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Perturbative expansion of the R-ratio

The R-ratio is defined as
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R =
oete” — ptu~)

At lowest order in perturbation theory (PT)
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Since common factors cancel in numerator/denominator, to lowest order

one finds
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The R-ratio: perturbative expansion

First order correction

virtual m\éﬁ M

Real and virtual do not interfere since they have a different # of particles.
The amplitude squared becomes
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A1) = Ao + s (AL + 2Re{Ao 4] }) + O(a?)  as= 7"

Integrating over phase space, the first order result reads

Ry = Ry (1 O‘S)
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R-ratio and UV divergences

To compute the second order correction one has to compute diagrams
like these and many more

=, e e

One gets

’ M3 _
Ry = Ry (1 s (Q_) <C+7Tb()1n UV)) o 1IN — dn T

Ultra-violet divergences do not cancel. Result depends on UV cut-off.



Renormalization

Loop corrections in QCD are (often) divergent. Divergences originate
from regions of very large momenta

p—k
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QCD is a renormalizable theory. This means that that one can
|. regularize the divergence (e.g. using dimensional regularization)

d4k _ lu2€d4—26k,

2.absorbe all UV divergences into a universal redefinition of a finite
number of the bare parameters of QCD



Renormalization and running coupling

For the R-ratio, the divergence is dealt with by renormalization of the
coupling constant

are M2 are 2
() = aP*™ + by In ,uiv (oz? )

R expressed in terms of the renormalized coupling is finite

R =R, (1 + %75“) + (Oé‘:(f)f <c+7rb0 In g—z> + O(ai’(u)))

Renormalizability of the theory guarantees that the same redefinition of the
coupling removes all UV divergences from all physical quantities (massless case)

Renormalization achieved by replacing bare masses and the bare coupling
with renormalized ones. Masses and coupling become dependent on the
renormalization scale. The dependence is fully predicted in pQCD
* the coupling = [3 function
* the masses = anomalous dimensions ynm
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The beta-function
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The renormalized coupling is

2
MUV (Oébare)2

@S(M) — a];are + bp In qu S

So, one immediately gets

B = —boo;(p) + ...

Integrating the differential equation one finds at lowest order
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More on the beta-function

Roughly speaking:
(a) quark loop vacuum polarization diagram gives a negative contribution
to bo ~ - 2n¢/127

(o

(2)

(b) gluon loop gives a positive contribution to bo ~ | INc /127
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(b) By< O
Since (b) > (a) = boocp>0 - | "
= overall negative beta-function in QCD . BysT
While in QED (b) =0 => booep < 0 A TS
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More on the beta-function

« QCD: perturbative picture valid for scales u >> Aqcp (about 300 MeV)

« QED: perturbative picture valid for scales u << Aqep

Question: why does nobody talk about Aqep!?




More on the beta-function

« QCD: perturbative picture valid for scales u >> Aqcp (about 300 MeV)

« QED: perturbative picture valid for scales u << Aqep

Question: why does nobody talk about Aqep!?

Answer:

1
2bga(me)

AQED = M €XP { } ~ 1090G6V >> Mpianck

(Note that the fact that QED is not a consistent theory up to very high
scales implies that it must be an effective theory)



Back to the QCD beta-function

Perturbative expansion of the beta-function:
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6] B function of QCD with three light flavours
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* nf is the number of active flavours (depends on the scale)
* today, the beta-function known up to five loops, but only first two
coefficients are independent of the renormalization scheme



Active flavours & running coupling

The active field content of a theory modifies the running of the couplings
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Constrain New Physics by measuring the running at high scales?



Renormalization Group Equation

Consider a dimensionless quantity A, function of a single scale Q.The
dimensionless quantity should be independent of Q. However in quantum
field theory this is not true, as renormalization introduces a second scale
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Renormalization Group Equation

Consider a dimensionless quantity A, function of a single scale Q.The
dimensionless quantity should be independent of Q. However in quantum
field theory this is not true, as renormalization introduces a second scale

But the renormalization scale is arbitrary. The dependence on it must cancel
in physical observables up to the order to which one does the calculation.

So, for any observable A one can write a renormalization group equation
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Renormalization Group Equation

Consider a dimensionless quantity A, function of a single scale Q.The
dimensionless quantity should be independent of Q. However in quantum
field theory this is not true, as renormalization introduces a second scale

But the renormalization scale is arbitrary. The dependence on it must cancel
in physical observables up to the order to which one does the calculation.

