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In vitro evolution experiments
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The Long-Term Evolution Experiment (LTEE) on E. coli

… the uniqueness of evolutionary history is itself amenable
to careful experimental analysis, and… may be an
inevitable consequence of the “laws” of microevolution.

Lenski & Travisano, 1994

You have the luxury of making a prediction, and then you
can test it. It’s almost like physics.

Travisano, 1999
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The scheme of the LTEE
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12 independent E. coli populations, originating from a single clone, 6
Ara+ (can use ℓ-arabinose as a substrate) and 6 Ara-
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The protocol of the LTEE

24 h

0.1 ml

(6 ÷ 7 generations)

10 ml

Parallel propagation of the 12 independent E. coli populations;
standard density ∼ 5 · 107 cells per ml
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Features of the LTEE

• 12 independently evolved populations in glucose-poor
environment

• More than 40 000 generations till now
• Probably billions of “simple” mutations have occurred in each
strain

• Only about 10 ÷ 20 mutations have reached fixation during the
experiment

• Some evolutionary trends are common to all strains (e.g.,
larger and rounder cells, higher fitness on glucose)

• Four strains have evolved into hypermutators
• One major innovation (ability to metabolize citrate) evolved
around generation 31 500 in only one strain
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Adaptation to citrate

The front central flask (labelled A-3) has a higher turbidity than the
others, since it has evolved to use the citrate present in the medium

Photo courtesy of Brian Baer and Neerja Hajela
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The mechanisms of evolution

• Reproduction
• Selection
• Mutation
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Reproduction
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The bacterial growth curve
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Schematic plot of the population size n(t) vs. time t in a 10mℓ growth
medium flask inoculated with 50µℓ of E. coli culture.
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Simple exponential growth

• Generation time τ ∼ 20 min

• Expected population at time t: n(t) = n02
[t/τ ]

• This assumes that the cells are synchronized (discrete
generations)

• Assume that cells reproduce on average once within τ :
n(t) =

[
n0 2

t/τ
]
(overlapping generations)

• We shall often switch between discrete time (discrete
generations) and continuous time (overlapping generations)

• 72 generations in one day: from one individual, in two days,
2144 ≃ 2 · 1043 individuals, mtot ≃ 2 · 1028 kg ∼ 3000 Earth
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The Galton-Watson (GW) process

• Cells may die before reproducing
• Reproduction and death is a random process
• Discrete generations: pn: probability that a cell has n

offspring in the next generation
• p0: probability of death; p2: probability of reproduction
• Normalization:

∑
n pn = 1

• Probability Pn(t) that the population size equals n at time t

(assuming n(0) = 1)
• Ultimate extinction probability:

Q = lim
t→∞

P0(t)
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Solving the GW process

• Consider the process after t generations, with pop size n

• If n = 1 for t = 0, then n = k for t = 1 with probability pk

• Then the probability that the issue of one of the k individuals
present at t = 1 is equal to m is given by Pm(t− 1)

• Thus Pn(t) satisfies

Pn(t) =
∑
k

pk
∑

{m1···mk}

δ∑
j mj ,n

k∏
j=1

Pmj
(t− 1)
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The generating function

• Define Γ(z, t) =
∑

n z
nPn(t) and g(z) =

∑
n z

npn

• Then

Γ(z, t) =
∑
k

pk

[∑
m

zmPm(t− 1)

]k
= g (Γ(z, t− 1))

• Since Γ(z, 0) = z we have Γ(z, t) = g(g(· · · g(︸ ︷︷ ︸
t times

z)))

• Q = limt→∞ Γ(0, t) = limt→∞ g(g(· · · g(︸ ︷︷ ︸
t times

0)))
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Graphical solution
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• ⟨n⟩ =
∑

n npn = g′(1)

• If ⟨n⟩ < 1, limt→∞ Γ(z, t) = 1 (subcritical regime)
• If ⟨n⟩ > 1, limt→∞ Γ(z, t) = z∗ < 1 (supercritical regime)
• In the supercritical regime, the average size grows
exponentially with t
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The Galton-Watson process in continuous time

Definition of the process:

• The pop size n(t) is an integer ∀t; n(0) = 1

• Probability that a given individual is replaced by k

(k = 0, 2, 3, . . .) individuals in a short interval dt: λπk dt with∑
k πk = 1

• Probability that it stays put: 1− λ dt
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The Galton-Watson process in continuous time

Definition of the process:

• The pop size n(t) is an integer ∀t; n(0) = 1

• Probability that a given individual is replaced by k

(k = 0, 2, 3, . . .) individuals in a short interval dt: λπk dt with∑
k πk = 1

• Probability that it stays put: 1− λ dt

Solution:

• Events in a short initial interval:

Pn(t+ dt) = (1− λdt)Pn(t)

