
Daniel J. Brod (UFF)
Leandro Aolita (UFRJ/ICTP-SAIFR)
Ernesto F. Galvão (UFF)

Introduction to quantum
computation and simulability

ICTP-SAIFR – IFT/UNESP , October 15th-19th, 2018
P

(accept)

k

p(k)
 C

P
(reject)

x

y
z1

z3

z2

Introduction to quantum computation and simulability

Outline:

•  3 approaches to simulation of Boson Sampling
• brute force
• brute force with little memory
•  rejection sampling

•  Simulation algorithms for general quantum circuits
• Schrodinger scheme
• Schemes based on Feynman’s path integrals

•  For slides and links to related material, see

Lecture 12 : Other approaches to simulation

Classical simulation���
of Boson Sampling

P
(accept)

k

p(k)
 C

P
(reject)

1

0

u

p(k)

Classical simulation of Boson Sampling

•  Assume n photons interfering in m=n2 modes

•  Boson Sampling distribution p(k) over outputs k:

•  number of possible outputs:

•  each p(k) given by |permanent(Uk)|2 of nxn matrix Uk

 (computationally demanding)

How can we simulate Boson Sampling on a classical computer?

n2

n

!

"
##

$

%
&&∝ exp(n)

Algorithm A: brute force

•  Calculate and store each p(k), then sample from that distribution
•  Memory = exp(n), time = exp(n).

k

p(k)

Classical simulation of Boson Sampling

Algorithm B: brute force with small memory

•  Exact sample = uniform sample from blue area

k

p(k)

1

0

Classical simulation of Boson Sampling

Algorithm B: brute force with small memory

•  Exact sample = uniform sample from blue area

k

p(k)

1

0

Classical simulation of Boson Sampling

Algorithm B: brute force with small memory

•  Exact sample = uniform sample from blue area

•  Equivalent to uniformly sampling u in (0,1)…
 … and outputting the k which contains u

k

p(k)

u

Output
k=3

1

0

u

Classical simulation of Boson Sampling

Algorithm B: brute force with small memory

•  Exact sample = uniform sample from blue area

•  Equivalent to uniformly sampling u in (0,1)…
 … and outputting the k which contains u

•  Sufficient to compute&store cumulative sum
 until

s(i) = p(k)
k=1

i

∑
s(i) ≥ u

k

p(k)
 0

s(1)

s(2)

s(3)

s(4)=1

u

u

Classical simulation of Boson Sampling

k

p(k)

Algorithm B: brute force with small memory

•  Exact sample = uniform sample from blue area

•  Equivalent to uniformly sampling u in (0,1)…
 … and outputting the k which contains u

•  Sufficient to compute&store cumulative sum
 until

s(i) = p(k)
k=1

i

∑
s(i) ≥ u

0

s(1)

s(2)

s(3)

s(4)=1

Output
k=3

Classical simulation of Boson Sampling

k

p(k)

Algorithm B: brute force with small memory

•  Exact sample = uniform sample from blue area

•  Equivalent to uniformly sampling u in (0,1)…
 … and outputting the k which contains u

•  Sufficient to compute&store cumulative sum
 until

•  Easy to sample N events, in worst case we need to
compute all permanents once.

•  Time = exp(n), memory = poly(n)

s(i) = p(k)
k=1

i

∑
s(i) ≥ u

0

s(1)

s(2)

s(3)

s(4)=1

Classical simulation of Boson Sampling

Algorithm C: rejection sampling

•  Rejection sampling algorithm:
•  Choose constant
•  Pick point P uniformly in red/blue box:
•  pick k0 uniformly randomly in
•  pick u uniformly randomly in

C ≥ p(k) ∀k

{1,2,...,kmax}
(0,C)

k

p(k)
 C

Classical simulation of Boson Sampling

Algorithm C: rejection sampling

•  Rejection sampling algorithm:
•  Choose constant
•  Pick point P uniformly in red/blue box:
•  pick k0 uniformly randomly in
•  pick u uniformly randomly in

C ≥ p(k) ∀k

{1,2,...,kmax}
(0,C)

k

p(k)
 C

P=(k0,u)

k0

Pu

Classical simulation of Boson Sampling

Algorithm C: rejection sampling

•  Rejection sampling algorithm:
•  Choose constant
•  Pick point P uniformly in red/blue box:
•  pick k0 uniformly randomly in
•  pick u uniformly randomly in

•  Calculate blue/red border: p(k0)=|per(Uk0)|2

•  If P in blue – accept and output k0
•  If P in red – reject and try again

•  Sampling is exact if

C ≥ p(k) ∀k

{1,2,...,kmax}
(0,C)

