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ii. galaxies 101

Let us start with the very basics: the notion of stellar system. A stellar system is a

collection of point masses (stars, gas clouds, dark matter, etc) that is gravitationally
bound. The behaviour of these systems is entirely determined by Newtonian gravity.

There is a wide variety of stellar systems: binary stars, star clusters, galaxies and
galaxy clusters.

To gain some feeling for the physics of stellar systems, consider the typical example of
our Galaxy. Roughly:

N? ' 1011 stars
stellar disc: Rd ' 10 kpc, hd ' 0:5 kpc
Sun: R0 ' 8 kpc, vorb ' 200 km/s

It is reasonable to assume that this stellar system is:

� in steady state. A typical star like the Sun has an orbital time

torb =
2�R0

vorb
� 246 Myr � tMW � 10 Gyr :

That is, a typical star has had time to complete tMW=torb � 41 orbits, which justifies
the steady state (i.e., equilibrium) assumption.

� collisionless.

Problem 3: Justify that our Galaxy is a collisionless system.

Look at the board!
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ii. galaxies 101

There are three other important timescales for galaxy formation:

� free fall time, i.e. the time it takes a structure of mass M and radius R to collapse
under its own gravity:

tff =

q
3�

32G�
=

q
�2R3

8GM
:

� cosmic time, e.g. for an Einstein-de Sitter universe (for ΛCDM is just a factor O(1)
different):

t(z) =
2

3H0
(1 + z)�3=2 ' 9:3(1 + z)�3=2 Gyr :

� cooling time, i.e. the time it takes baryons to cool (e.g. by thermal bremsstrahlung):

tcool /
R5=2

M1=2
:

One can get a grip on the formation time of a structure of mass M and radius R by
comparing tff with t(z):

tff . t(z) )

n
z . 6 for R = 100 kpc;M = 1012 M�
z . 2 for R = 10 Mpc;M = 1015 M�

:

For galaxies to actually form the baryons need to cool and sink to the centre of the
gravitational potentials, so:

tcool . tff ) R . 74 kpc :

That is, structures of initial radii R . O(100) kpc have enough time to cool and
eventually form galaxies. This is in fact the ballpark of most galaxies we observe. On
that note, let us now review the observational facts...

Homework 3: Free fall time.
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ii. hubble sequence

The variety of galaxies in the universe is enormous, so the first step in studying
galaxies is their classification. It was Hubble that set in 1936 the main scheme for the
classification of galaxies.

[Binney & Merrifield ’98]

early-type late-type

Hubble believed his sequence actually represented a time evolution from early-type to
late-type galaxies:

E ! S0,SB0 ! S,SB ! Irr

Although this belief is not supported nowadays, the nomenclature stuck.
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ii. ellipticals

NGC 4278 (E1) NGC 3377 (E6)

I � smooth and spheroidal
I � En: axis ratio b=a = 1� n=10; E0�E7
I � dE: dwarf elliptical; dSph: dwarf spheroidal
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ii. ellipticals

Besides their recognisable morphology, ellipticals are characterised by their photometry
and kinematics. Photometrically, the surface brightness along the major axis follows
closely a power-law exponential profile. Kinematically, ellipticals show little ordered
motion but significant velocity dispersions.

[Binney & Merrifield ’98]

photometry

Sérsic law: I (R) / exp
�
�bn(R=Re)1=n

�
; n = 2 � 6

total luminosity L =
R
1

0
dR I (R)2�R

effective radius Re : Le � L(< Re) = L=2

mean surface brightness hIei = Le=�R
2
e

kinematics

central velocity dispersion �0
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ii. ellipticals

The four observables describing an elliptical (L;Re ; hIei; �0) exhibit 3 correlations:

Faber-Jackson law:

Kormendy relation:

Fundamental plane:

L / �4
0

Re / hIei
�0:83

Re / �1:24
0 hIei

�0:82

[Binney & Merrifield ’98, Mo, van den Bosch & White ’10]

The relevance of these correlations is that we can simply measure the photometry
(i.e. Re ; hIei) and/or kinematics (i.e. �0) of an elliptical to infer its luminosity L, which
can be combined with the measured flux density to get an estimate of the distance.
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ii. spirals

NGC 175 (SBa) NGC 6814 (Sb)

I � disc-like with spiral arms
I � S (normal): spheroidal bulge; SB (barred): barred bulge
I � Sa�d, SBa�d: arm windness and resolution, bulge/disc ratio
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ii. spirals

Also spirals are defined by their photometry and kinematics. Photometrically, the
surface brightness profile has two distinct components, a bulge and a disc.
Kinematically, spirals show a very ordered motion featuring a fast disc rotation.