So, for any observable A one can write a renormalization group equation

4 )

0 Jdag O Q2
2 | 2 i Al =— s Z —
] 5 ] 5 J ( 5, O (,u )) 0

\_ J

Oag
Qs = O‘S(/ﬂ) Blas) = Mz e

Scale dependence of A enters through the running of the coupling:
knowledge of A(1, a,(Q?)) allows one to compute the variation of A with

Q given the beta-function
|2



Measurements of the running coupling

Summarizing:

* overall consistent picture: &s from very
different observables compatible

® (Xsis not so small at current scales

* (s decreases slowly at higher energies
(logarithmic only)

* higher order corrections are and will

remain important

World average

as(Mgo) = 0.1184 £ 0.007
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Measurements of the running coupling

* Why is the determination of & from
t-decays so accurate!

* Why is the determination of & from
the four-jet rate so accurate!

World average

as(Mgo) = 0.1184 £ 0.007
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The two faces of QCD

A
o i
S ! OLS ~| )
/ distance~|/energy
Confinement asymptotic freedom
(large distance) (short distance)

NB: no proof of confinement.We simply never observed quarks as free particles

|5



Next

In the following we will concentrate on the perturbative regime of QCD.
Next we’ll discuss generic properties of QCD amplitudes

* Soft-collinear divergences (and how they are dealt with)

* Kinoshita-Lee-Nauenberg theorem

* The concept of infrared finiteness

* Sterman Weinberg jets



The soft approximation

Let’s consider again the R-ratio

2

{

* Leading order result

_olete — hadrons
K= glete — utp- ~Ne ) e

q




The soft approximation

Let’s consider again the R-ratio

q

2

We have seen a good agreement between
the leading order result and data, but
there are various unanswered questions

* Since free quarks do not exist, why is
the leading order result so good!?

* In particular, why can one identify the
cross-sections for the production of
quarks to that of hadrons!?

* Can one probe QCD further by
testing more exclusive observables?



Quark-hadron duality

The reliability of parton-level calculations to describe hadron-level
observables is known as quark-hadron duality.

This duality relies on the time separation between a hard scattering (partons
are produced) and a soft process (quarks hadronize). Since the two processes
happen at very different time-scales there is not quantum interference and
the soft process does not alter the hard momentum flow “too much”

With this in mind, let’s apply the parton description and look for a better
approximation of R, i.e. let’s compute QCD corrections, at least in some
approximation



The soft approximation

QCD corrections are only in the final state, i.e. corrections to 7" — ¢q

At leading order: D1

Mg = u(p1)(—iev")v(p2)

P2

20



The soft approximation

QCD corrections are only in the final state, i.e. corrections to 7" — ¢q

At leading order: D1

M§ = a(p1)(—iex")v(p2)

Emit one gluon: D2
My = alp)(-igt"9) D e )olp)
i(p2— k)

b alp)(—ier) P D gt o)

P2 — k)Q
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The soft approximation

QCD corrections are only in the final state, i.e. corrections to 7" — ¢q

At leading order: D1

M§ = a(p1)(—iex")v(p2)

Emit one gluon: P2

_ -~ Lan Pt .
My = alp)(-iget"d) LD e o) o
o — ey k,e
b alp)(-ier") (22 (gt (po)
D2
Consider the soft approximation: k < p1, p2 = factorization of

soft part (crucial
MM

. o € €
= a(py) (—ier™) (—igst®)v(ps)) (plk - p2k> for resummed
pit P2 calculations)
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Soft divergences

The squared amplitude becomes

‘M5§g|2 - Z

pol

— |chi’20F9§

ik p2k

w(p1) ((—iey")(—igst®)v(ps2)) (E B %) ‘2

2p1p2
(p1k)(p2k)

The above is a Lorentz-invariant amplitude. Go to the centre-of-mass frame:

21



Soft divergences

The squared amplitude becomes

|Mc/fcig‘2 - Z

pol

= |Myl°Cry:

2

a(p1) ((—iey™)(—igst®)v(ps)) (W - pQE)

pk  pak

2p1p2
(p1k)(p2k)

Including phase space, in this frame, in terms of energy and angle of the
gluon one contains

d°k 2p1p2
ddgqq| Mygel® = dgql Myql” 2w(2m)3 Crg, (p1k)(p2k)

dgb QOCSCF 1

2w w?(1 — cos? )

= dyq|M,|*wdwd cos 0

22



Soft divergences

The squared amplitude becomes

|Mc/fcig‘2 - Z

pol

= |Myl°Cry:

2

a(p1) ((—iey™)(—igst®)v(ps)) (W - pQE)

pk  pak

2p1p2
(p1k)(p2k)

