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Outline: Demonstrating a quantum advantage I

• Introduction and motivation; 

• Linear optics; 
• Linear optics with bosons and fermions; 

• BosonSampling; 

• Random quantum circuits;



• Postselection: The ability to condition acceptance on some 
particular (not-impossible) event, no matter how unlikely.

Review: postBPP and postBQP
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Review: postBPP and postBQP
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postBPP 
lives inside 

PH (in the 3rd 
level)

postBQP 
lives outside 

PH!*

* Fine-print: actually, PpostBQP 

lives outside PH 



Recipe for demonstrating quantum advantage

1 - Take a restricted model of quantum computing A. 
e.g. circuits of commuting gates or linear optics

2 - Give it postselection, and see what comes out. 
(call it postA)

3 - If A + post-selection includes quantum computing, 
then postA = postBQP

4 - Suppose there is a classical algorithm to efficiently 
simulate A (i.e. sample from same distribution). 

Then postA ⊆ postBPP.

5 - But then postBQP ⊆ postBPP and PH collapses! 



Quantum advantage (AKA “quantum supremacy”)

• Show a quantum computer doing something a classical 
computer cannot. 
• Even if that “something” does not have any clear applications! 

• Task: simulate some restricted quantum circuit; 

• Postselection argument: there is no efficient classical algorithm 
for this, otherwise PH collapses; ☺️ 

• Bad news: a realistic quantum device can’t do it either! ☹️

Weak but exact simulation!

i.e. nonuniversal 
(e.g. IQP, Linear optics)
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Linear optics: states

• System of m bosonic modes described by creation operators: 

• where 

• n-boson states:

{a†
i }i=1,…m

|S⟩ = |s1, s2, …sm⟩ = (a†
1)s1 (a†

2)s2…(a†
m)sm

s1!s2!…sm!
| ⟩

ai| ⟩ = 0

[ai, a†
j ] = δij

[ai, aj] = 0

Vacuum state



Linear optics: dynamics

• Linear-optical transformations (or interferometers): 

• Very restricted set of operations! 

• The state space for n photons in m modes has dimension 

• Also: not universal for QC!  

• Alternative (Hamiltonian) characterization:  

U ∈ SU(m) ai ↦
m

∑
j=1

Uij aj⇒

H = ∑
ij

hij(aia†
j + aja†

i )

(m + n − 1
n )



Linear optics: dynamics

• Elementary two-mode linear-optical transformations:

Beam splitter

( cos θ i sin θ
i sin θ cos θ )
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Linear optics: dynamics

• Any m-mode interferometer can be written as a circuit:

m
n

U



Linear optics: example (HOM effect)

• Consider a 50:50 (or balanced) beam splitter 

• If one photons enters it…

U =
1

2 (1 i
i 1)

|10⟩ = a†
1 | ⟩

1

2
(a†

1 + ia†
2 ) |⟩

Input:

Output:
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n

U

m
n

U

= 1

2
(|10⟩ + i|01⟩)



Linear optics: example (HOM effect)

• Consider a 50:50 (or balanced) beam splitter 

• Now if two photons enter…

Hong-Ou-Mandel effect!

= i

2
(|20⟩ + |02⟩)

U =
1

2 (1 i
i 1)
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Input:
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Linear optics

• If we had a general 2-mode transformation: 

• Two photons enter; what is the probability they leave separately?

(aa†
1 + ba†

2 )(ca†
1 + da†

2 )| ⟩

= (ad + bc)|11⟩ + |collision terms⟩

U = (a b
c d)

Input:

Output:

|11⟩ = a†
1 a†

2 | ⟩

m
n

U



Linear optics

• If we had a general 2-mode transformation: 

• Probability of outcome        :

Pr(11) = |ad + bc |2

Per(A) = ∑
σ∈Sm

m

∏
i=1

ai,σ(i)

|11⟩

= Per (a b
c d)

2

U = (a b
c d)

m
n

U



Side note: Fermionic “linear optics”

• What if we had fermions, rather than bosons?

Per (a b
c d)

[ai, a†
j ] = δij

Bosons

{fi, f †
j } = δij

Det (a b
c d)

Fermions

= 1

U = (a b
c d)

m
n

U



Side note: Fermionic “linear optics”

• What if we had fermions, rather than bosons?

Bosons Fermions

m
n

U Pauli exclusion principle

m
n

U

HOM effect

U =
1

2 (1 i
i 1)



Linear optics

• General n-photon m-mode interferometer U:

m
n

U

* from now on: no-collision inputs/outputs



Linear optics

• Transition between two (no-collision) states. 

• Probability:

|S⟩ → |T⟩

Pr
S→T

= |Per(US,T) |2

US,T : submatrix of U with rows/columns  
chosen according to S and T

m
n

U



Linear optics

Example:

|S⟩ = |110⟩Input:

|T⟩ = |011⟩Output:

Interferometer:

U =
a b c
d e f
g h i

US,T = (d e
g h)

Pr
S→T

= |dh + ge |2

m
n

U

U



but in terms of complexity, they are 
very different!

Permanent and determinant are similar… 

Side note: Fermionic linear optics II

Bosons:

|S⟩ → |T⟩

Pr
S→T

= |Per(US,T) |2

Transition:

Fermions: Pr
S→T

= |Det(US,T) |2
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• It is not hard to show that 
 

BosonSampling

Linear optics + postselection = postBQP

m
n

U

U

1

1

1

1

This outcome happens  
2/27 of the times

|00⟩ → |00⟩
|01⟩ → |01⟩
|10⟩ → |10⟩
|11⟩ → − |11⟩



• It is not hard to show that 
 

     ⇒ Linear optics cannot be simulated on a classical computer! 

