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Review: postBPP and postBQP

Postselection: The ability to condition acceptance on some
particular (not-impossible) event, no matter how unlikely.
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Review: postBPP and postBQP
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Recipe for demonstrating quantum advantage

1 - Take a restricted model of qguantum computing A.
e.g. circuits of commuting gates or linear optics

2 - Give it postselection, and see what comes out.
(call it postA)

3 - If A + post-selection includes quantum computing,
then postA = postBQP

4 - Suppose there is a classical algorithm to efficiently
simulate A (i.e. sample from same distribution).
Then postA C postBPP.

5 - But then postBQP ¢ postBPP and PH collapses!




Quantum advantage (AKA “quantum supremacy”)

Show a quantum computer doing something a classical
computer cannot.

Even if that “something” does not have any clear applications!

Task: simulate some restricted quantum circuit;

l \ i.e. nonuniversal

e.q. IQP, Linear optics
Weak but exact simulation! @9 ptics)

Postselection argument: there is no efficient classical algorithm
for this, otherwise PH collapses; ©

Bad news: a realistic qguantum device can’t do it either! @
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Linear optics: states

System of m bosonic modes described by creation operators:

{a;}izl,...m
where
la;, a;] = 51']'
la;, aj] = ()
al )=0 - Vacuum state

n-boson states:
(af)" (af) ... (a)"

\/SI!SZ!'“Sm!

)

1S) = |51, 85, ...5,) =




Linear optics: dynamics

Linear-optical transformations (or interferometers):

U e SU(m) = a; = Z Uij 4j

Very restricted set of operations!

The state space for n photons in m modes has dimension (m e 1)
n

Also: not universal for QC!

Alternative (Hamiltonian) characterization: H = 2 hl-j(a,-af +aa)
ij



Linear optics: dynamics

Elementary two-mode linear-optical transformations:
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Linear optics: dynamics

Any m-mode interferometer can be written as a circuit:




Linear optics: example (HOM effect)

Consider a 50:50 (or balanced) beam splitter
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Linear optics: example (HOM effect)

Consider a 50:50 (or balanced) beam splitter

g L (1 i
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Now if two photons enter...
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Hong-Ou-Mandel effect!



Linear optics

If we had a general 2-mode transformation:
b
U= (¢
(1) 54

Two photons enter; what is the probability they leave separately?
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Linear optics

If we had a general 2-mode transformation:

u=(¢ 1) >4

Probability of outcome |11):

Pr(11) = |ad + bc|* = |Per ("
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Side note: Fermionic “linear optics”

What if we had fermions, rather than bosons”?

b
U=|(“
(c d> %é'
Bosons Fermions

a b a b
=1
Per <c d) Det (c d)



Side note: Fermionic “linear optics”

What if we had fermions, rather than bosons”?
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HOM effect Pauli exclusion principle



Linear optics

General n-photon m-mode interferometer U:
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* from now on: no-collision inputs/outputs



Linear optics

Transition between two (no-collision) states.

|S) = IT)

Probability: Pr = |Per(Us )|
S—>T ,

Us r: submatrix of U with rows/columns
chosen according to Sand T



Linear optics

Example:
Input: |S) = |110)

Output: |T) = |011)

Interferometer:




Side note: Fermionic linear optics |l

Transition: |SY — |T) =X
|
. 5 POPACE Permanent
osons:  Pr = |Per(U )]
o S.T P|#P /
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| ) PP = postBQP
Fermions: Pr = [Det(Us )] N |
S—T i
. postBPP BQP
w' N

BPP

Permanent and determinant are similar.

r/\

but in terms of complexity, they are
very different!

Determinant
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Bosonsampling

It IS not hard to show that

Linear optics + postselection = postBQP

00) — |00)

| '%é' Dol 01) - |01)

! S g a D=1 10) — |10)
11) = — [11)

This outcome happens
2/2( of the times



Bosonsampling

It IS not hard to show that

Linear optics + postselection = postBQP

= Linear optics cannot be simulated on a classical computer!

But this is about exact simulation - a real-world experiment
can’'t simulate this exactly either!