Including phase space, in this frame, in terms of energy and angle of the
gluon one contains

d°k 2p1p2
ddgqq| Mygel® = dgql Myql” 2w(2m)3 Crg, (p1k)(p2k)
do 2a,CR 1

= dyq|M,|*wdwd cos 0

2w w?(1 — cos? )
The differential cross section becomes
200,Cp dw df do

T w sin @ 27

doqgg = dogg

22



Soft & collinear divergences

Cross section for producing a qg-pair and a gluon is infinite (IR divergent)

200,Cp dw df do

T w sin@ 2w

do qqg — do qq

w —0: soft divergence

O — 0: collinear divergence

23



Soft & collinear divergences

Cross section for producing a qg-pair and a gluon is infinite (IR divergent)

200,Cp dw df do

T w sin@ 27

do qqg — do qq

w —0: soft divergence

O — 0: collinear divergence

But the full O(as) correction to R is finite, because one must include a
virtual correction which cancels the divergence of the real radiation

200,Cp dw df do

T w sin@ 27

dgqé,’v ~ _dgqq

23



Soft & collinear divergences

w —0 soft divergence: the four-momentum of the emitted particle

approaches zero, typical of gauge theories, even if matter (radiating
particle) is massive

O — 0 collinear divergence: particle emitted collinear to emitter.
Divergence present only if all particles involved are massless

NB: the appearance of soft and collinear divergences discussed in the
specific contect of e'e” = qq are a general property of QCD

24



Infrared finiteness

Cancellation of IR divergences in R is not a miracle. It follows directly from
unitarity provided the measurement is inclusive enough

-
M\W\é % i

| L oop integration

——r P g

In the infrared region real and virtual are kinematically equivalent but for a
(-1) from unitarity

PS integration

Compute and regulate real and virtual separately, until a cancelation of
divergences is achieved



KLN Theorem

Kinoshita-Lee-Nauenberg theorem: Infrared singularities in a massless
theory cancel out after summing over degenerate (initial and final) states

hard hard + soft gluon 2 collinear partons

Physically a hard parton can not be distinguished from a hard parton plus a
soft gluon or from two collinear partons with the same energy.They are

degenerate states.
Hence, one needs to add them to get a physically sound observable



Infrared safety (= finiteness)

So, the R-ratio is an infrared safe quantity.

In perturbation theory one can compute only IR-safe quantities, otherwise
get infinities, which can not be renormalized away (why not...?)

So, the natural questions are:

* are there other |IR-safe quantities!?
* what property of R guarantees its |IR-safety?

27



Sterman-VWVeinberg jets

First formulation of cross-sections which are finite in perturbation theory
and describe the hadronic final state

Introduce two parameters € and 0O:
a pair of Sterman-VWeinberg jets are

two cones of opening angle O that
contain all the energy of the event
excluding at most a fraction ¢ . / ]

B +E+Es< el

28



Sterman-VWVeinberg jets

First formulation of cross-sections which are finite in perturbation theory
and describe the hadronic final state

Introduce two parameters € and 0O:
a pair of Sterman-VWeinberg jets are

two cones of opening angle O that
contain all the energy of the event
excluding at most a fraction ¢ .

Why finite! the cancelation between
real and virtual is not destroyed in
the soft/collinear regions

B +E+Es< el

28



Sterman-VWVeinberg jets

Let’s compute the O(as) correction to the Sterman-VWeinberg jet cross-
section in the soft-collinear approximation

a) We have a Born term os which is completely within the Sterman-

Weinberg jet definition: since there are only two quarks they keep all the
energy inside the cones

9




Sterman-VWVeinberg jets

Let’s compute the O(as) correction to the Sterman-VWeinberg jet cross-
section in the soft-collinear approximation

b) We have a virtual term which is also completely within the Sterman-
Weinberg jet definition (only two quarks)

5

' E di, /” dcosB
0

jet,virt 58S
G] . _CF — Oborn / |
. Jo Lo Jc

§
| —cos-6

30



Sterman-VWVeinberg jets

Let’s compute the O(as) correction to the Sterman-VWeinberg jet cross-
section in the soft-collinear approximation

c) We have a real term: the emitted gluon can be emitted also outside the

jet provided it carries only little energy, or..

jet,real,c

3
83
— CF — Oborn

31
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Sterman-VWVeinberg jets

Let’s compute the O(as) correction to the Sterman-VWeinberg jet cross-
section in the soft-collinear approximation

d) .. or it can carry a considerable fraction of energy provided it is emitted
inside the cones

