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Introduction to quantum computation and simulability

Outline:

•  3 approaches to simulation of Boson Sampling
• brute force
• brute force with little memory
•  rejection sampling

•  Simulation algorithms for general quantum circuits
• Schrodinger scheme
• Schemes based on Feynman’s path integrals

•  For slides and links to related material, see

Lecture 12 : Other approaches to simulation



Classical simulation���
of Boson Sampling
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Classical simulation of Boson Sampling

•  Assume n photons interfering in m=n2 modes

•  Boson Sampling distribution p(k) over outputs k: 

•  number of possible outputs:
 
•  each p(k) given by |permanent(Uk)|2 of nxn matrix Uk

                   (computationally demanding)

How can we simulate Boson Sampling on a classical computer?
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Algorithm A: brute force

•  Calculate and store each p(k), then sample from that distribution
•  Memory = exp(n), time = exp(n).
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Classical simulation of Boson Sampling

Algorithm B: brute force with small memory

•  Exact sample  = uniform sample from blue area
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Classical simulation of Boson Sampling

Algorithm B: brute force with small memory

•  Exact sample  = uniform sample from blue area
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Classical simulation of Boson Sampling

Algorithm B: brute force with small memory

•  Exact sample  = uniform sample from blue area

•  Equivalent to uniformly sampling u in (0,1)…
     … and outputting the k which contains u

k
 

p(k)
 

u
 

Output
k=3

1

0

u
 



Classical simulation of Boson Sampling

Algorithm B: brute force with small memory

•  Exact sample  = uniform sample from blue area

•  Equivalent to uniformly sampling u in (0,1)…
     … and outputting the k which contains u

•  Sufficient to compute&store cumulative sum 
    until 

s(i) = p(k)
k=1
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Classical simulation of Boson Sampling
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Algorithm B: brute force with small memory

•  Exact sample  = uniform sample from blue area

•  Equivalent to uniformly sampling u in (0,1)…
     … and outputting the k which contains u

•  Sufficient to compute&store cumulative sum 
    until 

s(i) = p(k)
k=1
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Classical simulation of Boson Sampling
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Algorithm B: brute force with small memory

•  Exact sample  = uniform sample from blue area

•  Equivalent to uniformly sampling u in (0,1)…
     … and outputting the k which contains u

•  Sufficient to compute&store cumulative sum 
    until 

•  Easy to sample N events, in worst case we need to 
compute all permanents once.

•  Time = exp(n), memory = poly(n)

s(i) = p(k)
k=1
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Classical simulation of Boson Sampling

Algorithm C: rejection sampling

•  Rejection sampling algorithm:
•  Choose constant
•  Pick point P uniformly in red/blue box:
•  pick k0 uniformly randomly in 
•  pick u uniformly randomly in 

C ≥ p(k)  ∀k

{1,2,...,kmax}
(0,C)
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Classical simulation of Boson Sampling

Algorithm C: rejection sampling

•  Rejection sampling algorithm:
•  Choose constant
•  Pick point P uniformly in red/blue box:
•  pick k0 uniformly randomly in 
•  pick u uniformly randomly in 

C ≥ p(k)  ∀k

{1,2,...,kmax}
(0,C)
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Classical simulation of Boson Sampling

Algorithm C: rejection sampling

•  Rejection sampling algorithm:
•  Choose constant
•  Pick point P uniformly in red/blue box:
•  pick k0 uniformly randomly in 
•  pick u uniformly randomly in 

•  Calculate blue/red border: p(k0)=|per(Uk0)|2

•  If P in blue – accept and output k0
•  If P in red – reject and try again

•  Sampling is exact if 

C ≥ p(k)  ∀k

{1,2,...,kmax}
(0,C)

C ≥ p(k)  ∀k
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•  Possible to prove high-probability upper bound C for p(k), valid for uniform ensemble of 
unitaries (Scott Aaronson, private communication)

•  Memory = poly(n), time = exp(n)* m

•  Total variation distance error < 1/(kmax*C)

benign overhead with m



2 general approaches to simulation of general quantum circuits:

•  Brute-force calculation à la Schrodinger

•  Calculation with polynomial memory – à la Feynman

Simulation of general quantum circuits



This is the approach most students of QM would take. Setting:
•  n qubits
•  depth m (= number of temporal layers of gates)

Schrodinger simulation:  exp(n) time, exp(n) space
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•  Simulation:
1.  Initialize input state;
2.  Calculate state after first layer of one- and two-qubit gates;
3.  Repeat step 2 above until we get the final state;

4.  Directly obtain the amplitude corresponding to the final states of interest.

•  Complexity:
•  m2^n time 
•  2^n space (to store wavefunction amplitudes)



•  Let us look at how we can compute amplitudes using Feynman’s path integrals. : calcula

•  Goal: calculate

Another approach: Feynman’s path integral
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Simulation using Feynman’s sum over path amplitudes
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If we want the amplitude that the top qubit’s measurement be 1:

1anything U3U2U1 x = 1w U3 zj
j,k
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w
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Complexity for m unitary layers:
•  exp(n) time
•  poly(n,m) space ( not exponential like the Schrodinger scheme)



•  Simulating circuits with:
•   n qubits
•  m gates
•  depth d 

•  Aaronson and Chen (2016) algorithms: [arXiv:1612.05903]

1.  poly(n,m) space, m^O(n) time
2.  poly(n,m) space, d^O(n) time
3.  “Smooth tradeoff” with Schrodinger’s scheme:
•  Halve memory use in S. scheme => multiply time use by d

•  Application (together with other tricks) [Pednault et al., arXiv:1710.05867]

•  7x7=49 2D grid, random circuit, depth 27
•  2 days of IBM Vulcan IBM Blue Gene/Q supercomputer (Lawrence Livermore Labs)
•  4.5 TB memory use, computation of 2^38 amplitudes
•  related paper simulates 7x8=56 qubit circuit of depth 27 [Boixo et al., arXiv:1712.05903]

•  Other schemes:
•  contracting tensor networks (Markov, Shi 2008), see Leandro Aolita’s lectures

Refinements and applications



Time ordering in quantum computation: ���
���

- superposition of causal orders���
���

- simulated closed time-like curves



Computational resource: superposition of causal orders

•  It’s possible to imagine superposing different orders of operations:

Procopio et al., arXiv:1412.4006

•  This can be achieved using an interferometer (but not a circuit):

•  Based on theoretical work by Chiribella (2012).



PCTCs: a model based on teleportation and post-selection

•  Bennett and Schumacher, unpublished (2002) – see seminar http://bit.ly/crs8Lb
•  Rediscovered independently by Svetlichny (2009) - arXiv:0902.4898v1

- Related work on black holes by Horowitz/Maldacena (2004), Preskill/Gottesman (2004) 
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CTC Simulation using teleportation and post-selection: B’=C

•  We post-select projections onto 

-  Postselection successful: state B’ is teleported back in time (state C = state B’)
-  Simulation works only when post-selection happens -> finite probability of 

success. 
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