+ λdt
∑
k

πk

∑
{n1,...,nk}

δ∑
k nk,n

k∏
j=1

Pnj (t) + O
(
dt2
)
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Generating functions

• Define Γ(z, t) =
∑

n z
nPn(t) and g(z) =

∑
k z

kπk

• Then

Γ(z, t+ dt) = (1− λ dt)Γ(z, t) + λ dt
∑
k

πk (Γ(z, t))
k
+O

(
dt2
)

• Thus, with U(z) = g(z)− z

∂Γ

∂t
= λU (Γ(z, t))

• Fixed point: U(z∗) = 0, U ′(z∗) < 0

• U ′(1) = ⟨δn⟩; if ⟨δn⟩ < 0, z∗ = 1 is the only stable fixed point;
if ⟨δn⟩ > 0, the stable fixed point is at z∗ < 1
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Graphical solution
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〈δn〉 = −0.15
〈δn〉 = 0.25
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Survival probability as a function of n

• What is the survival probability Sn of a population with size n?
• Assume that only π0 and π2 do not vanish, and define
s = 1− (π0/π2)

• Then Sn satisfies

Sn =
1− s

2− s
Sn−1 +

1

2− s
Sn+1

• Boundary conditions: S0 = 0; limn→∞ Sn = 1. Thus, for s > 0

(i.e., π2 > π0):
Sn = 1− (1− s)

n

• For s < 0 one has Sn = 0, ∀n
• In particular, for s > 0, S1 = s
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Minimal population size

Find the minimal pop size n∗ such that the survival probability Sn

exceeds 1− γ

• Extinction probability for n = 1: z∗

• Probability that all n lineages get extinct: z∗n

• This must be smaller than γ, hence

n > n∗ =
log γ

log z∗

• When only π0 and π2 do not vanish, z∗ = π0

π2
= 1− s

n∗ =
log γ

log(1− s)
≃ | log γ|

s
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The Malthus-Verhulst equation

Assumptions:

• Continuous time t and real values of n

• Reproduction rate decreases linearly with n

• Fluctuations are neglected

Evolution equation for n:

dn

dt
= r

(
1− n

K

)
n

r is the basic reproduction rate, K the carrying capacity

Solution:
n(t) =

K

1 +
(

1
n0

− 1
K

)
Ke−rt
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The logistic function
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Solution of the Malthus-Verhulst equation with r = 3 log 2 hour−1,
n0 = 5 · 106, K = 5 · 108, as in a simple description of the LTEE
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Selection
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Charles Darwin
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Charles Darwin
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Natural Selection

… can we doubt (remembering that many more
individuals are born than can possibly survive) that
individuals having any advantage, however slight, over
others, would have the best chance of surviving and of
procreating their kind? On the other hand, we may feel
sure that any variation in the least degree injurious would
be rigidly destroyed. This preservation of favourable
variations and the rejection of injurious variations, I call
Natural Selection. Variations neither useful nor injurious
would not be affected by natural selection, and would be
left a fluctuating element, as perhaps we see in the
species called polymorphic.

Ch. Darwin, 1859
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Natural Selection

My reflection when I first made myself master of the
central idea of the Origin was, “How extremely stupid not
to have thought of that.”

T. H. Huxley
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Fitness

• Two kinds of individuals, A and B, with populations nA(t) and
nB(t) at discrete generation t

• Fitness: Expected # of offspring of an individual of type i:
Wi, i ∈ {A,B}

• Assumptions:
1. All individuals reproduce independently
2. The offspring of an individual has the same value of W as its

parent
3. Fluctuations are neglected

• Then
ni(t+ 1) = Wini(t) i ∈ {A,B}
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Change in composition

• Fraction xi(t) = ni(t)/
∑

j nj(t) i, j ∈ {A,B}
• Then

x(t+ 1) =
nA(t+ 1)

nA(t+ 1) + nB(t+ 1)
=

WAnA(t)

WAnA(t) +WBnB(t)

=
WAx(t)

WB + (WA −WB)x(t)
=

WA

⟨W ⟩x
x(t)

where ⟨W ⟩x = WAxA +WBxB

• Setting WA/WB = 1 + s, with s > 0,

x(t+ 1) = x(t)
1 + s

1 + sx(t)
≥ x(t)
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The Fundamental Theorem

• x(t) = (x1(t), . . . , xr(t)), fitness Wk, k = 1, . . . , r

• Mean fitness:

⟨W ⟩x =

r∑
k=1

Wkxk

• Then

xk(t+ 1) =
Wkxk(t)

⟨W ⟩x(t)
∆ ⟨W ⟩x(t) = ⟨W ⟩x(t+1) − ⟨W ⟩x(t)

=
1

⟨W ⟩x(t)

(
r∑

k=1

W 2
kxk − ⟨W ⟩2x(t)

)

=

⟨
W 2
⟩
x(t)

− ⟨W ⟩2x(t)
⟨W ⟩x(t)

≥ 0
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About the Fundamental Theorem

We may consequently state the fundamental theorem
of Natural Selection in the form: The rate of increase in
fitness of any organism at any time is equal to its
genetic variance in fitness at that time.