Time to bring out the (complexity-theoretic) big guns! L'O'



Bosonsampling

Consider the following n-photon m-mode experiment:

————
-
————
————
————
-
"""
-

outcomes

where m=0(n?) and U is some uniformly-random matrix.



Bosonsampling

BosonSampling task: sample from that n-photon distribution;

Or in fact any sufficiently close to it!

Not a decision problem!

Theorem [Aaronson and Arkhipov]

If there was a classical algorithm capable of sampling
efficiently from some distribution D’ such that

|D—-D'| <6

in time poly(n, 1/8), the polynomial hierarchy (PH) would
collapse to its 3rd level!




Bosonsampling

Outline of result;

1. Probabillities = permanents of submatrices of a random matrix;

Uniform : A A A
random . i VANNRVAVAN

U | |
VANVAYAN

I - — — — — — —

Submatrices look like
iIndependent Gaussian matrices



Bosonsampling

Outline of result:
1. Probabilities = permanents of submatrices of a random matrix;

2. Permanent-of-Gaussian conjecture;

Fact: Permanent is #P-hard in the worst case.

Conjecture: Gaussian matrices are among the hardest
Permanents to compute;

Al

. Plausible conjecture that has nothing
to do with linear optics!



Bosonsampling

Outline of result;

1.
2.

Probabillities = permanents of submatrices of a random matrix;
Permanent-of-Gaussian conjecture;

A classical simulation that samples from a distribution very close to
the ideal one must get many of these #P-hard probabillities right!

Another minor conjecture + 90 pages of complexity-theoretic
cannons shooting at the problem...

If an efficient classical simulation for approximate BosonSampling
existed, PH would collapse to the 3rd level!



Bosonsampling

Some additional comments:
Result does not mean linear optics can compute permanents!

m=0(n?) means no-collision outcomes vastly more likely.

Randomness of U avoids structures that classical algorithms could
“exploit”.

This sampling task has no known applications;
- Except as a “demonstration of force” by quantum devices ©

Best known classical algorithm takes time O(n 27);



BosonSampling: pros and cons

cons

No error-correction, so it is unclear whether experiments could be
performed to this level of accuracy!

Hard to verify that device is doing what it should;

Leandro has more to say about this!

Pros

Much “easier” to implement than universal quantum computation;
Doesn’t require nonlinearities or adaptive measurements;

~ 50-90 photon experiment?

New Insights into foundations of g. computing and g. optics;



First experiments

- Four small-scale experiments reported in December 2012.
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First experiments

- Four small-scale experiments reported in December 2012.
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A zoo of iIntermediate quantum models

Many other similar “quantum supremacy” results!

These predate
BosonsSampling

Random quantum circuits;
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Random quantum circuits

Google’s Quantum Al Lab + John Martini’s group at UCSB

Another way to demonstrate the power of guantum computers.

Meet Google’s 72-qubit quantum processor: Bristlecone!

Goal: Demonstrate “Quantum advantage” on 72 qubits! (...soon)

Image: Google Al blog
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The random quantum circuit model

But what is known about the complexity of simulating this?

Aaronson and Chen [Dec '16]

Task: “Given as input a random quantum circuit C, generate a set of

outputs such that at least 2/3 of them have above-median probability
In the output distribution of C'7;

P

A

Generate a list of samples
_4__ - B where > 2/3 of them are among
I I those above this height:
I :

outcomes



The random quantum circuit model

But what is known about the complexity of simulating this?

Aaronson and Chen [Dec '16]

Task: “Given as input a random quantum circuit C, generate a set of

outputs such that at least 2/3 of them have above-median probability
In the output distribution of C'7;

Needs one further conjecture (similar to permanent-of-Gaussians in
BosonsSampling);

Bouland, Fefferman, Nirkhe and Vazirani [March ’18l]

Made a major step towards improving the status of the required
conjectures.



The random quantum circuit model

But what is known about the complexity of simulati» this?

Aaronson and Chen [Dec '16]

Task: “Given as input a set of
outputs such tF sropability
INn the £

Nee O permanent-of-Gaussians in
Bosc

Made a major step towards improving the status of the required
conjectures.



