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Introduction to quantum computation and simulability

Lecture 5 : Clifford circuits, measurement-based QC (MBQCQC) |

Outline:

* Clifford circuits
* Pauli and Clifford groups
* Simulability of Clifford circuits
* Upgrading Clifford circuits to universal QC

* Introduction to Bell non-locality

* How MBQC works
* One-bit teleportation circuit
* Gate teleportation
* Concatenating MBQC gates

* Resources for MBQC: graph and cluster states

* Experimental implementations

®* For slides and links to related material, see
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Clifford circuits

* Pauli group: tensor products of iI, iiI, X, /

- eample: _j7 @ X, ® 1,

* Clifford group: unitaries C that map Paulis into Paulis:

CPC*=P. < CP=PC
’ / o n<|.1> Clifford

* Clifford group is generated by {H,P,CNOT}

* Clifford circuits create large amounts of entanglement, are useful for teleportation,
error correction...

...but are efficiently simulable.



Clifford circuits

* Pauli group: tensor products of il, iiI, X, / |O> pas
Clifford group: unitaries C that map Paulis into Paulis: m! ) Cll]?COFd =
+ ' :
CPC"=P < CF=PC o) A
R X -7 R
Z— X
P X —=Y P
L — Z
CNOT XRIT—-XRX
IRX —-1I®X |
ZQRQI—-ZRI
IRZ-ZQ 7

®* The key simulation idea is to use Heisenberg picture:
* initial state is eigenstate of Pauli operator
* each Clifford gate maps it into a new Pauli (efficient computation)
* keep track of the Pauli transformation until end, when measurement outcomes can be

efficiently computed.

* Clifford circuits are not believed even to be able to do universal classical computation...



Example: Heisenberg simulation of Clifford circuit
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The key simulation idea is to use Heisenberg picture:
* initial state is eigenstate of Pauli operator
* each Clifford gate maps it into a new Pauli (efficient computation)

* keep track of the Pauli transformation until end, when measurement outcomes can be

efficiently computed.

A: CNOT(1 — 2)

B: CNOT(2 — 1)

C: CNOT(1 — 2)
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“Upgrading” a Clifford computer

* Clifford: {H,P,Z,CNOT} ,all that’s missing is T gate

There’s a work-around using:
* magic input states and

* adaptativity

[Bravyi, Kitaev PRA 71,022136 (2005)]
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“Upgrading” a Clifford computer

* Clifford: {H,P,Z,CNOT} ,all that’s missing is T gate

0Y {H.P.Z,CNOT}

* There’s a work-around using: 0) -
* magic input states and : CllﬁCOI”d
* adaptativity 1)
[Bravyi, Kitaev PRA 71,022136 (2005)]
|A) = (|0>+e”/4|1>) —o—{ x| T|y) ,
) ——/= ; .
X
A 7
> N cgora | ||| 18 universal for QC
) A

* Relevant for topological quantum computation with anyons, as for example Ising model
implements Clifford operations in a topologically protected way



Bell non-locality
S ]

* Bell inequalities (Bell 1964) are limits on the correlation of distant systems

* Example: Clauser-Horn-Shimony-Holt (CHSH) inequality (1969):

* Alice e Bob measure dychotomic properties (results +1 or -1)
* Each chooses randomly which property to measure:

* Alice measures A, or A,; result a, or a,

* Bob measures B, or B,; result b, or b,.




CHSH inequality

* Hypotheses:
- Pre-determined value for experimental outcomes (realism) IOC&I
- Result of A doesn’t depend on what B does (and vice-versa) (locality) .
realism

* CHSH inequality:

‘<a1b1> + <a2b1> + <a2b2> — <albz>‘ <2



CHSH inequality

* Alice and Bob compare notes and
jointly prepare spreadsheet:

(A\ - H 0 % &1
o -|

- +] |
+ | + 1 + |
- +| -
<a1b1> <a1b2> <a2b1> <a2b2>
* If local realism holds, then: ‘<Cllb1> + <Cl2b > < b > <a1b2>‘ <2

— - e
* But local measurements on particles in@tate |1/}> ( 1‘) —|’|‘> Lb\/\'

give Ka1b1> + <a2b1> + <a2b2> Bl <a1b2 >‘ -2v2>2

QM violates local realism!




Measurement-based quantum computation
(MBQC)

information flow
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MBQC.: basic ingredients

Class of QC models where the computation is driven by measurements on previously
entangled states

|- Initialization by CZ gates on |+) states;

2- Sequence of single-qubit, adaptive measurements.

