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• Consider the following n-photon m-mode experiment:  
 
 
 
 
 
 
 
 
 
 
 
where m=O(n2) and U is some uniformly-random matrix.
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BosonSampling

Transition between two (no-collision) states

|S⟩ → |T⟩

Probability: Pr
S→T

= |Per(US,T) |2

US,T : submatrix of U with rows/columns  
chosen according to S and T



BosonSampling

• BosonSampling task: sample from that n-photon distribution; 

• Or in fact any sufficiently close to it! 

• Not a decision problem! 

• Theorem[1]:  
 

If there was a classical algorithm capable of sampling 
efficiently from some distribution D’ such that 

in time poly(n, 1/ẟ), the polynomial hierarchy (PH) would 
collapse to its 3rd level! 

|D − D′�| < δ

[1] Aaronson and Arkhipov, Theo. Comput. 4, 143 (2013)



BosonSampling: pros and cons

• Cons 
• No error-correction, so theory still far from experimental reality; 

• Hard to verify that device is doing what it should; 

• No practical applications (so far!) 

• Pros 
• Much “easier” to implement than universal quantum computation; 

• Doesn’t require nonlinearities or adaptive measurements; 

• ~ 50-90 photon experiment? 

• New insights into foundations of q. computing and q. optics;



First experiments

• Four small-scale experiments reported in December 2012.

Brisbane Rome

Oxford Vienna



• All with similar design, with 3 or 4 photons:

First experiments
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First experiments

• All with similar design, with 3 or 4 photons:
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First experiments

• Goal: verify that permanent formula (hence quantum mechanics) 
works well for increasingly larger experiment sizes;

0

0.05

0.1

0.15

0.2

0.25

 

 

P 3
exp

P 3
r,p

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 

 

P 3
t

P 3
r

P 3
r,p

1
2

3
4

5

1

2

3

4

5

0

0.2

0.4

0.6

0.8

input s
tat

eoutput state

P 1
r (i; K )

(12)
(13)

(14)
(15)

(23)
(24)

(25)
(34)

(35)
(45)

(12)
(13)

(14)
(15)

(23)
(24)

(25)
(34)

(35)
(45)

0

0.1

0.2

0.3

0.4

input s
tat

eoutput state

P 2
t (i, j ; K, L)

(12)
(13)

(14)
(15)

(23)
(24)

(25)
(34)

(35)
(45)

(12)
(13)

(14)
(15)

(23)
(24)

(25)
(34)

(35)
(45)

0

0.1

0.2

0.3

0.4

input s
tat

eoutput state

P 2
exp(i, j ; K, L)

(12)
(13)

(14)
(15)

(23)
(24)

(25)
(34)

(35)
(45)

(12)
(13)

(14)
(15)

(23)
(24)

(25)
(34)

(35)
(45)

0

0.1

0.2

0.3

0.4

input s
tat

eoutput state

P 2
r (i, j ; K, L)

1
2

3
4

5

1

2

3

4

5

0

0.2

0.4

0.6

0.8

input s
tat

eoutput state

P 1
t (i; K ) a

b

c

1
2

3
4

5

1

2

3

4

5

0

0.2

0.4

0.6

0.8

input s
tat

eoutput state

P 1
exp(i; K )

(1
1
1
0
0
)

(1
1
0
1
0
)

(1
1
0
0
1
)

(1
0
1
1
0
)

(1
0
1
0
1
)

(1
0
0
1
1
)

(0
1
1
1
0
)

(0
1
1
0
1
)

(0
1
0
1
1
)

(0
0
1
1
1
)

(1
1
1
0
0
)

(1
1
0
1
0
)

(1
1
0
0
1
)

(1
0
1
1
0
)

(1
0
1
0
1
)

(1
0
0
1
1
)

(0
1
1
1
0
)

(0
1
1
0
1
)

(0
1
0
1
1
)

(0
0
1
1
1
)

d



Outline: Demonstrating a quantum advantage II

• BosonSampling: review and experiments; 

• Experimental considerations; 
• Scattershot BosonSampling; 

• BosonSampling with losses; 

• State-of-the-art: Simulations vs experiments; 
• BosonSampling; 

• Random quantum circuits;



BosonSampling: state-of-the-art

• Theory: 
• Variants of Bosonsampling to deal with experimental imperfections; 

• Proof of robustness of the model to errors; 

• Also advances on the side of classical simulations - sets the target! 

• Experiments: 
• Use of time-bin encoding; 

• Improved quantum dot sources; 

• 5 photons in 16 modes by Jian-Wei Pan’s group[6]; 

• 12-photon experiment promised for near future!

