
Introduction to quantum computing and
simulability

Daniel J. Brod
Leandro Aolita
Ernesto Galvão

Introduction to computational complexity theory I

Outline: Computational complexity theory I

• Classical computing 101

• Complexity Classes:
• P;

• NP;

• Reductions and NP-completeness;

• BPP and BQP;

Classical computing

• Information encoded in bits (0s and 1s);

• Bits manipulated by Turing machines:

1 0 1 0 0 1 1 0 1

H Head
(contains the program)

Read/write device

Church-Turing Thesis (physical version)
All computational problems solvable by a realistic physical
system can be solved by a Turing machine.

Classical computing

Classical computing

• Information encoded in bits (0s and 1s);

• Bits manipulated in Boolean circuits:

outA
B

A B out
0 0 1
0 1 1
1 0 1
1 1 0

Classical computing

• Information encoded in bits (0s and 1s);

• Bits manipulated in Boolean circuits:

• Physical system is not too important for computability.
• Vacuum tubes

• Colossus (1943)

Replica of Colossus, Bletchley Park

Photo: Ian Petticrew

Classical computing

• Physical system is not too important for computability.
• Transistors

• Intel® 4004 (1971) - 2.300 transistors.

• Intel® Core™ (2010) - 560.000.000 transistors.

Photo: Wikipedia (Richard Wheeler)

Classical computing

• Physical system is not too important for computability.
• Billiard balls (Newtonian mechanics)

• Fredkin e Toffoli (1982 - proposta teórica)

Imagem: Wikipedia

Classical computing

• What do we mean by “equivalent”?
• We are interested in asymptotic behaviour!

Church-Turing Thesis (Strong version)
(Informal statement): all realistic physical systems are
computationally equivalent.

Church-Turing Thesis

Polynomial vs exponential

• Definition: Efficient computation;

• Consider

• Some problem P parameterized by “size” n; and

• a model of computation M.

• M solves P efficiently if there is an algorithm in M to solve P in
time that grows as a polynomial (in n).

• Otherwise, M does not solve P efficiently.

• e.g. if best possible algorithm for P in M takes exponentially long.

• Why polynomial vs. exponential?
• Asymptotically, exponentials grow faster than polynomials.

• What about and ?
• Asymptotically efficient not always the same as efficient in practice.

• Extreme polynomials not very common, tend to improve with time.

Polynomial vs exponential

n100

2n

10

1024 1267650600228229401496703205376

100

1.001n

1000 10000100n

n =

Polynomial vs exponential

Definition: big-O notation.
A function is O(f(n)) if its leading term grows as f(n) or slower.

e.g.: all functions below are O(n2)

n2

n2 + n
n
n2 + log n
n2 + 10000n

Church-Turing Thesis

Church-Turing Thesis (Strong version)
Any problem that can be solved efficiently by a realistic
computational device can be solved efficiently by a Turing
machine.

Church-Turing Thesis (physical version)
All computational problems solvable by a realistic physical
system can be solved by a Turing machine.

Outline: Computational complexity theory I

• Classical computing 101

• Complexity Classes:
• P;

• NP

• Reductions and NP-completeness;

• BPP and BQP;

Decision problems

• Ex (Primality testing): “Is x prime?”

Definition: Decision problem.
(informal) A decision problem is a YES/NO question!

Complexity classes: P

Definition: P (complexity class)
(informal) Decision problems that can be solved efficiently by
classical computers.

Complexity classes: P

Definition: P (complexity class)
(formal) A problem is in P if and only if there is a uniform family
of efficient classical circuits* such that, for all n-bit inputs x,

- In a YES instance the circuit outputs 1;
- In a NO instance the circuit outputs 0;

* Uniform family of efficient classical circuits:  
 - depend only on size n of input;
 - have at most poly(n) gates;
 - can be described in poly(n) time

Complexity classes: P - Examples

• Multiplying n x n matrices;

• Computing the determinant of n x n matrices;

• Finding the greatest common divisor of two n-digit numbers;

• Deciding if an n-digit number is prime;

• Many others!

• Multiplying n x n matrices;

• Computing the determinant of n x n matrices;

• Finding the greatest common divisor of two n-digit numbers;

• Deciding if an n-digit number is prime;

• Many others!

Complexity classes: P - Examples

• Claim: Computing the determinant of an n x n matrix M is in P.

• Reasoning:

1. Determinant is not a decision problem! ✔

Complexity classes: P - Examples

• Claim: Computing the determinant of an n x n matrix M is in P.

• Reasoning:

1. Determinant is not a decision problem!

2. Compute from definition?

✔

det M = ∑
σ∈Sn

(sgn(σ)
n

∏
i=1

mi,σi)

This sum has n! terms ☹️

Complexity classes: P - Examples

• Claim: Computing the determinant of an n x n matrix M is in P.