[Mo, van den Bosch & White ’10]

photometry

exponential disc:
I (R) / exp (�R=Rd ) ; Rd = 1 � 10 kpc

L =
R
1

0
dR I (R)2�R

kinematics

circular velocity:
V 2
c (R) = GM(< R)=R

Vmax = max Vc (R)
() 11



ii. spirals

The two key properties of a spiral galaxy (L;Vmax) are inherently correlated:

Tully-Fischer relation: L / V 4
max

[Mo, van den Bosch & White ’10]

The importance of the Tully-Fisher relation is two-fold: (i) it allows the use of
kinematics only (i.e. Vmax) to infer the luminosity L of the galaxy and thus estimate
its distance; and (ii) it provides a link between the luminosity of a galaxy and its
dynamical mass (through Vmax).() 12



ii. lenticulars

NGC 4976 (S01) NGC 4371 (SB03)

I � smooth as E and disc-like as S
I � S0 (normal): spheroidal bulge; SB0 (barred): barred bulge
I � S01�3: dust absorption, SB01�3: prominence of bar
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ii. irregulars

Ho II (Irr I) NGC 520 (Irr II)

I � lack of symmetry
I � Irr I: patchy; Irr II: smooth
I � both Magellanic Clouds are irregular
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ii. peculiar/interacting

Antennae

I � do not fit any of the Hubble categories
I � usually interacting galaxies
I � Antennae: probably collision of two spirals

() 15



ii. dark matter in galaxies

The evidence for dark matter gradually mounted throughout the 20th century, and by
now we are convinced that our universe is filled with dark matter at various scales.
Note that all evidence for dark matter is of gravitational origin; non-gravitational
evidence is yet to be discovered.
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We can identify four key revolutions in the history of dark matter:
1. dark matter is first mentioned by Kapteyn;
2. dark matter is found in the Coma cluster by Zwicky;
3. dark matter is found in spiral galaxies by Rubin & Ford; and
4. dark matter is found at cosmological scales by many.
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ii. dark matter in galaxies

It was Hubble that set in 1936 the main scheme for the classification of galaxies in the
universe.

[in Baudis ’12]

The (revised) Hubble sequence contains:

� ellipticals: smooth and spheroidal

� spirals: disk-like with spiral arms

� lenticulars: smooth and disk-like

� irregular: lack of symmetry

Our Galaxy is an SBb.

[Credit: Brunier / NASA]
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ii. dark matter in ellipticals

Many ellipticals were found to shine in X rays, pretty much like clusters of galaxies.
This is evidence for hot gas emitting bremsstrahlung, and the measured density and
temperature profiles can be used to track the total mass.

Mtot(< r) = �
kBTg r

G�mH

�
d ln �g

d ln r
+
d ln Tg

d ln r

�

[Fabricant & Gorenstein ’83]

Perhaps the most notable example is M87, where Mtot(< 300 kpc) = 3� 1013 M�, or
M=L = 750M�=L�. Dark matter contributes > 99% of the mass budget of this giant
elliptical.

Other evidence for dark matter from galaxies: [see e.g. Bertone+ ’04]

� kinematics of ellipticals

� kinematics of Magellanic stream

� lensing by ellipticals

� lensing of distant galaxies
() 18
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ii. dark matter in spirals

Let us start the journey in our sister galaxy Andromeda (or M31), the closest spiral.

[Credit: Poole]
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ii. dark matter in spirals

The kinematics of an object is a prime tool to learn about its mass.

