Daniel J. Brod (UFF)
Leandro Aolita (UFRJ/ICTP-SAIFR)

Introduction to quantum

computation and simulability

Ernesto F Galvao (UFF) e
o) £
1) U A
n -

[0)

poly(n)

: ’ E:ﬂ

ICTP/SAIFR-IFT/UNESP, October 15%-19t%, 2018



Quantum Optics and Quantum Information group

InsTITUTO DE Fisica

Universidade Federal Fluminense

Niteroi, across the
bay from Rio de
Janeiro

View from the
Physics building:



Quantum Optics and Quantum Information group

InsTITUTO DE Fisica

« Universidade Federal Fluminense

Research:

|- Quantum optics for quantum information
Antonio Zelaquett Khoury, Carlos Eduardo R. de Souza,
Kaled Dechoum, Daniel T. Schneider

2- Foundations of quantum computation
Daniel Brod, Daniel Jonathan, Ernesto F. Galvao

3- Interface between condensed matter physics and g. information
Marcelo Sarandy, Thiago R. de Oliveira, Mohammad Rajabpour



Introduction to quantum computation and simulability

Lecture 2 : Introduction to the circuit model

Outline:

* Introduction: computational models

* Circuit model
* Bloch sphere and one-qubit gates
* Two qubit gates
* Computational basis preparation and measurement
* Universal gate sets — approximating unitaries

* Clifford circuits
* Groups of unitaries: Pauli and Clifford groups
* Simulability of Clifford circuits
* Upgrading Clifford circuits to universal QC

®* |ntroduction to restricted models of QC
®* Weak and strong simulation

* For slides and links to related material, see https://sites.google.com/view/intro-
qc-simulability/home



Models for quantum computation

* A computational model is a mathematical model allowing for computation
Examples: Turing machines, gate arrays (circuits), lambda calculus, billiard-ball computing, cellular

automarta
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®* There are many models for quantum computation
- Presumed to be equivalent (Church-Turing-Deutsch Principle)
- Differences result in

* conceptual insights on QM

* important practical differences in implementations

* Main models for universal quantum computation:

- Circuit model
- Measurement-based models

- Adiabatic quantum computation
- Topological quantum computation
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Basics of the circuit model

* The most well-known model for quantum computation is the circuit model, obtained in

analogy with classical circuits
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3-qubit QFT

®* wires = qubits (i.e. 2-level systems)
* little boxes = single-qubit gates
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Basics of the circuit model

* The most well-known model for quantum computation is the circuit model, obtained in
analogy with classical circuits
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3-qubit QFT

* wires = qubits (i.e. 2-level systems) * Any single-qubit unitary is a rotation of the Bloch
* little boxes = single-qubit gates sphere
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Basics of the circuit model

* The most well-known model for quantum computation is the circuit model, obtained in
analogy with classical circuits
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* Two-qubit gates:
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Measurement bases

*  What about the final measurements? lq0) — H H @K
Convention: Z, or computational, basis
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* Sometimes we allow for unitaries being applied conditionally on the result of a
measurement
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®*  What if we change the output measurement!?




Measurement bases

*  What about the final measurements? lq0) — H H @K
Convention: Z, or computational, basis
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* Sometimes we allow for unitaries being applied conditionally on the result of a
measurement
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®*  What if we change the output measurement? Single-qubit measurements are OK...



Measurement bases

*  What about the final measurements? lq0) — H H /ﬁ
Convention: Z, or computational, basis

{lo).J)} a1) U

* Sometimes we allow for unitaries being applied conditionally on the result of a
measurement
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®*  What if we change the output measurement? Single-qubit measurements are OK...
...but arbitrary global measurements are not OK.



Measurement bases

*  What about the final measurements? lq0) — H H /f\
Convention: Z, or computational, basis

{lo).J)} a1) U

* Sometimes we allow for unitaries being applied conditionally on the result of a
measurement
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®*  What if we change the output measurement? Single-qubit measurements are OK...
...but arbitrary global measurements are not OK.