• Reasoning:

1. Determinant is not a decision problem!

2. Computing from definition is no good.

3. Use a shortcut:

✔

✘

det AB = det A det B

M =

a1 b1 0 0
c1 d1 0 … 0
0 0 1 0
⋮ ⋱
0 0 0 1

⋅

a2 0 b2 0
0 1 0 … 0
c2 0 d2 0
⋮ ⋱
0 0 0 1

…

✔

O (n2) matrices

• Claim: Computing the determinant of an n x n matrix M is in P.

• Reasoning:

1. Determinant is not a decision problem!

2. Computing from definition is no good.

3. Use a shortcut:

4. Running time using shortcut + Gaussian elimination:

Complexity classes: P - Examples

✔

✘

✔

O (n3)
det AB = det A det B

Outline: Computational complexity theory I

• Classical computing 101

• Complexity Classes:
• P;

• NP

• Reductions and NP-completeness;

• BPP and BQP;

• Example: Factoring

Complexity classes: NP

Definition: NP (complexity class)
(informal) Decision problems whose solution can be checked
efficiently by classical computers.

67030883744037259 = 179424673 × 373587883

Easy

Hard

Complexity classes: NP

Definition: NP (complexity class)
(formal) A problem is in NP if and only if there is a uniform
family of efficient classical circuits that takes as inputs an n-bit
string x and a witness y such that

- In the YES instance, there is y of length poly(n) such that the
circuit outputs 1;
- In the NO instance, for all y of length poly(n) the circuit
outputs 0;

Complexity classes: NP - Examples

• Travelling salesman

• Given a list of n cities, is there a path that visits all of them and is
shorter than some length x?

Complexity classes: NP - Examples

• 3-Coloring

• Can a map with n regions be painted with only 3 colors such that no
neighbors have the same color?

(the answer is always yes for 4 colors!)

• Consider the following two NP problems:

• Examples:

Complexity classes: Reductions

Φ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x3 ∨ ¬x4)

Φ = (x1 ∨ x2 ∨ x5) ∧ (x2 ∨ ¬x3 ∨ x6) ∧ ⋯

Definition: 3-SAT
Let {x1, x2 … xn} be a set of n true/false variables. Let Φ be a
formula of the type

Can we set x1, x2,…, xn to true/false such that Φ is true?

• Consider the following two NP problems:

• Examples:

Complexity classes: Reductions

x2 = x3 = x4 = T ✔

Φ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x3 ∨ ¬x4)

Definition: 3-SAT
Let {x1, x2 … xn} be a set of n true/false variables. Let Φ be a
formula of the type

Can we set x1, x2,…, xn to true/false such that Φ is true?

Φ = (x1 ∨ x2 ∨ x5) ∧ (x2 ∨ ¬x3 ∨ x6) ∧ ⋯

Complexity classes: Reductions

• Consider the following two NP problems:

• Examples:
Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧

(¬x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)
✘

Φ = (x1 ∨ x2 ∨ x5) ∧ (x2 ∨ ¬x3 ∨ x6) ∧ ⋯

Definition: 3-SAT
Let {x1, x2 … xn} be a set of n true/false variables. Let Φ be a
formula of the type

Can we set x1, x2,…, xn to true/false such that Φ is true?

Complexity classes: Reductions

• Consider the following two NP problems:

• Example: k = 4

Definition: k-Clique
Does a graph of n vertices have a clique (i.e. a complete
subgraph) of size k?

Complexity classes: Reductions

• Consider the following two NP problems:

• Example: k = 4

Definition: k-Clique
Does a graph of n vertices have a clique (i.e. a complete
subgraph) of size k?

Complexity classes: Reductions

• 3-SAT vs. k-Clique: What do they have in common?

• Consider the following 3-SAT instance:

Φ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x3 ∨ ¬x4)

x1

x2

¬x3

¬x1 ¬x2 x4

¬x4

x2

x3

Complexity classes: Reductions

• 3-SAT vs. k-Clique: What do they have in common?

• Consider the following 3-SAT instance:

Φ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x3 ∨ ¬x4)

x1

x2

¬x3

¬x1 ¬x2 x4

¬x4

x2

x3

Complexity classes: Reductions

• 3-SAT vs. k-Clique: What do they have in common?

• Consider the following 3-SAT instance:

Φ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x3 ∨ ¬x4)

x1

x2

¬x3

¬x1 ¬x2 x4

¬x4

x2

x3

Complexity classes: Reductions

• 3-SAT vs. k-Clique: What do they have in common?

