Introduction to quantum computing and simulability

Introduction to computational complexity theory II

Daniel J. Brod
Leandro Aolita
Ernesto Galvão
Outline: Computational complexity theory II

• Review of last lecture;
• Computational complexity conjectures;
• The polynomial hierarchy;
• The magical power of postselection;
 • The postselection argument for demonstrating quantum advantage;
• Counting problems (#P)
Church-Turing Thesis

Church-Turing Thesis (physical version)
All computational problems solvable by a realistic physical system can be solved by a Turing machine.

Church-Turing Thesis (Strong version)
Any problem that can be solved efficiently by a realistic computational device can be solved efficiently by a Turing machine.
Complexity classes: \(\mathbf{P} \)

Definition: \(\mathbf{P} \) (complexity class)

(formal) A problem is in \(\mathbf{P} \) if and only if there is a uniform family of efficient classical circuits* such that, for all \(n \)-bit inputs \(x \),

- In a **YES** instance the circuit outputs 1;
- In a **NO** instance the circuit outputs 0;

* Uniform family of efficient classical circuits:
 - depend only on size \(n \) of input;
 - have at most \(\text{poly}(n) \) gates;
 - can be described in \(\text{poly}(n) \) time
Complexity classes: **NP**

Definition: NP (complexity class)

(informal) Decision problems whose solution can be **checked** efficiently by classical computers.

- Example: Factoring

\[67030883744037259 = 179424673 \times 373587883 \]
Definition: NP (complexity class)

(formal) A problem is in \(\text{NP} \) if and only if there is a uniform family of efficient classical circuits that takes as inputs an \(n \)-bit string \(x \) and a witness \(y \) such that

- In the YES instance, there is \(y \) of length \(\text{poly}(n) \) such that the circuit outputs 1;
- In the NO instance, for all \(y \) of length \(\text{poly}(n) \) the circuit outputs 0;
Complexity classes: Reductions

Definition: Reduction

(Informal) Problem A reduces to problem B if an algorithm for B can be used to find a solution for A, and the mapping between them can be done efficiently.

Intuitively, this says B is at least **as hard as** A.

Example: **3-SAT** reduces to **k-Clique**.
Complexity classes: Reductions

Definition: NP-complete

(Informal) A problem is **NP-hard** if any other **NP** problem reduces to it.

It is also **NP-complete** if it is in **NP** and is **NP-hard**.

Cook-Levin Theorem (1971/1973)

3-SAT is **NP-complete**.
Complexity classes: **NP** - more examples

- **Hamiltonian cycle**: In a graph of n vertices, is there a cycle that visits each vertex exactly once?
- **Subset sum**: Given a collection of n integers, is there a subset of them that sums to exactly x?
- **Graph isomorphism**: Are two n-vertex graphs identical up to relabelling?
 - Protein folding, vehicle routing, scheduling.
 - Sudoku, tetris and Minesweeper
 - A **huge** number of others!

 - Of the **NP** problems listed so far, only **Factoring** and **Graph isomorphism** are **not** **NP**-complete!
Complexity classes: **BQP**

Definition: BPP (complexity class)

(formal) A problem is in **BPP** if and only if there is a uniform family of efficient classical circuits such that, for all \(n \)-bit input \(x \),

- The circuits have access to a source of random bits;
- In a \textsc{yes} instance the circuit outputs 1 with probability > 2/3;
- In a \textsc{no} instance, the circuit outputs 0 with probability > 2/3;

* Computer scientists believe **BPP = P**, although there are problems in **BPP** currently not known to be in **P**.
Complexity classes: **BQP**

P (or **BPP** if we have random bits)
Definition: **BQP** (complexity class)

(formal) A problem is in **BQP** if and only if is exists a uniform family of efficient quantum circuits such that, for all n-qubit input x,

- In a YES instance the output qubit is 1 with probability $> 2/3$;
- In a NO instance, the output qubit is 0 with probability $> 2/3$;

* Randomness is built in!
Complexity classes

NP
- Graph isomorphism

NP-complete
- TSP
- 3-SAT
- 3-coloring
- Many more!

P
- Primality
- Determinant
- Linear programming

BQP
- Jones Polynomial
- Quantum simulation*

Million-dollar corner!

* not a decision problem!
Outline: Computational complexity theory II

• Review of last class;

• Computational complexity conjectures;

• The polynomial hierarchy;

• The magical power of postselection;
 • The postselection argument for demonstrating quantum advantage;

• Counting problems (#P)
The Complexity (Petting) Zoo

Lines indicate **proven** inclusions (from bottom to top)
The Complexity (Petting) Zoo

Exercise:
Prove the following inclusions

\[P \subseteq NP \]
\[P \subseteq BPP \]
\[BPP \subseteq BQP \]

While you’re at it…

\[BPP \subseteq P \]
\[NP \subseteq P \]
Complexity-theoretic conjectures

• Proving complexity classes are different is **hard**!

• e.g. we know that

\[
L \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP
\]

- Logarithmic space
- Polynomial space
- Exponential time

• But we can only **prove** that:

\[
PSPACE \not\equiv L \\
EXP \not\equiv P
\]
Complexity-theoretic conjectures

- Proving complexity classes are different is **hard**!