• But this is about exact simulation - a real-world experiment 
can’t simulate this exactly either!

BosonSampling

Linear optics + postselection = postBQP

Time to bring out the (complexity-theoretic) big guns!



• Consider the following n-photon m-mode experiment:  
 
 
 
 
 
 
 
 
 
 
 
where m=O(n2) and U is some uniformly-random matrix.

BosonSampling

m
n

U

m
n

U

p

outcomes

D :



BosonSampling

• BosonSampling task: sample from that n-photon distribution; 

• Or in fact any sufficiently close to it! 

• Not a decision problem!

|D − D′�| < δ

Theorem [Aaronson and Arkhipov] 
If there was a classical algorithm capable of sampling 
efficiently from some distribution    such that 

in time poly(n, 1/ẟ), the polynomial hierarchy (PH) would 
collapse to its 3rd level! 

D′�



BosonSampling

• Outline of result: 

1. Probabilities = permanents of submatrices of a random matrix;

d
g
a
d
4
4
4
4

Uniform  
random  

U

d
g
a
d
4

Submatrices look like  
independent Gaussian matrices



BosonSampling

• Outline of result: 

1. Probabilities = permanents of submatrices of a random matrix; 

2. Permanent-of-Gaussian conjecture;

Fact: Permanent is #P-hard in the worst case. 
Conjecture: Gaussian matrices are among the hardest 
Permanents to compute;   

Plausible conjecture that has nothing 
 to do with linear optics!



BosonSampling

• Outline of result: 

1. Probabilities = permanents of submatrices of a random matrix; 

2. Permanent-of-Gaussian conjecture; 

3. A classical simulation that samples from a distribution very close to 
the ideal one must get many of these #P-hard probabilities right! 

4. Another minor conjecture + 90 pages of complexity-theoretic 
cannons shooting at the problem…  

5. If an efficient classical simulation for approximate BosonSampling 
existed, PH would collapse to the 3rd level!

….

….



BosonSampling

• Some additional comments: 
• Result does not mean linear optics can compute permanents! 

• m=O(n2) means no-collision outcomes vastly more likely. 

• Randomness of U avoids structures that classical algorithms could 
“exploit”.  

• This sampling task has no known applications;  
- Except as a “demonstration of force” by quantum devices ☺ ️

• Best known classical algorithm takes time O(n 2n);



BosonSampling: pros and cons

• Cons 
• No error-correction, so it is unclear whether experiments could be 

performed to this level of accuracy! 

• Hard to verify that device is doing what it should; 

• Leandro has more to say about this! 

• Pros 
• Much “easier” to implement than universal quantum computation; 

• Doesn’t require nonlinearities or adaptive measurements; 

• ~ 50-90 photon experiment? 

• New insights into foundations of q. computing and q. optics;



First experiments

• Four small-scale experiments reported in December 2012.

Brisbane Rome

Oxford Vienna



First experiments

• Four small-scale experiments reported in December 2012.

Brisbane Rome

Oxford Vienna
For more about experiments, 

tune in tomorrow!



• Many other similar “quantum supremacy” results! 
• IQP; [BJS]  

• Constant-depth quantum circuits [TD]; 

• Quantum approximate optimization algorihtms; [Farhi, Harrow] 

• A version of the 1-clean-qubit model; [Morimae, Fujii, Fitzsimmons] 

• Generalized Clifford circuits [JVdN] 

• Random quantum circuits; 

• And more!

• Many other similar “quantum supremacy” results! 
• IQP; [BJS]  

• Constant-depth quantum circuits [TD]; 

• Quantum approximate optimization algorihtms; [Farhi, Harrow] 

• A version of the 1-clean-qubit model; [Morimae, Fujii, Fitzsimmons] 

• Generalized Clifford circuits [JVdN] 

• Random quantum circuits; 

• And more!

A zoo of intermediate quantum models

These predate  
BosonSampling
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Random quantum circuits

• Google’s Quantum AI Lab + John Martini’s group at UCSB  
• Another way to demonstrate the power of quantum computers. 

• Meet Google’s 72-qubit quantum processor: Bristlecone!  
 
 
 
 
 
 

• Goal: Demonstrate “Quantum advantage” on 72 qubits! (…soon)

Image: Google AI blog



The random quantum circuit model



• But what is known about the complexity of simulating this? 

• Aaronson and Chen [Dec ’16] 

• Task: “Given as input a random quantum circuit C, generate a set of 
outputs such that at least 2/3 of them have above-median probability 
in the output distribution of C ”;

The random quantum circuit model

p

outcomes

Generate a list of samples 
where ≥ 2/3 of them are among 

those above this height;



• But what is known about the complexity of simulating this? 

• Aaronson and Chen [Dec ’16] 

• Task: “Given as input a random quantum circuit C, generate a set of 
outputs such that at least 2/3 of them have above-median probability 
in the output distribution of C ”; 

• Needs one further conjecture (similar to permanent-of-Gaussians in 
BosonSampling); 

• Bouland, Fefferman, Nirkhe and Vazirani [March ’18!] 
• Made a major step towards improving the status of the required 

conjectures.

The random quantum circuit model



• But what is known about the complexity of simulating this? 

• Aaronson and Chen [Dec ’16] 

• Task: “Given as input a random quantum circuit C, generate a set of 
outputs such that at least 2/3 of them have above-median probability 
in the output distribution of C ”; 

• Needs one further conjecture (similar to permanent-of-Gaussians in 
BosonSampling); 

• Bouland, Fefferman, Nirkhe and Vazirani [March ’18!] 
• Made a major step towards improving the status of the required 

conjectures.

The random quantum circuit model

Next episode: 

Neat idea! Let’s build one already, what’s 

taking so long?