* Origin: gate teleportation idea [Gottesman, Chuang, Nature 402,390 (1999)]
®* Most well-know variant is the one-way model (IWQC) [Raussendorf, Briegel PRL 86,5188 (2001)]

* Brief introduction to MBQC based on McKague’s paper “Interactive proofs for BQP via self-
tested graph states” arxiv:1309.5675 (201 3)



MBQC.: step-by-step

3 versions of the “| -bit Z teleportation” circuit:

E:ﬂ

Z v

v) ’ X>:ﬂ
0) D
U
)
]
0) H I

X measurement result controls Z gate

Direct calculation shows this works

|dentity transforms CNOT into CZ



MBQC.: step-by-step

3 versions of the “| -bit Z teleportation” circuit:

) ’ EZH
0) —D /
) I X =
0y —mg
v) 3% X =l

Z v

X measurement result controls Z gate

Direct calculation shows this works

|dentity transforms CNOT into CZ

Left H incorporated in input |+)

HZ = XH identity



MBQC.: step-by-step

3 versions of the “| -bit Z teleportation” circuit:

) ’ E:H
0) — 7 ——y)
) EEH
0y — H I Hzl—v
) I @:ﬂ
|+) X —H |y)

X measurement result controls Z gate

Direct calculation shows this works

|dentity transforms CNOT into CZ

Left H incorporated in input |+)

HZ = XH identity

So far: no computation, but: ancilla initialized in ‘+> state; CZ gate creates entanglement




MBQC.: step-by-step

Now let’s teleport the unitary U(0)=exp(ifZ/2):

gy —— U(0) I @j

+) XHHuFue)|y)




MBQC: step-by-step

Now let’s teleport the unitary U(0)=exp(ifZ/2):

‘?,U> ﬂ @:un * U commutes with CZ

+) 1% X = H}U®|yp)

) I U(6) @Eﬂ

X HFU®)|w)




MBQC.: step-by-step

Now let’s teleport the unitary U(0)=exp(ifZ/2):

‘1/1>— U(9) I Ez'n * U commutes with CZ

X HFU®G)|p)

) U(6) X * U followed by X-measurement =
I measurement in x-y plane of Bloch sphere:
+) XHHPU®OY)  U*XU = R(0)=cos(0)X +sin(0)Y

0>

11>



MBQC.: step-by-step

Now let’s teleport the unitary U(0)=exp(ifZ/2):

lpy——U(9)

@z-n

X

K

HEFU®)|y)

HEU®O)|y)

) I U®6) —{ X )
|+)
N
) R(0)
|+) I :J(

- U@O)|y)

U commutes with CZ

U followed by X-measurement =
measurement in x-y plane of Bloch sphere:

U XU = R(0) =cos(0)X +sin(0)Y

10>

I% ly>




MBQC.: step-by-step

Now let’s teleport the unitary U(0)=exp(ifZ/2):

‘1//>— U(9) I Ez'n * U commutes with CZ

X—HFu®)|y)

‘I/j> U(6) X * U followed by X-measurement =
I measurement in x-y plane of Bloch sphere:
+) XHHPU®OY)  U*XU = R(0)=cos(0)X +sin(0)Y
0>
) R(6)
/
+) XHHUO|Y)
o ly>

Evolved state U(0)|y) is teleported, via entanglement and right

choice of measurement basis of top qubit

1>
(gate teleportation idea of Gottesman and Chuang) 1




MBQC.: step-by-step

Now two different unitaries in sequence:

W> I R(61) HU@6)|y) * Two gate teleportations, without final H gates,
[+)

result in final state
X yR(%)
HU(6,)HU(6,)|y)

+) I X}




MBQC.: step-by-step

Now two different unitaries in sequence:

result in final state

W> I R(61) * Two gate teleportations, without final H gates,
[+)

HU(6,)HU(6,)|y)

* Now commute X and CZ, which requires adding
Z gate controlled by measurement |




MBQC.: step-by-step

Now two different unitaries in sequence:

result in final state

"/J> I R(61) * Two gate teleportations, without final H gates,
[+)

HU(6,)HU(6,)|y)

* Now commute X and CZ, which requires adding
Z gate controlled by measurement |

X 1 R(6,) * Incorporate X correction into measurement angle
I :ﬂ of 2.When X is applied 0, — -0, because:

XR(0)X = R(-0)




MBQC.: step-by-step

Now two different unitaries in sequence:

result in final state

W> I R(61) * Two gate teleportations, without final H gates,
+)

HU(6,)HU(6,)|y)

* Now commute X and CZ, which requires adding
Z gate controlled by measurement |

of 2.When X is applied 0, — -0, because:

I X 1 R(6,) ®* Incorporate X correction into measurement angle

|+) Z X—
XR(6)X = R(-6)
W> I R(61) )= H * By adapting measurement 2 according to outcome
fl, I
X iy e UGN
I+) I 7 X * Easy to extend to multiple single-qubit unitaries,

and {HU(0)} is universal set for | qubit

Adaptativity allows for any single-qubit unitary to be implemented in the one-way model
CZ gates can be implemented similarly, propagation to beginning induces extra corrections




MBQC.: step-by-step

* How do corrections affect future measurements?
We can have both X and Z corrections:
Outcomes of previous measurements:

<, X S {_191}
* As XR(0)X = R(-0) , X corrections turn § — —@ < i
X
* As ZR(0)Z =-R(0) ,Z corrections invert the output n
~
R(z0) j—e— mz
10>
Classical control computer needs only
| + |- store&update sum modulo 2 of X
X correction \ 1~ and Z corrections of each qubit
Z correction —> |
+ |«
| 6 > This parity computer is quite
+ 14| simple, but together with the quantum
resource yields universal QC
1>




MBQC.: step-by-step

* Single-qubit inputs can be prepared from |+) by MBQC R(6)) —=
computation, so all qubits are initialized in |+) state I
+) I R(+6,)
1) Z X

* Now the have all the ingredients for the one-way model of MBQC.:

|- Initialization by CZ gates on |+)states;

2- Sequence of single-qubit, adaptive measurements.

