

Introduction to quantum computing and simulability

Demonstrating a quantum advantage II

Daniel J. Brod

Leandro Aolita

Ernesto Galvão

Universidade Federal Fluminense

Outline: Demonstrating a quantum advantage II

- BosonSampling: review and experiments;
- Experimental considerations;
 - Scattershot BosonSampling;
 - BosonSampling with losses;
- State-of-the-art: Simulations vs experiments;
 - BosonSampling;
 - Random quantum circuits;

BosonSampling

• Consider the following *n*-photon *m*-mode experiment:

where $m = O(n^2)$ and U is some uniformly-random matrix.

BosonSampling

Transition between two (no-collision) states

$$|S\rangle \rightarrow |T\rangle$$

Probability:
$$\Pr_{S \to T} = |\operatorname{Per}(U_{S,T})|^2$$

 $U_{S,T}$: submatrix of U with rows/columns chosen according to S and T

BosonSampling

- BosonSampling **task**: sample from that *n*-photon distribution;
 - Or in fact any sufficiently close to it!
 - **Not** a decision problem!
- Theorem^[1]:

If there was a classical algorithm capable of sampling efficiently from some distribution D' such that

$$|D - D'| < \delta$$

in time poly(n, $1/\delta$), the polynomial hierarchy (**PH**) would collapse to its 3rd level!

BosonSampling: pros and cons

- Cons
 - No error-correction, so theory still far from experimental reality;
 - Hard to verify that device is doing what it should;
 - No practical applications (so far!)
- Pros
 - Much "easier" to implement than universal quantum computation;
 - Doesn't require nonlinearities or adaptive measurements;
 - ~ 50-90 photon experiment?
 - New insights into foundations of q. computing and q. optics;

• Four small-scale experiments reported in December 2012.

Brisbane

Rome

Science

Photonic Boson Sampling in a Tunable Circuit

Matthew A. Broome,^{1,2}* Alessandro Fedrizzi,^{1,2} Saleh Rahimi-Keshari,² Justin Dove,³ Scott Aaronson,³ Timothy C. Ralph,² Andrew G. White^{1,2}

nature photonics

LETTERS

PUBLISHED ONLINE: 26 MAY 2013 | DOI: 10.1038/NPHOTON.2013.112

Integrated multimode interferometers with arbitrary designs for photonic boson sampling

Andrea Crespi^{1,2}, Roberto Osellame^{1,2}*, Roberta Ramponi^{1,2}, Daniel J. Brod³, Ernesto F. Galvão³*, Nicolò Spagnolo⁴, Chiara Vitelli^{4,5}, Enrico Maiorino⁴, Paolo Mataloni⁴ and Fabio Sciarrino⁴*

Vienna

Oxford

Boson Sampling on a Photonic Chip

Justin B. Spring,¹* Benjamin J. Metcalf,¹ Peter C. Humphreys,¹ W. Steven Kolthammer,¹ Xian-Min Jin,^{1,2} Marco Barbieri,¹ Animesh Datta,¹ Nicholas Thomas-Peter,¹ Nathan K. Langford,^{1,3} Dmytro Kundys,⁴ James C. Gates,⁴ Brian J. Smith,¹ Peter G. R. Smith,⁴ Ian A. Walmsley¹*

Experimental boson sampling

PUBLISHED ONLINE: 12 MAY 2013 | DOI: 10.1038/NPHOTON.2013.102

Max Tillmann^{1,2}*, Borivoje Dakić¹, René Heilmann³, Stefan Nolte³, Alexander Szameit³ and Philip Walther^{1,2}*

• All with similar design, with 3 or 4 photons:

• All with similar design, with 3 or 4 photons:

• Goal: verify that permanent formula (hence quantum mechanics) works well for increasingly larger experiment sizes;

Outline: Demonstrating a quantum advantage II

- BosonSampling: review and experiments;
- Experimental considerations;
 - Scattershot BosonSampling;
 - BosonSampling with losses;
- State-of-the-art: Simulations vs experiments;
 - BosonSampling;
 - Random quantum circuits;

BosonSampling: state-of-the-art

- Theory:
 - Variants of Bosonsampling to deal with experimental imperfections;
 - Proof of robustness of the model to errors;
 - Also advances on the side of classical simulations sets the target!
- Experiments:
 - Use of time-bin encoding;
 - Improved quantum dot sources;
 - 5 photons in 16 modes by Jian-Wei Pan's group^[6];
 - 12-photon experiment promised for near future!