[Yates & Garden ’89] Kinematic measurements can be obtained through the Doppler shift of
spectral lines.

∆� = � vlos
c
�0

In a seminal article from 1939, Horace Babcock used emission and
absorption gas lines to study the rotation of Andromeda.

He found surprisingly high velocities across the galactic plane...
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ii. dark matter in spirals

... and correspondingly large mass-to-light ratios.

However, a confirmation of this hint had to wait for over 3 decades.
() 22



ii. dark matter in spirals

In 1970, Vera Rubin and Kent Ford measured H� shifts across Andromeda.

They found a flat rotation curve up to 24 kpc, way beyond the luminous matter:

This paper was the turning point for the dark matter paradigm. Soon afterwards, the
same result was confirmed by 21 cm line observations (Rogstad & Shostak ’72).
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ii. dark matter in spirals

The 1970s and 1980s witnessed a steady growth in the number of spirals with flat
rotation curves. Several authors contributed to this effort...

() 24



ii. dark matter in spirals

The kinematics of an object is a prime tool to learn about its mass.

[Yates & Garden ’89]
The kinematics of Andromeda has been studied since the
1930s through the Doppler shift of spectral lines.

∆� = � vlos
c
�0

[Babcock ’39, Rubin & Ford ’70, Freeman ’70, Rogstad & Shostak ’72, Bosma ’78, Rubin+ ’80, ’82, ’85]
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ii. dark matter in spirals

The kinematics of an object is a prime tool to learn about its mass.

[Yates & Garden ’89]
The kinematics of Andromeda has been studied since the
1930s through the Doppler shift of spectral lines.

∆� = � vlos
c
�0

[Babcock ’39, Rubin & Ford ’70, Freeman ’70, Rogstad & Shostak ’72, Bosma ’78, Rubin+ ’80, ’82, ’85]

Under Newtonian gravity, a spherical mass induces v2
c =

GM(< r)

r
.

The rotation provided by the visible mass falls off as vc / 1=
p
r at large r . A flat

rotation curve implies� a dark matter halo with M(< r) / r .

� Modifications of gravity at galactic scales are also feasible. [Milgrom x3 ’83]() 25



ii. dark matter in spirals

Let us go one step back to Newton’s laws. Consider the motion of a test particle
under the influence of a point mass (e.g., the Sun-Earth system). The gravitational
potential per unit mass reads

� = �
GM

r
:

The force per unit mass acted upon the particle in a circular orbit is

jF j =
v2
c

r
=

d�

dr
=

GM

r2
) v2

c =
GM

r
: circular speed

But a galaxy cannot really be approximated by a point-like distribution of matter.

Homework 4: Spherical body dynamics.
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ii. dark matter in spirals

point-like: v2
c =

GM

r
spherical: v2

c =
GM(< r)

r

We learn that:
1. for a point mass or for M(< r) ' const, vc / r�1=2 (Keplerian fall-off); and
2. vc ' const implies M(< r) / r .

[Begeman+ ’91]

Therefore, the flat rotation curves observed in spiral galaxies indicate M(< r) / r in a
region where the luminous mass enclosed is barely increasing. This is striking evidence
for dark matter.

Note: virtually in no spiral has a Keplerian fall-off been observed, which means we are
not able to actually infer the total mass of these systems...
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ii. dark matter in galaxies
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ii. dark matter in dwarfs

Although they contribute little to the total luminosity, dwarfs are by far the most
abundant galaxies in the universe. They usually fall in the categories of dwarf
irregulars (dIrr), dwarf ellipticals (dE) or dwarf spheroidals (dSph).

Just in the Local Group there are over 100 dwarfs, 49 of which are satellites of our
own Galaxy. These are very faint objects, usually detected at high latitudes where the
emission of the Milky Way is less problematic. It is highly likely that more dwarfs are
discovered over the next years.

[McConnachie ’14]
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ii. dark matter in dwarfs

The variety of existing dwarf galaxies is rather remarkable.

[adapted from McConnachie ’14]
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ii. dark matter in dwarfs

The variety of existing dwarf galaxies is rather remarkable.

