Searches of BSM physics with boosted hadronically-decaying objects at the LHC

Maria Eugenia Cabrera

Universidade de São Paulo

November 6th, 2015

Work in progress
In collaboration with Boris Panes and Oscar Eboli

Program of Particle Physics at the Dawn of the LHC13, ICTP-SAIFR
Table of contents

1. Introduction

2. Jet Substructure

3. Searches of new physics using boosted objects

4. A signal of Flavour Violation
Introduction

- Current bounds of new physics particles
- Looking for a heavy resonance
- Difficulty of distinguishing the decay products of top, W and Z.
- Analysis of jet substructure
The Higgs boson

VH production: $pp \rightarrow Wh, Zh$

- Leptons and b-jets have to be central and with sufficiently high p_T to be tagged.
- Large background from $t\bar{t}$ to b-quarks (with energy ~ 65 GeV at top c.o.m.) and leptonically decaying W.

VH production in a boosted regime: Both bosons with large p_T and back to back, only $\sim 5\%$ of the events with $p_T > 200$ GeV.

- Sufficiently large p_T of the products of the Higgs.
- On-shell top-quarks can not produce a high-p_T bb system.
A boosted higgs boson

Identifying the Higgs as a single jet

The strategy should flexibly adapt to the angular separation of the decay products, which vary with p_T of the higgs boson.

$$R_{b\bar{b}} \approx \frac{1}{\sqrt{z(1-z)}} \frac{m_h}{p_T} \geq 2 \frac{m_h}{p_T} \quad (p_T \gg m_h)$$

Large enough R_{bb} to contain QCD radiation from the Higgs decay.

The proposed algorithm:
Mass drop and filtering

Butterworth et. al. 2008
Jet Substructure

Jet Clustering

The splitting probability of a parton k to go into i and j, soft and collinear partons,

$$\frac{dP_{k\to ij}}{dE_i d\theta_{ij}} \sim \frac{\alpha_s}{\min(E_i, E_j) \theta_{ij}}$$

A distance that is essentially proportional to the squared inverse of the splitting probability

$$y_{ij} = \frac{2 \min(E_i^2, E_j^2)(1 - \cos \theta_{ij})}{Q^2}$$

where Q is the total energy of the event.

Notice that if $\theta \ll 1$ then

$$2 \min(E_i^2, E_j^2) = p_T^2 \text{ of } i \text{ relative to } j$$

The particles that have the min $y_{ij} < y_{\text{cut}}$ are recombined into a single new particle (or pseudojet).
Jet Clustering

kt-algorithm

The distance

$$\min(p_t^2, p^2) \frac{\Delta R^2_{ij}}{R^2}$$

The cut value: p_{ti}^2, R

antikt-algorithm

The distance

$$\min(p_{t_i}^{-2}, p_t^{-2}) \frac{\Delta R^2_{ij}}{R^2}$$

The cut value: p_{ti}^{-2}, R

C/A-algorithm

The distance

$$\frac{\Delta R^2_{ij}}{R^2}$$

The cut value: R
Jet Substructure

Analyzing Jet Substructure

Grooming
- filtering
- pruning
- trimming

Taggers
- Top tagger (HEP top tagger)
- b-tagger
- Quark-gluon tagger

N-subjettiness

I will discuss these techniques in the context of resonances
Grooming

Get rid of underlying events or pile-up and leave the constituents of the hard scattering.

Emily Thompson talk, ATLAS collaboration (2012)
Mass drop and filtering

Cluster events using C/A algorithm.

1. Undo the last stage of clustering to get j_1 and j_2 ($m_{j_1} > m_{j_2}$).
2. If mass drop $m_{j_1} < \mu m_j$, and $y = \frac{\min(p_{T, j_1}, p_{T, j_2})}{m_j} \Delta R^2_{j_1,j_2} > y_{cut}$, then j is a heavy particle.
3. Otherwise $j = j_1$ and go back to step 1.

filtering: Recluster using CA with $R_{filt} = \min(0.3, R_{b\bar{b}}/2)$
Pruning

The standard jet algorithm are base on the dominant soft and collinear physics of the QCD shower. For a recombination $1, 2 \rightarrow p$

$$z \equiv \min\left(\frac{p_{T,1}}{p_{T,p}}, \frac{p_{T,2}}{p_{T,p}}\right), \quad \theta \equiv \Delta R_{12}$$

For heavy particle decays \Rightarrow final recombinations at large θ

For QCD \Rightarrow small θ and small-z

We need to systematically removes soft, large angle recombinations.

