Results
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http://www.broadinstitute.org/gsea/datasets.jsp
http://www.broadinstitute.org/gsea/datasets.jsp

The running enrichment score for a negative ES gene set
from the P53 GSEA example data set
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http://www.broadinstitute.org/gsea/datasets.jsp
http://www.broadinstitute.org/gsea/datasets.jsp

GSEA: Permutation Test

Randomize data (groups), rank genes again and
repeat test 1000 times

Null distribution of 1000 ES for geneset

Null distribution of
enrichment scores

?Actual ES
FDR g-value computed — corrected for gene set size

and testing multiple gene sets



Characterization of Intra-Tumor Heterogeneity




Intra-tumoral Heterogeneity
Histology




Nearest Template Prediction
Sorafenib Resistance Signhature
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Patient 1 Patient 2 Patient 3 Patient 4 Patient 5
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Gene Set Enrichment Analysis By Patient

* Proliferation up in every sample

* Immune, MTOR signaling, and metabolism, migration processes are
variable

« MYC signaling, DNA repair, protein pathways, and spermatogenesis are
more homogeneous

E2F_TARGETS
2M_CHECKPOINT

INTERFERON_ALPHA_RESPONSE
INTERFERON_GAMMA_RESPONSE
INFLAMMATORY_RESPONSE
IL6_JAK_STAT3_SIGNALING
IL2_STAT5_SIGNALING

MTORC1_SIGNALING

PI3K_AKT_MTOR_SIGNALING

KRAS_SIGNALING_UP
NT_BETA_CATENIN_SIGNALING

HOLESTEROL_HOMEOSTASIS
ADIPOGENESIS

EPITHELIAL_MESENCHYMAL_TRANSITION
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APICAL_JUNCTION
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Private to initial tumor
M Shared between initial tumor and recurrence
M Frivate to recurrence

More on Cancer Heterogeneity

www.sciencemag.org SCIENCE VOL 343 10 JANUARY 2014

Mutational Analysis Reveals the
Origin and Therapy-Driven Evolution
of Recurrent Glioma

Number of somatic mutations

Fig. 2. Temporal and
spatial patterns of clo-
nal evolution in the tu-
mors of two glioma
patients. (A and B) A
timeline of treatment his-
tories for patient 17 (A)
and patient 04 (B) (top, in-
tervals labeled in months).
Vertical bars correspond
to the time of tumor re-
section and are labeled
with the tumor diagnosis
and grade. Representa-
tive MRIs are also shown.
A phylogenetic tree (bot-
tom) depicts the patterns
of clonal evolution of these
tumors inferred from the
pattern and frequency of
somatic mutations, high-
lighting genes frequent-
ly mutated in cancer.
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Proposed homework

Read: Subramanian A, et al., Gene set enrichment analysis: a knowledge-
based approach for interpreting genome-wide expression profiles, Proc
Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50

Or

Read: Burrell RA1, McGranahan N, Bartek J, Swanton C., The causes and
conseguences of genetic heterogeneity in cancer evolution, Nature. 2013
Sep 19;501(7467):338-45

Or

Explore MsigDB (http://software.broadinstitute.org/gsea/msigdb/index.jsp)
at the Broad Institute




