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Classical computing 101

Complexity Classes:
P;
NP:
Reductions and NP-completeness;

BPP and BQP;



Classical computing

Information encoded in bits (Os and 1s);

Bits manipulated by Turing machines:
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Classical computing

Church-Turing Thesis (physical version)

<r

All computational problems solvable by a realistic physical
system can be solved by a Turing machine.




Classical computing

Information encoded in bits (Os and 1s);

Bits manipulated in Boolean circuits:
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Classical computing

Information encoded in bits (Os and 1s);

Bits manipulated in Boolean circuits:
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Classical computing

Physical system is not too important for computabllity.

Vacuum tubes

Colossus (1943)

Replica of Colossus, Bletchley Park

Photo: lan Petticrew



Classical computing

Physical system is not too important for computabillity.

Transistors
Intel® 4004 (1971) - 2.300 transistors.

Intel® Core™ (2010) - 560.000.000 transistors.

Photo: Wikipedia (Richard Wheeler)



Classical computing

Physical system is not too important for computabllity.

Billiard balls (Newtonian mechanics)

Fredkin e Toffoli (1982 - proposta tedrica)

1-in

Billiard-ball model of AND gate
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Imagem: Wikipedia



Church-Turing Thesis

Church-Turing Thesis (Strong version)

(Informal statement): all realistic physical systems are
computationally equivalent.

What do we mean by “equivalent”?

We are interested in asymptotic behaviour!



Polynomial vs exponential

Definition: Efficient computation;

Consider

Some problem P parameterized by “size” n; and

a model of computation M.

M solves P efficiently if there is an algorithm in ‘M to solve P in
time that grows as a polynomial (in n).

Otherwise, M does not solve P efficiently.

e.qg. if best possible algorithm for P in ‘M takes exponentially long.



Polynomial vs exponential

Why polynomial vs. exponential?

Asymptotically, exponentials grow faster than polynomials.

n= 10 100
100n 1000 10000
2" 1024 1267650600228229401496703205376

What about »!%° and 1.001" ?
Asymptotically efficient not always the same as efficient in practice.

Extreme polynomials not very common, tend to improve with time.



Polynomial vs exponential

Definition: big-O notation.
A function is O(f(n)) if its leading term grows as f(n) or slower.

e.g.: all functions below are O(n?)

+ logn
n? 4+ 10000n




Church-Turing Thesis

Church-Turing Thesis (physical version)

<r

All computational problems solvable by a realistic physical
system can be solved by a Turing machine.

Church-Turing Thesis (Strong version)

Any problem that can be solved efficiently by a realistic
computational device can be solved efficiently by a Turing
machine.
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Decision problems

Definition: Decision problem.

(informal) A decision problem is a YES/NO question!

Ex (Primality testing): “Is z prime?”



Complexity classes: P

. P (complexity class)

(informal) Decision problems that can be solved efficiently by
classical computers.
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Complexity classes: P

Definition: P (complexity class)

(formal) A problem is in P if and only if there is a uniform family
of efficient classical circuits® such that, for all n-bit inputs z,

N a YES instance |

N a NO Instance t

'he circuit outputs 1;

ne circuit outputs O;

* Uniform family of efficient classical circuits:
- depend only on size n of input;

- have at most poly(n) gates;
- can be described in poly(n) time



Complexity classes: P - Examples

Computing the determinant of n x n matrices;



Complexity classes: P - Examples

Claim: Computing the determinant of an n x n matrix M is in P.

Reasoning:

1. Determinant is not a decision problem! v



Complexity classes: P - Examples

Claim: Computing the determinant of an n x n matrix M is in P.

Reasoning:
1. Determinant is not a decision problem! v

2. Compute from definition?

det M = Z <sgn(a}ﬁmi,o_i)
i=1

S

|

This sum has n! terms ®



Complexity classes: P - Examples

Claim: Computing the determinant of an n x n matrix M is in P.

Reasoning:
1. Determinant is not a decision problem! v
2. Computing from definition is no good. X

3. Use a shortcut: detAB =detAdetB ¢

(a, b, 0 0 (a, 0 b, 0)
¢, d 0 ... 0ol o 1 0 0
M=1o o0 1 o[ | O 4, 0l
L0 0 0 1) Lo 0 0 1

O (n*) matrices



Complexity classes: P - Examples

Claim: Computing the determinant of an n x n matrix M is in P.

Reasoning:
1. Determinant is not a decision problem! v
Computing from definition is no good. ¥

Use a shortcut: det AB = detAdetB ¢

> W o

Running time using shortcut + Gaussian elimination: O (n”)
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Complexity classes: NP

Definition: NP (complexity class)

(informal) Decision problems whose solution can be checked
efficiently by classical computers.