Pruning procedure: rerun the algorithm and vetoing on these recombinations

z_{cut}: how small z can be.

D_{cut}: minimum angle of the recombination.
Pruning

For $z = 0.1$ and $D_{cut} = 0.5 \frac{m_J}{p_T,J}$

Vermilion et. al. 2009
Top Tagger

HEP top tagger

- Define a C/A fat jet with $R = 1.8$
- Identify all hard subjets using the mass drop criterion.
- Iterate through all triplets of three hard subjets and filter $R_{filt} = \min(0.3, \Delta R_{jk}/2)$, $N_{filt} = 5$. Reject all the triplets outside $m_{123} \in [150.0, 200] \text{ GeV}$
- Fulfill kinematic relations to get $m_{123}/m_{ij} = (1 \pm 0.15)m_t/m_W$

- Of all the triplets passing the criteria choose the one with m_{123} closer to m_t.

![Diagram](image)
Quark Gluon Tagger

Gallichio and Schwartz 2011

The average multiplicity is sensitive to the color factors

\[
\frac{\langle N_g \rangle}{\langle N_q \rangle} = \frac{C_A}{C_F} \quad \text{and} \quad \frac{\sigma^2_g}{\sigma^2_q} = \frac{C_A}{C_F}
\]

No. of tracks and Linear Radial Momentum = \(\sum_{i \in \text{jet}} \frac{p_T^i}{p_T^{\text{jet}}} |\Delta R_i| \) the most powerful discriminator.
N-subjettiness

Thaler and Tilburg 2011

\[\tau_N = \frac{\sum_k p_{T,k} \min(\Delta R_{1,k}, \ldots, \Delta R_{N,k})}{R_0 \sum_k p_{T,k}} \]

\(R_0 \) es the R parameter of the jet used for clustering.

Subjet directions

The best procedure is to use the directions that minimize the value of \(\tau_N \) (computationally expensive)

The standard procedure is to run a kt-algorithm adapting \(\Delta R \) to find N subjets inside the jet.
N-subjettiness

\(\tau_1 \) and \(\tau_2 \) are similar

The ratio is a powerful discriminator
Searches of new physics using boosted objects

Resonance searches with Top Tagger

T. Plehn et al. 2015

→ Off-shell tops and final state radiation
→ Hard radiated gluons do not enter the top reconstruction
→ Asymmetric tail in m_{ff} distribution
Resonance searches with Top Tagger

MultiVariate Analysis

Booted decision trees
Extended cut-based selection
A simplified model for the gluon prime

The Lagrangian of the neutral currents

$$\mathcal{L} \supset \bar{\psi}^i \gamma^\mu g_{ij} G_{\mu}^{(1)} \psi^j$$

A source of flavour violation

$$U_L^{-1} \begin{pmatrix} g_{uL} & 0 & 0 \\ 0 & g_{cL} & 0 \\ 0 & 0 & g_{tL} \end{pmatrix} U_L \equiv \begin{pmatrix} \Gamma_{qq} g_s & \Gamma_{qq} g_s' & \Gamma_{qt} g_s \\ \Gamma_{qq} g_s' & \Gamma_{qq} g_s & \Gamma_{qt} g_s \\ \Gamma_{qt} g_s & \Gamma_{qt} g_s & \Gamma_{tt} g_s \end{pmatrix}, \quad \Gamma_{ij} = \Gamma_{ij \, L} = \Gamma_{ij \, R}$$

ATLAS search of resonances decaying to $t\bar{t}$ excludes $m_G < 1.62$ TeV, for $\Gamma_{qq \, L} = \Gamma_{qq \, R} = 0.2$ and $\Gamma_{tt \, L} = 1.0$, $\Gamma_{tt \, R} = 4$
The discovery channel for Gluon prime

The ATLAS TT algorithm

We use C/A algorithm with $R = 1.0$ to cluster the fat jets and select the two hardest ones.

1. The fat jets should have $p_T > 200$ GeV and $y < 2.5$
2. One top jet [HEP Top Tagger] with $p_T > 200$ GeV
3. Two b-tagged jets [b-tagger template] jets identifies with anti-kt algorithm, $R = 0.4$

Our approach

We use C/A algorithm with $R = 1.5$ to cluster the fat jets and select the two hardest ones.