Measurement bases

*  What about the final measurements? lq0) — H H @K
Convention: Z, or computational, basis

{lo).J)} a1) U

* Sometimes we allow for unitaries being applied conditionally on the result of a
measurement
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®*  What if we change the output measurement? Single-qubit measurements are OK...
...but arbitrary global measurements are not OK.

* So let’s stick to computational basis measurements



Approximating unitaries

How can we approximate unitaries with a z3) 1 T 2
limited set of gates!? T2) T H Ryjo
r1) — H {— Rry2 Rz /4

Intuition: approximating a 2D rotation using multiple applications of a single rotation

Many ways to approximate any U on n qubits. The standard set is:
{H,T,S,CNOT |

Proof steps:
|. Any unitary on n qubits can be decomposed exactly with single-qubit

unitaries TCNOTs
2. Any single-qubit unitary can be arbitrarily well-approximated using H, T gates

only.
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Approximating unitaries — Solovay-Kitaev theorem

It’s possible to approximate n-qubit unitaries with any universal set of gates, such as

the standard set {H,T,S,CNOT}

How efficient can the approximation be!?

Solovay-Kitaev theorem:
Assume universal gate set G, in which each gate is accompanied by its inverse. | want
an approximation (n fixed) with accuracy €.This can be done with gate sequence of

length 0(1og°‘(1 / 8)),0 ~3.97

Additionally: classical compilation time is 0(10g2'71(1/8))

This is exponentially faster than naive approximation

* Moreover, error of concatenation of m approximations increases linearly

with m (benign scaling)



Other universal gate-sets

* Here are a few different sets of universal gates:

1.{H,T,S,CNOT}

[Deutsch et al., Proc. R. Soc. London A 449 (1937), 669 (1995)]

2{almOSt any tWO-qult gate} [LlO)’d, PRL 75(2)’ 346 (|995)]

3 {ma tchgates, SWA P} [Jozsa, Miyake Proc. R. Soc. London A 464, 3089 (2008)]
1 00000 0 0] [Shi, quant-ph/02051 | 5]
01 000000
00100000 What’ -

4. Toffoli, H Toffoli = _[0boo10000 at’s curious

{ I } afjol: 00001000 |aboutthisgate set?
o 00000100

00000001
0000001 0]

* Encoded universality: all unitaries on logical qubits can be approximated
(even if not on physical qubits). Example: [DiVincenzo et al., Nature 408, 339 (2000)]

5.{Exchange interaction}: Logical qubits:
1
0,)=—(010)-{100
H = EJij(Xi@Xj-l_Yi@Yj-l_Zi@Zj) 0.) /—2(| )=[100))
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BQP

® |t can be shown that generic unitaries require an exponential number of two-

qubit gates to approximate

® counting argument using epsilon-net of n-qubit states

* Problems solvable with high probability by a polynomial-sized circuit

(in n=input size) define complexity class BQP
(bounded error, quantum polynomial time)
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Quantum teleportation as a circuit
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Quantum algorithms

Algorithms achieving superpolinomial speed-up:

* Factoring (Shor 1994)
- Factor n-bit integer in O(n’) steps, against O(e"
- used to break RSA cryptosystem
- Mathematically: solving hidden Abelian subgroup problem

1/3 2/3
log(n) )on classical computer

* Solution of linear system of equations (Harrow 2008)
- Find approximate solution of Ax=b, with A being a n x n matrix. It takes O(log(n)) steps,
against O(n) classically.

* Simulating quantum systems (Feynman 1982, Abrams/Lloyd 1997, etc.)
- Simulation of physically reasonable Hamiltonians using n qubits in poly(n) steps.

* Calculating partition functions of classical systems (Lidar/Biham 1997, Aharonov et al. 2007)

® Various problems involving groups and rings.



Quantum algorithms

Algorithms with polynomial speed-up:

* Unstructured database search (Grover 1996)
* Finds marked item in 0(\/;) queries, agains O(n) classically.
* Conceptually important for other algorithms.

® Various graph properties

* Gradient search for minimum (Bulger 2005, Jordan 2008)