• Consider the following 3-SAT instance:

Φ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x3 ∨ ¬x4)

x1

x2

¬x3

¬x1 ¬x2 x4

¬x4

x2

x3

Complexity classes: Reductions

• 3-SAT vs. k-Clique: What do they have in common?

• Consider the following 3-SAT instance:

Φ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x3 ∨ ¬x4)

x1

x2

¬x3

¬x1 ¬x2 x4

¬x4

x2

x3

Complexity classes: Reductions

• 3-SAT vs. k-Clique: What do they have in common?

• Consider the following 3-SAT instance:

Φ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x3 ∨ ¬x4)

x1

x2

¬x3

¬x1 ¬x2 x4

¬x4

x2

x3

If this graph has a 3-
clique the formula can

be satisfied!

Complexity classes: Reductions

• 3-SAT vs. k-Clique: What do they have in common?

• Consider the following 3-SAT instance:

Φ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x3 ∨ ¬x4)

x1

x2

¬x3

¬x1 ¬x2 x4

¬x4

x2

x3

If this graph has a 3-
clique the formula can

be satisfied!

x2 = x3 = x4 = T

Complexity classes: Reductions

Interesting conclusion
This 3-SAT instance can be solved via a 3-Clique instance.

Very interesting conclusion
Any n-clause 3-SAT instance can be solved via a n-Clique
instance. The mapping between the questions and
corresponding answers can be done in poly(n) time.

Complexity classes: Reductions

Definition: Reduction
(Informal) Problem A reduces to problem B if an algorithm for B
can be used to find a solution fo A, and the mapping between
them can be done efficiently.
Intuitively, this says B is at least as hard as A.
Example: 3-SAT reduces to k-Clique.

Mind-blowing conclusion
Every problem in NP reduces to 3-SAT!

Complexity classes: Reductions

Definition: NP-complete
(Informal) A problem is NP-hard if any other NP problem
reduces to it.
It is also NP-complete if it is in NP and is NP-hard.

Complexity classes: Reductions

Cook-Levin Theorem (1971/1973)
3-SAT is NP-complete.

Complexity classes: NP - more examples

• Hamiltonian cycle: In a graph of n vertices, is there a cycle that visits
each vertex exactly once?

• Subset sum: Given a collection of n integers, is there a subset of them
that sums to 0?

• Graph isomorphism: Are two n-vertex graphs identical up to
relabelling?

• Protein folding, vehicle routing, scheduling.

• Sudoku, tetris and Minesweeper

• A huge number of others!
• Of the NP problems listed so far, only Factoring and Graph isomorphism are

not NP-complete!

Complexity classes: P vs.NP

• One of the main open questions in mathematics today!
• Worth 1 million dollars! (really!)

• Really hard question!
• It would take a single efficient algorithm for a single NP-complete

problem to prove P = NP. No such algorithm has been found.

• Most complexity theorists believe the answer is no.

Is every problem in NP also in P?

Complexity classes

NP Graph isomorphism

Factoring

P

Determinant
Linear programming

TSP
3-SAT

3-coloring
Many more!

NP-complete

Primality
?

Million-dollar corner!

Simulation of
quantum systems?

Outline: Computational complexity theory I

• Classical computing 101

• Complexity Classes:
• P;

• NP

• Reductions and NP-completeness;

• BPP and BQP;

Complexity classes: BQP

Definition: P (complexity class)
(formal) A problem is in P if and only if there is a uniform family
of efficient classical circuits such that, for all n-bit input x,

- In a YES instance the circuit outputs 1;
- In a NO instance the circuit outputs 0;

Recall…

Complexity classes: BQP

Definition: BPP (complexity class)
(formal) A problem is in BPP if and only if there is a uniform
family of efficient classical circuits such that, for all n-bit input x,

 - The circuits have access to a source of random bits;
- In a YES instance the circuit outputs 1 with probability > 2/3;
- In a NO instance, the circuit outputs 0 with probability > 2/3;

* Computer scientists believe BPP = P, although there
are problems in BPP currently not known to be in P.

Complexity classes: BQP

BQP

P
(or BPP if we have

random bits)

Complexity classes: BQP

Definition: BQP (complexity class)
(formal) A problem is in BQP if and only if is exists a uniform
family of efficient quantum circuits such that, for all n-qubit
input x,

- In a YES instance the output qubit is 1 with probability > 2/3;
- In a NO instance, the output qubit is 0 with probability > 2/3;

* Randomness is built in!

Complexity classes: BQP

• Factoring (Shor - 1994)

• Discrete Log (Shor - 1994)

• Quantum simulations (Feynman, Lloyd and others)

• Unstructured search (Grover - 1996)

• Element distinctness (Shi - 2002, Ambainis - 2007)

• Jones polynomials (Aharonov et al - 2006)

• And many others to come!