Experimental imperfections

SPDC sources

Dark counts

Experimental imperfections

SPDC sources

If you want n heads by tossing n coins, it will take a long time!

- If you want n heads by tossing n coins, it will take a long time!
- (Theoretical) Solution: Scattershot BosonSampling^[7,8]
 - Toss $O(n^2)$ coins, and take whatever *n* heads you can get!

• You don't get to control the input state anymore - but that's ok.

[7] S. Kolthammer, unpublished,[8] Lund *et al*, PRL **113**, 100502 (2014)]

- If you want *n* heads by tossing *n* coins, it will take a long time!
- (Theoretical) Solution: Scattershot BosonSampling
 - Toss $O(n^2)$ coins, and take whatever *n* heads you can get!

RESEARCH ARTICLE

QUANTUM INFORMATION PROCESSING

Experimental scattershot boson sampling

Marco Bentivegna,¹ Nicolò Spagnolo,¹ Chiara Vitelli,^{1,2} Fulvio Flamini,¹ Niko Viggianiello,¹ Ludovico Latmiral,¹ Paolo Mataloni,¹ Daniel J. Brod,³ Ernesto F. Galvão,⁴ Andrea Crespi,^{5,6} Roberta Ramponi,^{5,6} Roberto Osellame,^{5,6} Fabio Sciarrino¹*

5-fold counting increase due to scattershot approach!

• (Experimental) Solution: Don't!

He *et al*, PRL **118**, 190501 (2017) ~200x increase in counting rates*

Loredo et al, PRL **118**, 130503 (2017)

Between 1 and 2 orders of magnitude increase*

*Compared to non scattershot approach

Outline: Demonstrating a quantum advantage II

- BosonSampling: review and experiments;
- Experimental considerations;
 - Scattershot BosonSampling;
 - BosonSampling with losses;
- State-of-the-art: Simulations vs experiments;
 - BosonSampling;
 - Random quantum circuits;

Experimental imperfections

- (Theoretical) solution first step:
 - If only a constant number of photos is lost, it does not affect BosonSampling^[13].
 - Not realistic at all, but good first step!

BosonSampling with lost photons

$$\Pr[S \to T] = |\operatorname{Per}(U_{S,T})|^2$$
$$= |\operatorname{Per}(X)|^2$$

Rows = output Columns = input

- BosonSampling with lost photons
- Loss model:
 - We **know** we input n+1 photons but only n were detected
 - Extra assumption: Losses at the input*

*not strictly necessary!

- BosonSampling with lost photons
- Loss model:
 - We **know** we input n+k photons but only n were detected
 - Extra assumption: Losses at the input.

 $^*|\Lambda| = \binom{n+k}{k}$

If this is Gaussian:

This is almost Gaussian for $c \approx 1$:

$$\varphi(A[c]) = \frac{1}{|\Lambda|} \sum_{S \in \Lambda} |\operatorname{Per}(A[c]_S)|^2$$

If this is Gaussian:

This is almost Gaussian for $c \approx 1$:

$$A[c] = {\scriptscriptstyle n} \left[\left(egin{array}{c|c} X & cY \end{array}
ight)$$

$$\varphi(A[c]) = \frac{|\operatorname{Per} X|^2}{|\Lambda|} + |c|^2 Q_1 + |c|^4 Q_2 + \dots + |c|^{2k} Q_k$$

$$\varphi(A[c]) = \frac{|\operatorname{Per} X|^2}{|\Lambda|} + |c|^2 Q_1 + |c|^4 Q_2 + \dots + |c|^{2k} Q_k$$

- Trick: Estimate \u03c6 for a few values of c, then find first coefficient by least squares method.
 - Problem: *c* must be close to 1, polynomial sampled in a small region.

$$\varphi(A[c]) = \frac{|\operatorname{Per} X|^2}{|\Lambda|} + |c|^2 Q_1 + |c|^4 Q_2 + \dots + |c|^{2k} Q_k$$

- Trick: Estimate \u03c6 for a few values of c, then find first coefficient by least squares method.
 - Problem: *c* must be close to 1, polynomial sampled in a small region.