[6] Wang et al, PRL 120, 230502 (2018)
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Experimental imperfections
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• SPDC source: 

• n SPDC sources 

• If you want n heads by tossing n coins, it will take a long time!

Probabilistic SPDC sources

|0, 0i+ ✏ |1, 1i+ ...

U



Probabilistic SPDC sources

• If you want n heads by tossing n coins, it will take a long time! 

• (Theoretical) Solution: Scattershot BosonSampling[7,8] 

• Toss O(n2) coins, and take whatever n heads you can get! 

• You don’t get to control the input state anymore - but that’s ok.
[7] S. Kolthammer, unpublished, 
[8] Lund et al, PRL 113, 100502 (2014)]



Probabilistic SPDC sources

• If you want n heads by tossing n coins, it will take a long time! 

• (Theoretical) Solution: Scattershot BosonSampling  

• Toss O(n2) coins, and take whatever n heads you can get!

a b

linear unitary transformation

input output

[9] Bentivegna et al, Sci. Adv. 1, e1400255 (2015)

5-fold counting increase due to  
scattershot approach!



Probabilistic SPDC sources

• (Experimental) Solution: …. Don’t!

He et al, PRL 118, 190501 (2017)

[12] Gazzano et al, Nat. Comm. 4, 1425 (2013)

Loredo et al, PRL 118, 130503 (2017)

~200x increase in counting rates*

Between 1 and 2 orders of magnitude increase*

*Compared to non scattershot approach
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Losses

• (Theoretical) solution first step: 
• If only a constant number of photos is lost, it does not affect 

BosonSampling[13]. 

• Not realistic at all, but good first step!

[13] Aaronson and Brod, PRA 93 012335 (2016)



• BosonSampling with lost photons

Losses

Pr[S ! T ] =
|Per(US,T )|2

t1! . . . tm!

Pr[S ! T ] =
|Per(US,T )|2

t1! . . . tm!U =

= |Per(X)|2

Rows = output 
Columns = input



• BosonSampling with lost photons 

• Loss model:  

• We know we input n+1 photons but only n were detected  

• Extra assumption: Losses at the input*

Pr[S ! T ] =
1

n+ 1

X

i

|Per(USi,T )|2

*not strictly necessary!

Losses



• BosonSampling with lost photons 

• Loss model:  

• We know we input n+k photons but only n were detected  

• Extra assumption: Losses at the input.

Pr[S ! T ] =
1

|⇤|
X

S̄2⇤

|Per(US̄,T )|2

⇤|⇤| =
✓
n+ k

k

◆

Losses



= |Per(X)|2

A =

(to error 𝜖)

(to error 𝜖’)'(A) :=
1

|⇤|
X

S2⇤

|Per(AS)|2

Losses



If this is Gaussian:

This is almost Gaussian for c ≈ 1:

A =

A[c] =

'(A[c]) =
1

|⇤|
X

S2⇤

|Per(A[c]S)|2

Losses



If this is Gaussian:

This is almost Gaussian for c ≈ 1:

A =

A[c] =

'(A[c]) =
|PerX|2

|⇤| + |c|2Q1 + |c|4Q2 + ...+ |c|2kQk

Losses



• Trick: Estimate    for a few values of c, then find first coefficient 
by least squares method. 

• Problem: c must be close to 1, polynomial sampled in a small region. 

'(A[c]) =
|PerX|2

|⇤| + |c|2Q1 + |c|4Q2 + ...+ |c|2kQk

φ

Losses



• Trick: Estimate    for a few values of c, then find first coefficient 
by least squares method. 

• Problem: c must be close to 1, polynomial sampled in a small region. 

       ⇒ Limit on estimation precision:

✏
0 = O

✓
�
k+1/2

k
k/2

nk/2(n+ k)k
✏

◆

φ

Losses

'(A[c]) =
|PerX|2

|⇤| + |c|2Q1 + |c|4Q2 + ...+ |c|2kQk



• Main result: BosonSampling with k lost photons, for constant k, 
is as hard as lossless BosonSampling. 

• (Roughly) equivalent to O(1/n) loss probability per photon 

• Also applies to: 

• O(1/n) dark count probability 

• O(1/n) prob. of dark count and losses (unheralded!) 

• O(1/n) losses at the output

Losses



• (Theoretical) solution first step: 

• Still hard: O(1/n) probability of losses/dark counts (per photon/mode). 

