Introduction to quantum computing and simulability

Demonstrating a quantum advantage I

Daniel J. Brod
Leandro Aolita
Ernesto Galvão
Outline: Demonstrating a quantum advantage I

- Introduction and motivation;
- Linear optics;
 - Linear optics with bosons and fermions;
- BosonSampling;
- Random quantum circuits;
Review: **postBPP** and **postBQP**

- Postselection: The ability to condition acceptance on some particular (not-impossible) event, no matter how unlikely.
Review: postBPP and postBQP

- postBPP lives inside PH (in the 3rd level)
- postBQP lives outside PH!*

* Fine-print: actually, P^postBQP lives outside PH
Recipe for demonstrating quantum advantage

1 - Take a restricted model of quantum computing \(A \). e.g. circuits of commuting gates or linear optics

2 - Give it postselection, and see what comes out. (call it \text{postA})

3 - If \(A \) + post-selection includes quantum computing, then \text{postA} = \text{postBQP}

4 - Suppose there is a classical algorithm to efficiently simulate \(A \) (i.e. sample from same distribution). Then \text{postA} \subseteq \text{postBPP}.

5 - But then \text{postBQP} \subseteq \text{postBPP} and \text{PH} collapses!
Quantum advantage (AKA “quantum supremacy”)

• Show a quantum computer doing something a classical computer cannot.
 • Even if that “something” does not have any clear applications!

• Task: simulate some restricted quantum circuit;

 Weak but exact simulation!

• Postselection argument: there is no efficient classical algorithm for this, otherwise PH collapses; 😃

• Bad news: a realistic quantum device can’t do it either! 😞
Outline: Demonstrating a quantum advantage

- Introduction and motivation;
- Linear optics;
 - Linear optics with bosons and fermions;
- BosonSampling;
- Random quantum circuits;
Linear optics: states

- System of m bosonic **modes** described by creation operators:
 \[
 \{ a_i^\dagger \}_i = 1, \ldots m
 \]

- where
 \[
 [a_i, a_j^\dagger] = \delta_{ij} \\
 [a_i, a_j] = 0 \\
 a_i \langle \rangle = 0
 \]
 Vacuum state

- n-boson states:
 \[
 |S\rangle = |s_1, s_2, \ldots s_m\rangle = \frac{(a_1^\dagger)^{s_1} (a_2^\dagger)^{s_2} \ldots (a_m^\dagger)^{s_m}}{\sqrt{s_1!s_2!\ldots s_m!}} | \rangle
 \]
Linear optics: dynamics

- Linear-optical transformations (or interferometers):

\[U \in SU(m) \implies a_i \mapsto \sum_{j=1}^{m} U_{ij} a_j \]

- Very restricted set of operations!
 - The state space for \(n \) photons in \(m \) modes has dimension \(\binom{m+n-1}{n} \)
 - Also: not universal for QC!

- Alternative (Hamiltonian) characterization:

\[H = \sum_{ij} h_{ij}(a_i a_j^\dagger + a_j a_i^\dagger) \]
Linear optics: dynamics

- Elementary two-mode linear-optical transformations:

 Beam splitter: \[
 \begin{pmatrix}
 \cos \theta & i \sin \theta \\
 i \sin \theta & \cos \theta
 \end{pmatrix}
 \]

 Phase shifter: \[
 \begin{pmatrix}
 1 & 0 \\
 0 & e^{i\phi}
 \end{pmatrix}
 \]
Linear optics: dynamics

- Any m-mode interferometer can be written as a circuit:
Linear optics: example (HOM effect)

- Consider a 50:50 (or balanced) beam splitter

\[U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \]

- If one photons enters it...

Input: \[|10\rangle = a_1^\dagger |\rangle \]

Output: \[\frac{1}{\sqrt{2}} (a_1^\dagger + i a_2^\dagger) |\rangle \]

\[= \frac{1}{\sqrt{2}} (|10\rangle + i|01\rangle) \]
Linear optics: example (HOM effect)

• Consider a 50:50 (or balanced) beam splitter

\[U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \]

• Now if two photons enter…

Input: \[|11\rangle = a_1^\dagger a_2^\dagger | \rangle \]

Output: \[\frac{1}{2}(a_1^\dagger + ia_2^\dagger)(ia_1^\dagger + a_2^\dagger)| \rangle \]

\[= \frac{i}{\sqrt{2}}(|20\rangle + |02\rangle) \]

Hong-Ou-Mandel effect!
Linear optics

- If we had a general 2-mode transformation:

\[U = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \]

- Two photons enter; what is the probability they leave separately?