> “I like to joke that if we were physicists, we would’ve simply declared $P \neq NP$ to be a “law of nature,” and given ourselves Nobel Prizes for our “discovery”!”

- Scott Aaronson
Complexity-theoretic conjectures

• Proving complexity classes are different is **hard!**
• Many arguments have the following structure:

 “If X was true, it would have an unexpected consequence for the structure of complexity classes, therefore X is probably not true”

 e.g. If **3-SAT** has an efficient classical algorithm, then **P = NP**.
Outline: Computational complexity theory II

- Review of last class;
- Computational complexity conjectures;
- The polynomial hierarchy;
- The magical power of postselection;
 - The postselection argument for demonstrating quantum advantage;
- Counting problems ($\#P$)
Complexity classes: **PH**

Definition: P (complexity class)
(alternative informal) Problems of type
“Given input x, is $f(x) = 1$?”

Definition: NP (complexity class)
(alternative informal) Problems of type
“Given input x, does there exist y such that $f(x,y) = 1$?”

* where x and y have length $\text{poly}(n)$ and f is efficiently computable;
Complexity classes: **PH**

- Generalization:

 Definition: PH (complexity class)

 (informal) Problems of type

 “Given input \(x\), does there exist \(y\), such that for all \(z\), there exists \(w\) such that for all… \(f(x,y,z,w,...) = 1\)?”

- Not an actual complexity class. It is the union of a (presumably) infinite tower of complexity classes!

 * \(x,y,z,w,...\) have length \(\text{poly}(n)\) and \(f\) is efficiently computable.
Complexity classes: **PH**

“Given input x, does there exist y, such that for all z, there exists w such that for all... $f(x, y, z, w, \ldots) = 1$?”

n variables \rightarrow n-th level of **PH**

Level 0 \rightarrow **P** (“Given input x, is $f(x) = 1$?”)

Level 1 \rightarrow **NP** (“Given input x, is there y s.t. $f(x, y) = 1$?”) $+$ **co-NP**

Level 2 \rightarrow Π^P_2 and Σ^P_2

Ex.: Given circuit A that computes a function, is there circuit B of size $\leq k$ that computes the same function?
Complexity classes: **PH**

Strongly suspected to be infinite!

Level 3 \rightarrow \{ Σ_3^P, Δ_3^P, Π_3^P \}

Level 2 \rightarrow \{ Σ_2^P, Δ_2^P, Π_2^P \}

Level 1 \rightarrow $\text{NP} = \Sigma_1^P$ $\text{coNP} = \Pi_1^P$

Level 0 \rightarrow $\Sigma_0^P = \text{P} = \Pi_0^P$
Complexity classes: **PH**

- Another variant of a conjecture-based argument:

 “If X was true, **PH** would collapse to its nth level, therefore X is probably not true”

- e.g. “If restricted quantum devices (e.g. IQP or linear optics) could be simulated classically, **PH** would collapse to 3rd level!”
 - Ernesto and I will use this a lot in the next lectures!
Outline: Computational complexity theory II

• Review of last class;

• Computational complexity conjectures;

• The polynomial hierarchy;

• The magical power of postselection;
 • The postselection argument for demonstrating quantum advantage;

• Counting problems (\#P)
Let us now give our quantum and classical computers magic powers!

Complexity classes: postBPP and postBQP

*post-selection!
Complexity classes: **postBPP** and **postBQP**

- Postselection: The ability to condition acceptance on some (not-impossible) event, no matter how unlikely.
Why is postselection magic?
- e.g. it lets classical computers solve NP problems efficiently!

Q: Can we color a graph with 3 colors?

Randomly assign colors. Post-select on a valid coloring!
Complexity classes: **postBPP** and **postBQP**

• Why is postselection magic?

 • e.g. it lets classical computers solve **NP** problems efficiently!

Q: Can we color a graph with 3 colors?

Randomly assign colors. Post-select on a valid coloring!
Complexity classes: **postBPP** and **postBQP**

- Why is postselection magic?
 - e.g. it lets classical computers solve **NP** problems efficiently!

Q: Can we color a graph with 3 colors?

Randomly assign colors. Post-select on a valid coloring!
Complexity classes: \textbf{postBPP} and \textbf{postBQP}

Definition: postBPP (complexity class)

A problem is in \textbf{postBPP} if and only if there is a uniform family of randomized classical circuits such that, for all \(n\)-bit inputs \(x\),

- The postselection register is 1 with probability \(> 0\);

Conditioned on the postselection register outputting 1:

- In a \texttt{YES} instance, the output bit is 1 with probability \(> 2/3\);
- In a \texttt{NO} instance, the output bit is 0 with probability \(> 2/3\);
Definition: postBQP (complexity class)
A problem is in postBQP if and only if there is a uniform family of quantum circuits such that, for all \(n\)-bit input \(x\),
- The postselection qubit outputs 1 with probability \(> 0\);
Conditioned on the postselection register outputting 1:
- In a YES instance, the output qubit is 1 with probability \(> 2/3\);
- In a NO instance, the output qubit is 0 with probability \(> 2/3\);
Complexity classes: **postBPP** and **postBQP**

- **postBPP** lives inside **PH** (in the 3rd level)
- **postBQP** lives outside **PH**!