* Different algorithms may differ by the required entanglement structure, and by the sequence
of different bases measured



Entanglement resources for MBQC

* Graph states:

class of states obtainable by

|. Initialization of a set of qubits in ‘+> states

2. CZ gates between neighboring vertices in a

graph

* Examples:

- No. 7 (5 qubits): sufficient for any single qubit unitary

- No. 3 (4 qubits): sufficient for CNOT

* Alternative characterization of graph states:

- Unique state which is simultaneous eigenstate (with

eigenvalue |) of set of operators

-
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J
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(@) x
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* Are there families of graph states which are universal for QC?



Entanglement resources for MBQC

M. HEIN, W.DUR, J. EISERT,R. RAUSSENDORF,M. VAN DEN NEST and H.-J. BRIEGEL
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from: Proc. Int. School of Physics "Enrico Fermi" on "Quantum Computers,Algorithms and Chaos",Varenna, Italy (2005)

;'L‘3> ¢ T H y]>
x2) T H Rejof——— |y2) 3-qubit QFT
x1) H Ry /2 Ry /4 y3)

* Example of universal graph: 2D square lattice (called cluster state)
* Above: MBQC implementation of 3-qubit discrete Fourier Transform

* “Unwanted” vertices deleted by Z-measurements; resulting corrections must be taken
into account



Entanglement resources for MBQC

®* Some known universal resources for MBQC: 2D triangular, hexagonal, Kagome lattices

s e ow s (X

L L { . ® * L L

- These resources are "universal state preparators” = strong notion of universality

®* Other resource states enable simulation of classical measurement statistics of any universal
quantum computer = weaker notion of universality
- Some of these require a universal classical computer (instead of a parity computer)

[Gross et al., PRA 76,052315 (2007)]
® Universality also for ground state of 2D Affleck-Kennedy-Lieb-Tasaki (AKLT) model

[WVei, Affleck, Raussendorf PRL 106,070501 (201 )]

* MBQC on some resource states is known to be simulable, e.g. on ID chain
[Markov, Shi, SIAM J. Comput. 38,963 (2008)]



MBQC - implementations

* Optical lattices — counter-propagating laser beams trap cold neutral atoms
* Challenge: single-site addressing

Addressing laser beam B \licrowave
6.8 GHz

B -

‘ 1 N ax= 532 nm

Atoms in 2D optical lattice

from:Weintenberg et al,, Nature 471,319 (2011)

* Proof-of-principle implementations using
photons
* Topological error-correction using
eight-photon cluster states

from:Yao et al., Nature 482,489 (2012)




MBQC - implementations

* Using one-way model to advantage: building large resource states from probabilistic
operations; at once or on the go

(b) ‘ ‘ Measure Entangle
non-deterministic ' t 9 O -9 QO QO O
T ] I o o -9 0 0 0

} I:I:' g | . T

9 @ - QO QO O
I )é?/b : o o ¢ ' U 6 '"o O Q O

¢ _.’ .’

from: Briegel et al, Nat. Phys. 5 (1), 19 (2009) from: O’Brien, Science 318, 1467 (2007)

* Schemes for adapting imperfect clusters for MBQC

(f) deletion and contraction (Q.1 & Q.2)

(1) initial faulty square Inttice

from: Browne et al, New J. Phys. 10,023010 (2008)



Application: blind quantum computation

* Classical/quantum separation in MBQC allow for implementation of novel protocols — such as
blind quantum computation

®* Here,client has limited quantum capabilities, and uses a server to do computation for her.

* Blind = server doesn’t know what’s being computed.

random state O_® ® *—o
generation /
® O----@ @ @
___________________ measurement O----@ P PA
; 5 ; angle . I I
: update :
: rule - /“L O ® ®
e eeeeneseneaseat Measurement
result o —0—0—0—0 9

Broadbent, Fitzsimons, Kashefi, axiv:0807.4154 [quant-ph]



Application: model for quantum spacetime

* MBQC can serve as a discrete toy model for quantum spacetime:

quantum space-time MBQC

quantum substrate graph states

events measurements

principle establishing global determinism requirement
space-time structure for computations

[Raussendorf et al., arxiv:1 108.5774]

* Even closed timelike curves (= time travel) have analogues in MBQC!

[Dias da Silva, Kashefi, Galvao PRA 83,012316 (2011)]