1°>¢E q
V<0
e’ e

- S Edly [ ® dcos8 T dcos
jet,real,d 8s CLL() d COS d COS
G] =CF F Oborn / : +
2 ' Jo .

e lop |Jo 1—cos?20  Jrz_s1—cos26

Ol
oF
~—
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Sterman-VWVeinberg jets

Adding all the contributions, the Sterman-Weinberg jet cross-section up to
O(X;s) in the soft-collinear approximation is given by

20,C
o1 = 0y (1—|— a F1n61n52>
/ T \
Effective expansion Xs-expansion enhanced by
parameter in QCD is a double log: left-over from
often X;Cr/7t not (s real-virtual cancellation

* if more gluons are emitted, one gets for each gluon
- a power of 0;Cr/nt
- a soft logarithm Ine
- a collinear logarithm Ino
* if £ and/or 0 become too small the above result diverges
e if the logs are large, fixed order meaningless, one needs to resum large
infrared and collinear logarithms to all orders in the coupling constant
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Jets

* Jets were discovered in the late 70s in electron-position collision

* They provided the first direct evidence for the gluon (we’ll discuss indirect
evidence later)

* In the 80s and 90s jets provided many other stringent tests of QCD at LEP

* Today jets are one of the powerful tools to look for New Physics at the
LHC

Gluon discovery: 3jet event in ete- High energy di-jet event at CMS




Infrared safety: definition

An observable O is infrared and collinear safe if

On_|_1(]€1,k2, .. .,ki,kj, .. kn) — On(kl,]{ig, .. kz -+ ]Cj, .. kn)

whenever one of the ki/k; becomes soft or ki and k; are collinear

i.e. the observable is insensitive to emission of soft particles or to collinear
splittings

35



Infrared safety: examples

Infrared safe ?

» energy of the hardest particle in the event

» multiplicity of gluons

» momentum flow into a cone in rapidity and angle

» cross-section for producing one gluon with E > Emin and 8 > O

) jet cross-sections

Only for infrared safe quantities is a comparison of data and theory well
defined to all orders in perturbation theory

36
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Infrared safe ?

» energy of the hardest particle in the event NO
» multiplicity of gluons NO
» momentum flow into a cone in rapidity and angle YES

» cross-section for producing one gluon with E > Enin and 8 > Bin NO

) jet cross-sections
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Infrared safety: examples

Infrared safe ?

» energy of the hardest particle in the event NO
» multiplicity of gluons NO
» momentum flow into a cone in rapidity and angle YES

» cross-section for producing one gluon with E > Enin and 8 > Bin NO

) jet cross-sections DEPENDS

Only for infrared safe quantities is a comparison of data and theory well
defined to all orders in perturbation theory
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Other IR safe quantities

Event shapes: describe the shape
of the event, but are largely
insensitive to soft and collinear
branching

* widely used to measure as

* measure color factors

e test QCD

* learn about non-perturbative
physics

Typical Value for:

Name of Definition QCD
Observable calculation
| 2| piri] | . s fresummed)
Thrust T=max |[———| I >/3 >1/2 1
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p) 2 v N ~\J/ 2
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Example: spin of the gluon
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Thrust distribution at LEP

Vector gluon
Scalar




Example: non-abelian nature of QCD

Abelian
contribution
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39



Example: fits of colour fators

| | - L L L] l L] L} L L

l L] | . L) l L]

25 F
3 SU(S)
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PUS) g "\ OPALN :
/ X DELPHIFF 1
1.5 ]
C ) !
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i ALEPH 4ja~ 77/ 7 i
e/ 4 |
0.5 & .
i 90% CL ervor ellipses
" i 1 ... 1 L n 1 =1=3 L i ‘
(] 1 2 3 4 5 6
“
L,

40

Fits of colour factors from 4-jet
rates and event shapes

s

Ca=2.89+021
Cpr = 1.30 %+ 0.09

Well compatible with QCD:




Recap

In this lecture we have first discussed the UV behaviour of QCD
* discussed renormalisation of UV divergences
* introduced the running of the coupling constant and the beta-function
(in QED and QCD)
* discussed measurements of the coupling constant

We then moved to discuss the infrared behaviour of QCD

* we have seen that soft and collinear divergences arise universally in
QCD calculations

* these divergences cancel in e*e” observables in inclusive observables
(KLN theorem)

* we have performed a first genuine QCD calculation: the cross-section
for Sterman Weinberg jets in e*e” collisions

* perturbative QCD can be used to compute jet-cross section and other
infrared-safe event shape variables

* comparison of theory and calculations provide stringent tests of QCD
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Next

Processes with partons in the initial state

42