 \Rightarrow Limit on estimation precision:

$$\epsilon' = O\left(\frac{\delta^{k+1/2}k^{k/2}}{n^{k/2}(n+k)^k}\epsilon\right)$$

- Main result: BosonSampling with k lost photons, for constant k, is as hard as lossless BosonSampling.
 - (Roughly) equivalent to O(1/n) loss probability per photon
- Also applies to:
 - O(1/n) dark count probability
 - O(1/n) prob. of dark count **and** losses (unheralded!)
 - O(1/n) losses at the output

- (Theoretical) solution first step:
 - Still hard: O(1/n) probability of losses/dark counts (per photon/mode).
- This **cannot** take us all the way:
 - If all but $o(\sqrt{n})$ of photons are lost, linear optics becomes classically simulable^[14]

$$a_i^{\dagger} \mapsto \sum_j U_{ij} a_j^{\dagger}$$

m n-level systems ("2nd quantization")

n m-level systems ("1st quantization")

Losing photons degrades the entanglement of this state. Maybe, if too many photons are lost, the entanglement vanishes?

- If $l = o(\sqrt{n})$, the entanglement goes to 0 for large n!
 - <u>Caveat</u>: does not quite qualify as classical simulation per original BosonSampling paper.
- Limits plausible hardness conjectures for lossy BosonSampling;
- Imposes more stringent constraints on physical realizations;

• How does this relate to realistic experiments?

• Result: If the shortest path from any input to any output has $C \log(n)$ beam splitters (for suitable C), on average $o(\sqrt{n})$ photons will be left.

- To summarize:
- BosonSampling is **still hard**:
 - O(1/n) probability of losses/dark counts (per photon/mode).
- BosonSampling becomes easy
 - $o(\sqrt{n})$ photons left on average;
 - Also for a constant loss rate, if coupled with a dark count rate^[15];
 - Very recent development suggests that BosonSampling becomes easy if a constant fraction of photons is lost^[16].

[15] Rahimi-Keshari, Ralph, Caves, PRX 6 021039 (2016)[16] Renema, Shchesnovich, Garcia-Patron arXiv:1809.01953 (2018)

Outline: Demonstrating a quantum advantage II

- BosonSampling: review and experiments;
- Experimental considerations;
 - Scattershot BosonSampling;
 - BosonSampling with losses;
- State-of-the-art: Simulations vs experiments;
 - BosonSampling;
 - Random quantum circuits;

Comparison with classical algorithms

• Setting the bar!

Best classical algorithm sets the bar!

- Common claim: "BosonSampling is 'doubly' hard, because Permanent is hard and there are exponentially many of them".
- 1st counterexample: Rejection sampling

- Common claim: "BosonSampling is 'doubly' hard, because Permanent is hard and there are exponentially many of them".
- 1st counterexample: Rejection sampling

- Common claim: "BosonSampling is 'doubly' hard, because Permanent is hard and there are exponentially many of them".
- 2nd counterexample: Metropolised independence sampling^[17];
 - Not **provably** correct;
 - Asymptotic scaling unknown;
 - Produces a sample from:
 - **n = 30** in 30 mins
 - n = 50 in < 10 days (projected)

- Common claim: "BosonSampling is 'doubly' hard, because Permanent is hard and there are exponentially many of them".
- 3rd counterexample: Exact algorithm^[18];

[18] Clifford and Clifford, Proc. 29th Annual ACM-SIAM SODA p.146 (2018)

- Common claim: "BosonSampling is 'doubly' hard, because Permanent is hard and there are exponentially many of them".
- 3rd counterexample: Exact algorithm
 - Runtime: $O(mn \ 3^n)$;
 - Compare with $O(n2^n)$ needed for a **single** permanent.
 - Can be improved to $O(n2^n + poly(n,m))!$
 - Comparable with computing ~ 2 permanents!
 - Outputs probabilities as well as samples.