• This cannot take us all the way: 

• If all but o(√n) of photons are lost, linear optics becomes classically 
simulable[14]

[14] Brod and Oszmaniec, New J. Phys. 20 092002 (2018)

Losses
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m n-level systems 
(“2nd quantization”)
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Losing photons degrades the entanglement of this 
state. Maybe, if too many photons are lost, the 

entanglement vanishes?
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• If l = o(√n), the entanglement goes to 0 for large n! 

• Caveat: does not quite qualify as classical simulation per original 
BosonSampling paper. 

• Limits plausible hardness conjectures for lossy BosonSampling; 

• Imposes more stringent constraints on physical realizations;

Losses



• How does this relate to realistic experiments? 

• Result: If the shortest path from any input to any output has  
C log(n) beam splitters (for suitable C), on average o(√n) 
photons will be left.
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• To summarize: 

• BosonSampling is still hard: 

• O(1/n) probability of losses/dark counts (per photon/mode). 

• BosonSampling becomes easy 

• o(√n) photons left on average; 

• Also for a constant loss rate, if coupled with a dark count rate[15]; 

• Very recent development suggests that BosonSampling becomes 
easy if a constant fraction of photons is lost[16].

Losses

[15] Rahimi-Keshari, Ralph, Caves, PRX 6 021039 (2016) 
[16] Renema, Shchesnovich, Garcia-Patron arXiv:1809.01953 (2018)
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Comparison with classical algorithms

• Setting the bar!

Best classical algorithm sets the bar!



Classical algorithms: BosonSampling

• Common claim: “BosonSampling is ‘doubly’ hard, because 
Permanent is hard and there are exponentially many of them”. 

• 1st counterexample: Rejection sampling

Outcomes

Outcomes
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• Common claim: “BosonSampling is ‘doubly’ hard, because 
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Classical algorithms: BosonSampling

• Common claim: “BosonSampling is ‘doubly’ hard, because 
Permanent is hard and there are exponentially many of them”. 

• 2nd counterexample: Metropolised independence sampling[17]; 
• Not provably correct; 

• Asymptotic scaling unknown; 

• Produces a sample from: 

• n = 30 in 30 mins 

• n = 50 in < 10 days (projected)

[17] Neville et al, Nat. Phys. 13, 1153 (2017)



• Common claim: “BosonSampling is ‘doubly’ hard, because 
Permanent is hard and there are exponentially many of them”. 

• 3rd counterexample: Exact algorithm[18];

Outcomes

Outcomes

[18] Clifford and Clifford, Proc. 29th Annual ACM-SIAM SODA p.146 (2018)

Classical algorithms: BosonSampling

Outcomes

Outcomes

Outcomes

Outcomes



• Common claim: “BosonSampling is ‘doubly’ hard, because 
Permanent is hard and there are exponentially many of them”. 

• 3rd counterexample: Exact algorithm 

• Runtime: O(mn 3n); 

• Compare with O(n2n) needed for a single permanent. 

• Can be improved to O(n2n + poly(n,m))! 

• Comparable with computing ~ 2 permanents! 

• Outputs probabilities as well as samples.

Classical algorithms: BosonSampling



State of the art: BosonSampling

Best classical algorithms: 
~ 50 photons in X modes 

Runtime: ? 
Best theoretical bounds: 

90 photons

Current BosonSampling experiments: 
~ 5 photons in 16 modes 

Runtime: ? 
Promise: 12 photons soon!
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• Another heavy-weight contender: Random quantum circuits!

Classical algorithms: Random quantum circuits

Google’s promised 72-qubit processor “Bristlecone”



Classical algorithms: Random quantum circuits



Classical algorithms: Random quantum circuits

Intel

Google

IBM

Alibaba

Rigetti

ETHSunway

USTC



Classical algorithms: Random quantum circuits

[?] Chen et al, arXiv:1805.01450



Classical algorithms: Random quantum circuits

https://en.wikipedia.org/wiki/List_of_quantum_processors (!)

https://en.wikipedia.org/wiki/List_of_quantum_processors


State of the art: Random quantum circuits

Best classical algorithms: 
~ 81 qubits in depth-40 random circuits

Current RQC experiments: 
~ 49 qubits 

Promise: 72 photons soon!

?



Conclusion slide

• It is unclear what is the best technology for quantum computing. 
• Superconducting qubits seem to be ahead - for now! 

• An actual universal quantum computer will likely be hybrid. 

• The formalism of “quantum advantage/supremacy” gave us: 
• New tools to understand the power of different quantum systems; 

• An intermediate milestone for the field! 

• More (experimental/theoretical) confidence of the power of quantum devices; 

• Development of new technologies in the pursuit of this goal! 

• A flurry of activity - all this is from the last 5-6 years!