Complexity classes

NP Graph isomorphism

Factoring

P

Determinant
Linear programming

TSP
3-SAT

3-coloring
Many more!

NP-complete

Primality
?

Million-dollar corner!

Quantum  
simulation*

BQP

* not a decision problem!

Jones
Polynomial

The Complexity (Petting) Zoo

Scott Aaronson (Complexity Zoo)AC0

NC

L

BPP

coNP

MA

AM

PH

PP

P#P

PSPACE

EXP

ALL

SZK

P/poly

QAM

QMA

QCMA

= postBQP

P

NP

BQP L

P

PH
PP

P#P

PSPACE

EXP

=
postBQP

NP

BQP

BPP

postBPP

L

P

PH
PP

P#P

PSPACE

EXP

=
postBQP

NP

BQP

BPP

postBPP

The Complexity Zoo (includes Lions)

Imagem: Greg Kuperberg (Complexity Zoo)

(NP-cap-coNP)/poly

NP/poly

PP/poly

NE/poly

(k>=5)-PBP

NC^1 PBP

LQNC^1

CSL

+EXP

EXPSPACE

EESPACEEEXP

+L

+L/poly +SAC^1

AL

P/poly

NC^2

P

BQP/poly

+P

ModP

SF_2

AmpMP

SF_3

+SAC^0

AC^0[2]

QNC_f^0

ACC^0

QACC^0

NC

1NAuxPDA^p

SAC^1

AC^1

2-PBP

3-PBP

4-PBP

TC^0

TC^0/poly

AC^0

AC^0/poly

FOLL

MAC^0QAC^0

L/poly

AH

ALL

AvgP

HalfP

NT

P-Close

P-Sel

P/log

UPbeta_2P

compNP

AM

AM[polylog]

BPP^{NP}

QAM

Sigma_2P

ZPP^{NP}

IP

Delta_3PSQG

BP.PP

QIP[2] RP^{NP}

PSPACE

MIPMIP* QIP

AM_{EXP}

IP_{EXP}

NEXP^{NP}

MIP_{EXP}

EXPH

APP

PP

P^{#P[1]}

AVBPP

HeurBPP

EXP

AWPP

A_0PP

Almost-PSPACE

BPEXP

BPEEMA_{EXP}

MP

AmpP-BQP

BQP

Sigma_3P

BQP/log

DQP

NIQSZK QCMAYQP

PH

AvgE

EE

NEE

ENearly-P

UE

ZPE

BH

P^{NP[log]}

BPP_{path}

P^{NP[log^2]}

BH_2

CH

EXP/poly

BPE

MA_E

EH

EEE

PEXP

BPL

PL

SC

NL/poly

L^{DET}

polyL

BPP

BPP/log

BPQP

Check

FH

N.BPP

NISZK

PZK

TreeBQP

WAPP

XOR-MIP*[2,1]

BPP/mlog

QPSPACE

frIP

MA

N.NISZK

NISZK_h

SZK

SBP

QMIP_{le}

BPP//log

BPP/rlog

BQP/mlog

BQP/qlog

QRG ESPACE

QSZK

QMA

BQP/qpoly

BQP/mpoly

CFL

GCSL

NLIN

QCFL

Q

NLINSPACE

RG

CZK

C_=L

C_=P

Coh

DCFL

LIN

NEXP

Delta_2P

P^{QMA}S_2P

P^{PP}

QS_2P

RG[1]

NE

RPE

NEEXP

NEEE

ELEMENTARY

PR

R

EP

Mod_3PMod_5P

NP

NP/one RP^{PromiseUP}US

EQP

LWPP

ZQP

WPP

RQP

NEXP/poly

EXP^{NP}

SEH

Few

P^{FewP}

SPP

FewL

LFew

NL SPL

FewP

FewUL

LogFew

RP

ZPP

RBQPYP

ZBQP

IC[log,poly]

QMIP_{ne}QMIP

R_HLUL

RL

MAJORITY

PT_1

PL_{infty}

MP^{#P}

SF_4

RNC

QNC

QP

NC^0

PL_1

QNC^0 SAC^0

NONE

PARITY

TALLY

REG

SPARSE

NP/log

NT*

UAPQPLINbetaP

compIP

RE

QMA(2)

SUBEXP

YPP

I want to know more!

Lance Fortnow,  
“The Golden Ticket: P, NP

and the search for the
impossible”

Scott Aaronson,  
“Quantum computing

since Democritus”

S. Arora and B. Barak 
“Computational

complexity: a modern
approach”