Input: \[|11\rangle = a_1^\dagger a_2^\dagger |\rangle \]

Output: \[(aa_1^\dagger + ba_2^\dagger)(ca_1^\dagger + da_2^\dagger)| \rangle \]

\[= (ad + bc)|11\rangle + |\text{collision terms}\rangle \]
Linear optics

- If we had a general 2-mode transformation:

\[U = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \]

- Probability of outcome \(|11\rangle\):

\[\Pr(11) = |ad + bc|^2 = \left| \text{Per} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right|^2 \]

\[\text{Per}(A) = \sum_{\sigma \in S_m} \prod_{i=1}^{m} a_{i,\sigma(i)} \]
Side note: Fermionic “linear optics”

- What if we had **fermions**, rather than bosons?

\[
U = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
\]

Bosons

\[
[a_i, a_j^\dagger] = \delta_{ij}
\]

\[
\text{Per} \begin{pmatrix} a & b \\ c & d \end{pmatrix}
\]

Fermions

\[
\{f_i, f_j^\dagger\} = \delta_{ij}
\]

\[
\text{Det} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = 1
\]
Side note: Fermionic “linear optics”

- What if we had **fermions**, rather than bosons?

\[U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \]

- **HOM effect**
- **Pauli exclusion principle**
Linear optics

• General n-photon m-mode interferometer U:

* from now on: no-collision inputs/outputs
Linear optics

- Transition between two (no-collision) states.

\[|S\rangle \rightarrow |T\rangle \]

- Probability:

\[\Pr_{S\rightarrow T} = |\text{Per}(U_{S,T})|^2 \]

\(U_{S,T} \) : submatrix of \(U \) with rows/columns chosen according to \(S \) and \(T \)
Linear optics

Example:

Input: $|S\rangle = |110\rangle$

Output: $|T\rangle = |011\rangle$

Interferometer:

$U = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$

$U_{S,T} = \begin{pmatrix} d & e \\ g & h \end{pmatrix}$

$Pr_{S\rightarrow T} = |dh + ge|^2$
Side note: Fermionic linear optics II

Transition: $|S\rangle \rightarrow |T\rangle$

Bosons: $\Pr_{S \rightarrow T} = |\text{Per}(U_{S,T})|^2$

Fermions: $\Pr_{S \rightarrow T} = |\text{Det}(U_{S,T})|^2$

Permanent and determinant are similar, but in terms of complexity, they are **very** different!
Outline: Demonstrating a quantum advantage I

• Introduction and motivation;
• Linear optics;
 • Linear optics with bosons and fermions;
• BosonSampling;
• Random quantum circuits;
BosonSampling

• It is not hard to show that

\[
\text{Linear optics + postselection} = \text{postBQP}
\]

This outcome happens \(2/27\) of the times

\[
|00\rangle \rightarrow |00\rangle \\
|01\rangle \rightarrow |01\rangle \\
|10\rangle \rightarrow |10\rangle \\
|11\rangle \rightarrow -|11\rangle
\]
BosonSampling

- It is not hard to show that

 \[
 \text{Linear optics} + \text{postselection} = \text{postBQP}
 \]

 ⇒ Linear optics cannot be simulated on a classical computer!

- But this is about **exact** simulation - a real-world experiment can’t simulate this exactly **either**!

Time to bring out the (complexity-theoretic) big guns!
Consider the following n-photon m-mode experiment:

where $m = O(n^2)$ and U is some uniformly-random matrix.
BosonSampling

- BosonSampling **task**: sample from that n-photon distribution;
 - Or in fact any sufficiently close to it!
 - **Not** a decision problem!

Theorem [Aaronson and Arkhipov]

If there was a classical algorithm capable of sampling efficiently from some distribution D' such that

$$|D - D'| < \delta$$

in time $\text{poly}(n, 1/\delta)$, the polynomial hierarchy (PH) would collapse to its 3rd level!
BosonSampling

- Outline of result:
 1. Probabilities = permanents of submatrices of a random matrix;

\[
\begin{pmatrix}
\text{Uniform random } U
\end{pmatrix}
\]

Submatrices look like independent Gaussian matrices
BosonSampling

- Outline of result:
 1. Probabilities = permanents of submatrices of a random matrix;
 2. **Permanent-of-Gaussian conjecture**;

Fact: Permanent is $\#P$-hard in the worst case.