[adapted from McConnachie ’14]

[By ESO/S. Brunier (ESO) [CC BY 4.0
(http://creativecommons.org/licenses/by/4.0)],

via Wikimedia Commons]
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ii. dark matter in dwarfs

The variety of existing dwarf galaxies is rather remarkable.

[adapted from McConnachie ’14]
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ii. dark matter in dwarf spheroidals

Apart from the Magellanic Clouds, all Milky Way satellites are dwarf spheroidals
(dSph), several of which have been discovered in the last year or so.

[Drlica-Wagner et al ’15]

Fact sheet of Milky Way dSph:
rh ' 20� 1000 pc D� ' 20� 200 kpc
Mtot ' 105 � 108 M� M? ' 102 � 107 M� Mgas ' 0

What is so special about dSph? It turns out that are the most dark matter dominated
objects in the universe.() 31
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ii. dark matter in dwarf spheroidals

Let us see how to derive the dark matter content of a dwarf spheroidal. Since these
objects are collisionless, in equilibrium and roughly spherical, the Jeans equations
simplify to

1

�

d(��2
r )

dr
+

2��2
r

r
= �

d�

dr
= �

GM(< r)

r2
;

where � is the density of stars, �2
r the radial velocity dispersion and � = 1� �2

�=�
2
r is

the anispotropy parameter. For � = const, we can solve for �2
r as

��2
r = Gr�2�

Z
1

r

ds s2��2�(s)M(< s) :

Now, the observables are the projected stellar density I (R) and the projected
line-of-sight velocity dispersion �2

p , which are related with the mass modelling through:

I�2
p = 2

Z
1

R

dr

�
1 � �

R2

r2

�
��2

r rp
r2 � R2

:

1. Measure I (R) and �p(R).

[Drlica-Wagner et al ’15] [Walker+ ’09]
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3. Fix � and the parameters of your mass model to compute M(< r).

4. Infer ��2
r using �(r) and M(< r).

5. Fit I�2
p and find the best-fit parameters of the mass model.
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�=�
2
r is

the anispotropy parameter. For � = const, we can solve for �2
r as

��2
r = Gr�2�

Z
1

r

ds s2��2�(s)M(< s) :

Now, the observables are the projected stellar density I (R) and the projected
line-of-sight velocity dispersion �2

p , which are related with the mass modelling through:

I�2
p = 2

Z
1

R

dr

�
1 � �

R2

r2

�
��2

r rp
r2 � R2

:

1. Measure I (R) and �p(R).

2. Infer �(r) from I (R) (Abel integral). [see Binney & Tremaine ’08]

3. Fix � and the parameters of your mass model to compute M(< r).

4. Infer ��2
r using �(r) and M(< r).

5. Fit I�2
p and find the best-fit parameters of the mass model.
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ii. dark matter in dwarf spheroidals

Let us see how to derive the dark matter content of a dwarf spheroidal. Since these
objects are collisionless, in equilibrium and roughly spherical, the Jeans equations
simplify to
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= �
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= �
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;

where � is the density of stars, �2
r the radial velocity dispersion and � = 1� �2

�=�
2
r is

the anispotropy parameter. For � = const, we can solve for �2
r as

��2
r = Gr�2�

Z
1

r

ds s2��2�(s)M(< s) :

Now, the observables are the projected stellar density I (R) and the projected
line-of-sight velocity dispersion �2

p , which are related with the mass modelling through:

I�2
p = 2

Z
1

R

dr

�
1 � �

R2

r2

�
��2

r rp
r2 � R2

:

[Geringer-Sameth+ ’14]

[see Lecture by Calore for indirect detection prospects of dSph]
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ii. dark matter in galaxies

It was Hubble that set in 1936 the main scheme for the classification of galaxies in the
universe.

[in Baudis ’12]

The (revised) Hubble sequence contains:

� ellipticals: smooth and spheroidal

� spirals: disk-like with spiral arms

� lenticulars: smooth and disk-like

� irregular: lack of symmetry

Our Galaxy is an SBb.

[Credit: Brunier / NASA]
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