On the search of new lightweight materials for the automotive technology: a computational approach

Jimena A. Olmos-Asar

Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba – INFIQC, CONICET

INFIQC, FCQ, UNC Marcelo Mariscal

PhD - Chemistry

2008

2012

Universitá degli Studi di TriesteMaría PeressiINFIQC, FCQ, UNC
Marcelo MariscalPostdocPhD - ChemistryPostdoc2008201220132014

Un INFIQC, FCQ, UNC Marcelo Marisca	niversita N C	á degli /Iaría F	Studi o Peress	di Triest i Ada	e UFABC I berto Faz	zio
PhD - Chemistry		Post	doc		Postdoc	
2008	2012	2013	2014	2015	2016 2017	

Where do we work?

Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, **Universidad Nacional de Córdoba**

Instituto de Investigaciones en Físico-Química de Córdoba, **CONICET**

What do we research?

Development of classical potentials

Heterogeneous catalysis

2D materials and interfaces

Passivation of metal nanoparticles

Oxides

Mechanical properties of nanosystems

Global minimization techniques

IrAu Nanoalloys

- Different Ir and Au environments
- Notable segregation tendency
- Au atoms increase the reactivity of Ir atoms

Cappellari P. S., Soldano G. J. and Mariscal, M. M., "A density functional study on the reactivity enhancement induced by gold in IrAu nanoalloys", RSC Adv., 8, 10450-10456, 2018.

CO Oxidation on Bimetallic Nanolloys

- O₂ dissociation favored on Ir region
- Spontaneous formation of CO₂ on Au and IrAu interface
- Low activation energy for O_{at} diffusion on Ir areas

Experimental motivation:

- Development and optimization of catalysts for fuel cells
- Graphene supported nanoparticles: measurement of the contact area

Preliminary results

Contact area (A_c) of graphene supported nanoparticles

Mechanical properties of core-shell nanoparticles

2D materials as catalysts for fuel refining

Tomorrow!

TUESDAY (November 13)		
9:30 - 10:30	Session E	
	Talk E1: Negreiros	
	Talk E2: Maurice de Konig	
	Talk E3: Helena Petrilli	

New lightweight materials based on magnesium for the automotive technology

Global warming: We need to reduce CO_2 emanations

- Reducing the vehicles' weight
- Moving to alternative fuels

New lightweight materials based on magnesium for the automotive technology

Global warming: We need to reduce CO₂ emanations

- Reducing the vehicles' weight
- Moving to alternative fuels

Lightest structural metal Excellent castability Abundant, sustainable Non toxic, recyclable

Very reactive Fast oxidation, explodes Soft, low ductility Hydride too stable

New lightweight materials based on magnesium for the automotive technology

Global warming: We need to reduce CO_2 emanations

- Reducing the vehicles' weight
- Moving to alternative fuels

Mg-graphene heterostructures

Mg-graphene heterostructures

Charge transfer from magnesium to graphene

Magnesium oxidation

spontaneous fast oxidation

Avoiding oxidation

ab-initio MD simulation

graphene covered magnesium does not oxidize

Experimentally, graphene may present defects

1) Stone-Wales defect

2) Single vacancy defect

3 C-Mg covalent bonds are formed

The exposed Mg atom does not oxidize

3) Double vacancy defect

4 C-Mg covalent bonds are formed

3) Double vacancy defect

3) Double vacancy defect

The exposed Mg atom oxidizes, but may protect the surface

Main conclusions

Magnesium-graphene heterostructures may be stable at room temperature

The carbon monolayer, even defected graphene, acts as an efficient protection against oxidation

Perspectives

Al-Mg Global minimum structure for different compositions Al-Mg-Zn Global minimum structure for different compositions Mechanical properties of selected structures

2D heterostructures with other passivants Mg interaction with other carbonaceous materials

Thank you!

Muito obrigada!

¡Muchas gracias!

INSTITUTO DE FÍSICA TEORICA