*Fine-print: actually, \(P^{postBQP} \) lives outside **PH**
Recipe for demonstrating quantum advantage

1 - Take a restricted model of quantum computing A. e.g. circuits of commuting gates or linear optics

2 - Give it postselection, and see what comes out. (call it postA)

3 - If $A + \text{post-selection}$ includes quantum computing, then $\text{postA} = \text{postBQP}$

4 - Suppose there is a classical algorithm to efficiently simulate A (i.e. sample from same distribution). Then $\text{postA} \subseteq \text{postBPP}$.

5 - But then $\text{postBQP} \subseteq \text{postBPP}$ and PH collapses!
Interlude: What do we mean by simulation?

Not fair! A quantum computer can’t do this either!

Strong simulation:
Compute these probabilities
Interlude: What do we mean by simulation?

Weak simulation: Just produce samples from this distribution.

This can be refined (exact vs approximate weak simulation)
Recipe for demonstrating quantum advantage

1 - Take a restricted model of quantum computing A. e.g. circuits of commuting gates or linear optics

2 - Give it postselection, and see what comes out. (call it postA)

3 - If A + post-selection includes quantum computing, then postA = postBQP

4 - Suppose there is a classical algorithm to efficiently simulate A (i.e. sample from same distribution). Then postA ⊆ postBPP.

5 - But then postBQP ⊆ postBPP and PH collapses!
Subtle but important point: This does not say anything about BQP vs BPP! That is:

$$BPP = BQP \not\Rightarrow postBPP = postBQP$$

The only conclusion we can draw is about an efficient classical simulation of restricted model A!

4 - Suppose there is a classical algorithm to efficiently simulate A (i.e. sample from same distribution). Then $\text{postA} \subseteq \text{postBPP}$.
Complexity classes: \textit{postBPP} and \textit{postBQP}

- Subtle but important point: This does \textbf{not} say anything about \textbf{BQP vs BPP}! That is:

\[\text{BPP} = \text{BQP} \not\Rightarrow \text{postBPP} = \text{postBQP} \]

- The only conclusion we can draw is about an efficient classical \textit{simulation} of restricted model \textit{A}!

\begin{enumerate}
\item Suppose there is a classical algorithm to efficiently \textbf{sample} from the output distribution of \textit{A}.
\item Take any problem solvable by some routine in \textit{postA}.
\item To solve the same problem in \textit{postBPP}, just:
 \begin{enumerate}
 \item Sample from the output distribution of \textit{A};
 \item Apply the same post-selection rule;
 \end{enumerate}
\end{enumerate}
Outline: Computational complexity theory II

• Review of last class;
• Computational complexity conjectures;
• The polynomial hierarchy;
• The magical power of postselection;
 • The postselection argument for demonstrating quantum advantage;
• Counting problems ($\#P$)
Complexity classes: \#P

Definition: \#P (complexity class)

(informal) \#P is a class of counting problems. For example, counting the number of solutions to an \textbf{NP} problem.

- How hard is counting the number of solutions to an \textbf{NP} problem?
 - Very! Finding \textbf{one} solution might already be very hard, but there could be exponentially many of them!
Complexity classes: \#P

Definition: \#P (complexity class)

(informal) \#P is a class of **counting** problems. For example, counting the number of solutions to an NP problem.

- **How hard is counting the number of solutions to an NP problem?**
 - Very! Finding **one** solution might already be exponentially many of them!
Complexity classes: \#P examples

- Counting the number of perfect matchings of a graph.

We want to pair \(n \) students for an assignment. We want to pair stronger students with weaker ones;

But some of them hate each other!

Finding one perfect pairing is in NP…

(in fact, it is in P!)

But counting all of them is \#P-hard!
Complexity classes: \#P examples

- Computing the Permanent of a matrix:
 \[
 \text{Per}(A) = \sum_{\sigma \in S_m} \prod_{i=1}^{m} a_{i,\sigma(i)}
 \]
 Similar to determinant but without the - signs!

- Permanent is **\#P-hard** even if matrix has only 0’s and 1’s
 - Can be used to encode the number of perfect matchings of a graph!
 - Similar to determinant in form but not complexity! (determinant is in \textbf{P})
Complexity classes: \(\#P \) examples

- Computing the Permanent of a matrix:

\[\text{Per}(A) = \sum_{\sigma \in S_m} \prod_{i=1}^{m} a_{\sigma(i)} \]

- Similar to determinant but without the - signs!

Tomorrow

A shocking appearance of the permanent in optics!

Also: Find all about what all this has to do with bosons and fermions!

- Permanent is \(\#P \)-hard even if matrix has only 0’s and 1’s
- Can be used to encode the number of perfect matchings of a graph!
- Similar to determinant in form but not complexity! (determinant is in \(P \))