Example: Factoring

Hard

>

67030883744037259 = 179424673 X 373587883

<

Easy



Complexity classes: NP

Definition: NP (complexity class)

(formal) A problem is in NP if and only if there is a uniform
family of efficient classical circuits that takes as inputs an n-bit

string x and a witness y such that

- In the YES instance, there is y of length poly(n) such that the
circult outputs 1;

- In the NO instance, for all y of length poly(n) the circuit
outputs O;




Complexity classes: NP - Examples

- [ravelling salesman

Given a list of n cities, is there a path that visits all of them and is
shorter than some length «7
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Complexity classes: NP - Examples

3-Coloring

Can a map with n regions be painted with only 3 colors such that no
neighbors have the same color?

(the answer is always yes for 4 colors!)



Complexity classes: Reductions

Consider the following two NP problems:

Definition: 3-SAT
et {mz, ... x,} be a set of n true/false variables. Let  be a
formula of the type

D=0 VXVxs) AV x3Vg) A -

Can we set z1, 2»,..., x,t0 true/false such that ® is true”

Examples:

D=0 VX,V ax3) A(Tx; Vx5, Vg A X, VgV x,)



Complexity classes: Reductions

Consider the following two NP problems:

Definition: 3-SAT
et {mz, ... x,} be a set of n true/false variables. Let  be a
formula of the type

D=0 VXVxs) AV x3Vg) A -

Can we set z1, 2»,..., x,t0 true/false such that ® is true”

Examples:
D=0 Vi,Vax) A(Tx; V 7, Vi) A Vg Voixy)

X2=X3=X4=T V



Complexity classes: Reductions

Consider the following two NP problems:

Definition: 3-SAT
et {mz, ... x,} be a set of n true/false variables. Let  be a
formula of the type

D=0 VXVxs) AV x3Vg) A -

Can we set 71, 2,..., x,t0 true/false such that ® is true”?

Examples:

O = (xlVX2VX3)/\(X1VXZV_'X3)/\(X1V_'XZV_'X3)/\(X1V_'X2VX3)/\ x

("X VX VX)) A (DX VX VX)) A(Tx Vax, Voxg) A(x Vox, V)



Complexity classes: Reductions

Consider the following two NP problems:

Definition: k-Clique

Does a graph of n vertices have a cliqgue (i.e. a complete
subgraph) of size k7

Example: £ = 4




Complexity classes: Reductions

Consider the following two NP problems:

Definition: k-Clique

Does a graph of n vertices have a cliqgue (i.e. a complete
subgraph) of size k7

Example: £ = 4




Complexity classes: Reductions

3-SAT vs. k-Cligue: \What do they have in common?

Consider the following 3-SAT instance:

D= (x; Vi, Vx) Ax;Vaxy Vi) A Qs Vi Voxg)

X T

X4
© O O



Complexity classes: Reductions

3-SAT vs. k-Clique: \What do they have in common?/

Consider the following 3-SAT instance:

D= (x; Vi, Vx) Ax;Vaxy Vi) A Qs Vi Voxg)

_'xl _'.XZ .X4




Complexity classes: Reductions

3-SAT vs. k-Cligue: \What do they have in common?

Consider the following 3-SAT instance:

D= (x; Vi, Vx) Ax;Vaxy Vi) A Qs Vi Voxg)

_'.xl _'.XZ .X:4




Complexity classes: Reductions

3-SAT vs. k-Cligue: \What do they have in common?

Consider the following 3-SAT instance:

q) — (Xl V.Xz\/ _'X3) AN (_'xl V _'X2VX4) AN (.XzV.X3 V _'.X4)

_'.xl _'.XZ X4
o O O

=

X1 \/ 7 X9
=z
X2 l,"’/ A3

=

Xy



Complexity classes: Reductions

3-SAT vs. k-Cligue: \What do they have in common?

Consider the following 3-SAT instance:

q) — (Xl V.Xz\/ _'.X3) AN (_'xl V _'X2VX4) AN (.XzV.X3 V _'.X4)

D
NL XS
xl \.V RS v/ XZ
"l T R
Xn l" ”“\ X3




Complexity classes: Reductions

3-SAT vs. k-Cligue: \What do they have in common?

Consider the following 3-SAT instance:

D= (x; Vi, Vx) Ax;Vaxy Vi) A Qs Vi Voxg)

O Q &
N
/l <
X 4 — —— X,
/'/. < If this graph has a 3-
" "\ clique the formula can
X2 2 \ X3 be satisfied!