C ≥ p(k) ∀k
P

(accept)

k

p(k)
 C

P
(reject)

•  Possible to prove high-probability upper bound C for p(k), valid for uniform ensemble of
unitaries (Scott Aaronson, private communication)

•  Memory = poly(n), time = exp(n)* m

•  Total variation distance error < 1/(kmax*C)

benign overhead with m

2 general approaches to simulation of general quantum circuits:

•  Brute-force calculation à la Schrodinger

•  Calculation with polynomial memory – à la Feynman

Simulation of general quantum circuits

This is the approach most students of QM would take. Setting:
•  n qubits
•  depth m (= number of temporal layers of gates)

Schrodinger simulation: exp(n) time, exp(n) space

U

layer 1 layer 2

…

layer m

n

0

1
!

0

!

"

#
#

$

#
#

m layers
•  Simulation:
1.  Initialize input state;
2.  Calculate state after first layer of one- and two-qubit gates;
3.  Repeat step 2 above until we get the final state;

4.  Directly obtain the amplitude corresponding to the final states of interest.

•  Complexity:
•  m2^n time
•  2^n space (to store wavefunction amplitudes)

•  Let us look at how we can compute amplitudes using Feynman’s path integrals. : calcula

•  Goal: calculate

Another approach: Feynman’s path integral

x

y

initial state

final state
z1

z3

z2

well-localized
intermediate states zj

y U2U1 x

y U2U1 x = y U2 zj z j
j=1

3

∑
"

#
$$

%

&
''U1 x = y U2 zj z j U1 x

j=1

3

∑

=1 sum over path amplitudes

Simulation using Feynman’s sum over path amplitudes

layer 2

n

0

1
!

0

!

"

#
#

$

#
#

layer 1 layer 3

xinitial state y = 100...00
final state

1

0
!

0

y U3U2U1 x = y U3 zj z j
j
∑
"

#
$$

%

&
''U2 zk zk

k
∑
"

#
$

%

&
'U1 x = y U3 zj

j,k
∑ zj U2 zk zk U1 x

zk zk
k
∑
"

#
$

%

&
' zj z j

j
∑
"

#
$$

%

&
''

If we want the amplitude that the top qubit’s measurement be 1:

1anything U3U2U1 x = 1w U3 zj
j,k
∑ zj U2 zk zk U1 x

w
∑

Complexity for m unitary layers:
•  exp(n) time
•  poly(n,m) space (not exponential like the Schrodinger scheme)

•  Simulating circuits with:
•  n qubits
•  m gates
•  depth d

•  Aaronson and Chen (2016) algorithms: [arXiv:1612.05903]

1.  poly(n,m) space, m^O(n) time
2.  poly(n,m) space, d^O(n) time
3.  “Smooth tradeoff” with Schrodinger’s scheme:
•  Halve memory use in S. scheme => multiply time use by d

•  Application (together with other tricks) [Pednault et al., arXiv:1710.05867]

•  7x7=49 2D grid, random circuit, depth 27
•  2 days of IBM Vulcan IBM Blue Gene/Q supercomputer (Lawrence Livermore Labs)
•  4.5 TB memory use, computation of 2^38 amplitudes
•  related paper simulates 7x8=56 qubit circuit of depth 27 [Boixo et al., arXiv:1712.05903]

•  Other schemes:
•  contracting tensor networks (Markov, Shi 2008), see Leandro Aolita’s lectures

Refinements and applications

Time ordering in quantum computation: ���
���

- superposition of causal orders���
���

- simulated closed time-like curves

Computational resource: superposition of causal orders

•  It’s possible to imagine superposing different orders of operations:

Procopio et al., arXiv:1412.4006

•  This can be achieved using an interferometer (but not a circuit):

•  Based on theoretical work by Chiribella (2012).

PCTCs: a model based on teleportation and post-selection

•  Bennett and Schumacher, unpublished (2002) – see seminar http://bit.ly/crs8Lb
•  Rediscovered independently by Svetlichny (2009) - arXiv:0902.4898v1

- Related work on black holes by Horowitz/Maldacena (2004), Preskill/Gottesman (2004)

€

β00 ≡
1
2
00 + 11()

CTC Simulation using teleportation and post-selection: B’=C

•  We post-select projections onto

-  Postselection successful: state B’ is teleported back in time (state C = state B’)
-  Simulation works only when post-selection happens -> finite probability of

success.
€

β00