State of the art: BosonSampling

Current BosonSampling experiments: ~ 5 photons in 16 modes Runtime: ? Promise: 12 photons soon! Best classical algorithms:
~ 50 photons in X modes Runtime: ?
Best theoretical bounds: 90 photons

Outline: Demonstrating a quantum advantage II

- BosonSampling: review and experiments;
- Experimental considerations;
 - Scattershot BosonSampling;
 - BosonSampling with losses;
- State-of-the-art: Simulations vs experiments;
 - BosonSampling;
 - Random quantum circuits;

• Another heavy-weight contender: Random quantum circuits!

Google's promised 72-qubit processor "Bristlecone"

Reference	General Technique	Qubits	Depth	# of Amplitudes
Intel [6]	Full amplitude-vector update	42	High	All
ETH [5]	Optimized full amplitude-vector update	5×9	25	All
IBM [7]	Tensor-slicing with minimized communication	7×7	27	All
		7×8	23	2^{37} out of 2^{56}
Google [8]	Preprocessing using undirected graphical model	7×8	30	1
USTC [9]	Qubit partition with partial vector update	8×9	22	1
Sunway [<mark>10</mark>]	Dynamic programming qubit partition	7×7	39	All
		7×7	55	1
Alibaba	Undirected graphical model with parallelization	9×9	40	1

Manufacturer 🗢	Name/Codename/Designation +	Architecture +	Layout 🗢	Socket 🗢	Fidelity 🗢	Qubits \$	Release date 🗢
Google	N/A	Superconducting	N/A	N/A	99.5% ^[1]	20 qb	2017
Google	N/A	Superconducting	7×7 lattice	N/A	99.7% ^[1]	49 qb ^[2]	Q4 2017 (planned)
Google	Bristlecone	Superconducting	6×12 lattice	N/A	99% (readout) 99.9% (1 qubit) 99.4% (2 qubits)	72 qb ^{[3][4]}	5 March 2018
IBM	IBM Q Experience 5	Superconducting	N/A	N/A	N/A	5 qb	2016 ^[1]
IBM	IBM Q Experience 16	Superconducting	2×8 lattice	N/A	N/A	16 qb ^[5]	17 May 2017
IBM	IBM Q 17	Superconducting	N/A	N/A	N/A	17 qb ^[5]	17 May 2017
IBM	IBM Q 20	Superconducting	N/A	N/A	N/A	20 qb ^[6]	10 November 2017
IBM	IBM Q 50 prototype	Superconducting	N/A	N/A	N/A	50 qb ^[6]	
Intel	17-Qubit Superconducting Test Chip	Superconducting	N/A	40-pin cross gap	N/A	17 qb ^{[7][8]}	10 October 2017
Intel	Tangle Lake	Superconducting	N/A	108-pin cross gap	N/A	49 qb ^[9]	9 January 2018
Rigetti	19Q	Superconducting	N/A	N/A	N/A	19 qb ^[10]	December 2017

State of the art: Random quantum circuits

Current RQC experiments: ~ 49 qubits Promise: 72 photons soon!

Best classical algorithms:

~ 81 qubits in depth-40 random circuits

Conclusion slide

- It is unclear what is the best technology for quantum computing.
 - Superconducting qubits seem to be ahead for now!
 - An actual universal quantum computer will likely be **hybrid**.
- The formalism of "quantum advantage/supremacy" gave us:
 - New tools to **understand** the power of different quantum systems;
 - An intermediate **milestone** for the field!
 - More (experimental/theoretical) **confidence** of the power of quantum devices;
 - Development of **new technologies** in the pursuit of this goal!
 - A flurry of activity all this is from the last 5-6 years!