1. The fat jets should have $p_T > 400$ GeV and $y < 2.5$
2. Two top jet [HEP Top Tagger] with $p_T > 500$ GeV
3. $\tau_3/\tau_1 < 0.3$ for each top jet.
A signal of Flavour Violation

Assuming a heavy resonance has been discovered in the $t\bar{t}$ channel

$$m_{G(1)} = 2 \text{ TeV}$$

we fix $\Gamma_{G(1)} = 65 \text{ GeV}$.

The TJ algorithm

We use C/A algorithm with $R = 1.5$ to cluster the fat jets and select the two hardest ones.

1. The fat jets should have $p_T > 400 \text{ GeV}$ and $y < 2.5$
2. One top jet [HEP Top Tagger] with $p_T > 500 \text{ GeV}$
3. One light quark jet [Quark-gluon Tagger] identified with anti-kt ($R = 0.6$) with $p_T > 500 \text{ GeV}$.
4. $\tau_3/\tau_1 < 0.3$ for the top jet.
5. $1700 \text{ GeV} \leq M_{\text{inv}} \leq 2100 \text{ GeV}$
N–subjettiness in HEP top tagger

N–subjettiness:
Measures the radial distance of the particles to the closest sub-jet axes.

The direction of the pseudojets:

- τ_3: $J_1, J_2, J_3 \Rightarrow p_{\text{bottom}}, p_{j_1}, p_{j_2}$ from HEP top tagger.
- τ_1: $J_1 \Rightarrow$ The direction of the fat jet.

τ_3/τ_1 to distinguish Top jet from light quark-jet
parameters: $\Gamma_{qq} = 1, \Gamma_{tt} = 1, \Gamma_{\bar{t}t} = 1$

<table>
<thead>
<tr>
<th>Cut</th>
<th>QCD</th>
<th>$t\bar{t}$</th>
<th>$G \rightarrow t\bar{t}$</th>
<th>$G \rightarrow t\bar{q} (\bar{t}q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 fat jets</td>
<td>1.61 nb</td>
<td>0.25 pb</td>
<td>2.49 pb</td>
<td>15.8 pb</td>
</tr>
</tbody>
</table>

TT algorithm

<table>
<thead>
<tr>
<th>Cut</th>
<th>QCD</th>
<th>$t\bar{t}$</th>
<th>$G \rightarrow t\bar{t}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two tops</td>
<td>31.7 fb</td>
<td>15.7 fb</td>
<td>293 fb</td>
</tr>
<tr>
<td>$\tau_3/\tau_1 < 0.3$</td>
<td>3.1 fb (13)</td>
<td>8.9 fb (590)</td>
<td>131 fb (7234)</td>
</tr>
</tbody>
</table>

TJ algorithm

<table>
<thead>
<tr>
<th>Cut</th>
<th>QCD</th>
<th>$t\bar{t}$</th>
<th>$G \rightarrow t\bar{q} (\bar{t}q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Top</td>
<td>4.98 pb</td>
<td>89.4 fb</td>
<td>5.38 pb</td>
</tr>
<tr>
<td>One light-quark jet</td>
<td>2.72 pb</td>
<td>11.32 fb</td>
<td>4.00 pb</td>
</tr>
<tr>
<td>$\tau_3/\tau_1 < 0.3$</td>
<td>817 fb</td>
<td>7.7 fb</td>
<td>2.67 pb</td>
</tr>
<tr>
<td>1.7 TeV $< M_{inv} < 2.1$ TeV</td>
<td>217 fb (910)</td>
<td>2.2 fb (145)</td>
<td>2.29 pb (20115)</td>
</tr>
</tbody>
</table>
A signal of flavour violation

The required luminosity to get 5σ

$$\mathcal{L}_{TT}^{5\sigma} = 4.5 \left(\frac{0.5}{\Gamma_{qq}} \right)^4 \left(\frac{0.5}{\Gamma_{tt}} \right)^4$$

$$\mathcal{L}_{TJ}^{5\sigma} = 10.4 \left(\frac{0.5}{\Gamma_{qq}} \right)^4 \left(\frac{0.2}{\Gamma_{tq}} \right)^4$$
Prospects

- Improving the algorithm
- A more realistic QCD background
- Detector effects (specially for the quark-gluon tagger)
- A multivariate analysis (MVA)