Conjecture: Gaussian matrices are among the hardest Permanents to compute;

Plausible conjecture that has **nothing** to do with linear optics!
BosonSampling

• Outline of result:

1. Probabilities = permanents of submatrices of a random matrix;

2. **Permanent-of-Gaussian conjecture**;

3. A classical simulation that samples from a distribution very close to the ideal one must get many of these **#P-hard** probabilities right!

4. Another minor conjecture + 90 pages of complexity-theoretic cannons shooting at the problem…

5. If an efficient classical simulation for approximate BosonSampling existed, **PH** would collapse to the 3rd level!
BosonSampling

- Some additional comments:
 - Result does **not** mean linear optics can compute permanents!
 - $m=O(n^2)$ means no-collision outcomes vastly more likely.
 - Randomness of U avoids structures that classical algorithms could "exploit".
 - This sampling task has no known applications;
 - Except as a “demonstration of force” by quantum devices 😊
 - Best known classical algorithm takes time $O(n \ 2^n)$;
BosonSampling: pros and cons

• Cons
 • No error-correction, so it is unclear whether experiments could be performed to this level of accuracy!
 • Hard to verify that device is doing what it should;
 • Leandro has more to say about this!

• Pros
 • Much “easier” to implement than universal quantum computation;
 • Doesn’t require nonlinearities or adaptive measurements;
 • ~ 50-90 photon experiment?
 • New insights into foundations of q. computing and q. optics;
First experiments

• Four small-scale experiments reported in December 2012.
First experiments

- Four small-scale experiments reported in December 2012.
A zoo of intermediate quantum models

- Many other similar “quantum supremacy” results!
 - IQP; [BJS]
 - Constant-depth quantum circuits [TD]; These predate BosonSampling
 - Quantum approximate optimization algorithms; [Farhi, Harrow]
 - A version of the 1-clean-qubit model; [Morimae, Fujii, Fitzsimmons]
 - Generalized Clifford circuits [JVdN]
 - Random quantum circuits;
 - And more!
Outline: Demonstrating a quantum advantage I

- Introduction and motivation;
- Linear optics;
 - Linear optics with bosons and fermions;
- BosonSampling;
- Random quantum circuits;
Random quantum circuits

- Google’s Quantum AI Lab + John Martini’s group at UCSB
 - Another way to demonstrate the power of quantum computers.
- Meet Google’s 72-qubit quantum processor: Bristlecone!

 ![Image: Google AI blog]

- Goal: Demonstrate “Quantum advantage” on 72 qubits! (…soon)
The random quantum circuit model
The random quantum circuit model

- But what is known about the complexity of simulating this?
- Aaronson and Chen [Dec ’16]
 - Task: “Given as input a random quantum circuit C, generate a set of outputs such that at least 2/3 of them have above-median probability in the output distribution of C.”

Generate a list of samples where $\geq 2/3$ of them are among those above this height;
The random quantum circuit model

- But what is known about the complexity of simulating this?
- Aaronson and Chen [Dec ’16]
 - Task: “Given as input a random quantum circuit \(C \), generate a set of outputs such that at least 2/3 of them have above-median probability in the output distribution of \(C \);”
 - Needs one further conjecture (similar to permanent-of-Gaussians in BosonSampling);
- Bouland, Fefferman, Nirkhe and Vazirani [March ’18!]
 - Made a major step towards improving the status of the required conjectures.
The random quantum circuit model

- But what is known about the complexity of simulating this?
 - Aaronson and Chen [Dec ’16]
 - Task: “Given as input a random quantum circuit \(C \), generate a set of outputs such that at least 2/3 of them have above-median probability in the output distribution of \(C \);"
 - Needs one further conjecture (similar to permanent-of-Gaussians in BosonSampling);
 - Bouland, Church, Hermann, Nirkhe and Vazirani [March ’18!]
 - Made a major step towards improving the status of the required conjectures.

Next episode:
Neat idea! Let’s build one already, what’s taking so long?