Complexity classes: Reductions

3-SAT vs. k-Clique: \What do they have in common?/

Consider the following 3-SAT instance:

D= (x; Vi, Vx) Ax;Vaxy Vi) A Qs Vi Voxg)

If this graph has a 3-
clique the formula can
be satisfied!




Complexity classes: Reductions

Interesting conclusion
his 3-SAT instance can be solved via a 3-Clique instance.

Very interesting conclusion
Any n-clause 3-SAT instance can be solved via a n-Clique

iInstance. The mapping between the questions and
corresponding answers can be done in poly(n) time.




Complexity classes: Reductions

Definition: Reduction

(Informal) Problem A reduces to problem B if an algorithm for B
can be used to find a solution fo A, and the mapping between
them can be done efficiently.

Intuitively, this says B is at least as hard as A.
Example: 3-SAT reduces to k-Clique.




Complexity classes: Reductions

Mind-blowing conclusion
Every problem in NP reduces to 3-SAT!




Complexity classes: Reductions

Definition: NP-complete

(Informal) A problem is NP-hard if any other NP problem
reduces to .

It is also NP-complete if it is In NP and is NP-hard.

Cook-Levin Theorem (1971/1973)
3-SAT is NP-complete.




Complexity classes: NP - more examples

Hamiltonian cycle: In a graph of n vertices, is there a cycle that visits
each vertex exactly once”

Subset sum: Given a collection of n integers, is there a subset of them
that sums to 07

- Graph isomorphism: Are two n-vertex graphs identical up to
relabelling”?

Protein folding, vehicle routing, scheduling.
Sudoku, tetris and Minesweeper

A huge number of others!

Of the NP problems listed so far, only Factoring and Graph isomorphism are
not NP-complete!



Complexity classes: P vs.NP

Is every problem in NP also in P?

One of the main open gquestions in mathematics today!
Worth 1 million dollars! (really!)
Really hard question!

It would take a single efficient algorithm for a single NP-complete
problem to prove P = NP. No such algorithm has been found.

Most complexity theorists believe the answer is no.



Complexity classes

NP  Graph isomorphism

Factoring
NP-complete

TSP

P primality

3-SAT
3-coloring Determinant
Many more! Linear programming

Simulation of
guantum systems”

Million-dollar corner!
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Complexity classes: BQP

Recall. ..

Definition: P (complexity class)

(formal) A problem is in P if and only if there is a uniform family
of efficient classical circuits such that, for all n-bit input 2,

- In a YES instance the circuit outputs 1;

- In a NO Instance the circuit outputs O;




Complexity classes: BQP

Definition: BPP (complexity class)

(formal) A problem is in BPP if and only if there is a uniform
family of efficient classical circuits such that, for all n-bit input z,

- The circuits have access to a source of random bits;

- In a YES instance the circuit outputs 1 with probability > 2/3:

- In a NO instance, the circuit outputs O with probability > 2/3;

* Computer scientists believe BPP = P, although there
are problems in BPP currently not known to be in P.



Complexity classes: BQP
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Complexity classes: BQP

Definition: BQP (complexity class)

(formal) A problem is in BQP if and only if is exists a uniform
family of efficient guantum circuits such that, for all n-qubit

iInput z,

- In a YES instance the output qubit is 1 with probability > 2/3;

- In a NO instance, the output qubit is O with probability > 2/3;

* Randomness is built in!



Complexity classes: BQP

Factoring (Shor - 1994)

Discrete Log (Shor - 1994)

Quantum simulations (Feynman, Lloyd and others)
Unstructured search (Grover - 1996)

Element distinctness (Shi - 2002, Ambainis - 2007)
Jones polynomials (Aharonov et al - 2000)

And many others to come!



Complexity classes

NP  Graph isomorphism

NP-complete
TSP

BQP

P Primality

3-SAT
3-coloring Determinant Jones |
Many more! Linear programming Polynomial

Quantum
simulation™

Million-dollar corner! * not a decision problem!



The Complexity (Petting) Zoo

ALL

piP \ QAM

PP = postBQP /

QMA

P/poly

Scott Aaronson (Complexity Zoo)



The Complexity Zoo (includes Lions)
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Imagem: Greg Kuperberg (Complexity Zoo)



| want to know more!

© N P, NP
o , WP 7 AND THE SEARCH
s 2. - FORTHE
T, 2:Y  IMPOSSIBLE

LANGE FORTNOW

Lance Fortnhow,
“The Golden Ticket: P, NP
and the search for the
Impossible”

Scott Aaronson,
“Quantum computing
since Democritus”

QUANTUM
COMPUTING SINCE
DEMOCRITUS

SCOTT AARONSON

Computational
Complexity

Sanpeev Arora
and B0O3z Barakx

S. Arora and B. Barak
“Computational
complexity: a modern
approach”