Professor Eddington has recently remarked that “The
law that entropy always increases—the second law of
thermodynamics—holds, I think, the supreme position
among the laws of nature”. It is not a little instructive
that so similar a law should hold the supreme position
among the biological sciences.

R. A. Fisher, 1930
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About the Fundamental Theorem

So we see, in physics, disorder growing inexorably in
systems isolated from their surroundings: and in biology,
fitness increasing steadily in populations struggling for life.
Ascent here and degradation there—almost too good to be
true.

K. Sigmund, 1993
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About the Fundamental Theorem

My own view is that it cannot play an important role in
biology.

J. Maynard Smith, 1989
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Selection in continuous time

Assume simple Malthusian growth

• Population made of r “types”, each with growth rate k,
k = 1, . . . , r

• Number nk(t) of individuals of type k at time t:

dnk

dt
= fknk

• Fraction of individuals of type k: xk = nk/
∑

j nj :

dxk

dt
=
(
fk − ⟨f⟩x(t)

)
xk

• Change in the mean growth rate:

d ⟨f⟩x(t)
dt

=
⟨
f2
⟩
x(t)

− ⟨f⟩2x(t)
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Selection in the Malthus-Verhulst regime

Assume that the carrying capacity K is the same for all k:

• Equation for nk(t):

dnk

dt
= nk

(
fk − N(t)

K
⟨f⟩x(t)

)
• Thus

dN

dt
= ⟨f⟩x(t)︸ ︷︷ ︸

frequency dependent!

N

(
1− N

K

)

• Separation of time scales:
• Fast:

∑
k nk −→ K

• Slow: selection of the “fittest”
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Measuring fitness in the LTEE

• Samples are mixed in a 1:1
ratio

• Densities are measured by
plating on indicator agar

• Initial and final densities
ni,f
A,B

• Expression of the growth
rates:

fA,B = ln
nf
A,B

ni
A,B

Elena & Lenski, 2003
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Frequency-dependent selection
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• Negative
frequency-dependent
selection: frequent types are
selected against

s(xA) = fA(xA)− fB(1− xA)

= s0 − s1xA

dxA

dt
= s(xA)xAxB

• Fixed point at x∗
A: s(x∗

A) = 0

• Negative
frequency-dependent
selection leads to long-term
coexistence (stabilizing
selection)
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Positive selection
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• Positive frequency-dependent
selection: fitness increases
with frequency

s(xA) = s0 + s1xA

dxA

dt
= s(xA)xAxB

• Unstable fixed point at x∗
A:

s(x∗
A) = 0!

• Positive frequency-dependent
selection leads to several
possible equilibria (disruptive
selection)
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Frequency-dependent selection and optimization

• Prisoner’s dilemma: Payoff matrix
Cooperator Defector

Cooperator 1 1− s1
Defector 1 + s2 1− c

(1− c) > (1− s1)

• Thus WC(x) ≤ WD(1− x), 0 ≤ x ≤ 1 and the stable fixed point
is xD = 1

• However WD(1) = 1− c < WC(1) = 1

• Then why is cooperation maintained in Nature?

36



Prisoner’s dilemma in an RNA virus

• Phage ϕ6 at high multiplicity of infection (MOI)
• Evaluation of WD/Wwt for different defector frequencies x

WD

Wwt

∣∣∣∣
x

=

{
x ≪ 1, 1 + s2;

x ≃ 1, (1− s1)/(1− c) > 1

• Evaluation of 1− c: allow multiple infection of only C or D in
the same bacterium: WD = 1− c
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Prisoner’s dilemma in an RNA virus

Fitness of two high-MOI derived strains relative to wild type as a
function of initial frequency 37



Prisoner’s dilemma in an RNA virus
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Rock-scissors-paper game in Uta stansburiana

B. Sinervo and C. Lively, 1996

38



Games lizards play

B. Sinervo and C. Lively, 1996
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Field data

B. Sinervo and C. Lively, 1996
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Fitness model

B. Sinervo and K. R. Zamudio, 2001
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The Fundamental Theorem revisited

• r types, frequency-dependent fitness fk(x), x = (x1, . . . , xr)

• Evolution equation for x:

dxk

dt
=
(
fk(x)− ⟨f⟩x(t)

)
xk

• Change in ⟨f⟩x(t):

d ⟨f⟩x(t)
dt

=
∑
k

 fk
dxk

dt︸ ︷︷ ︸
⟨f2⟩x−⟨f⟩2x

+
∑
j

∂fj
∂xk

dxk

dt
xj


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Comments

What Fisher’s theorem tells us is that natural selection
(in his restricted meaning involving only additive effects)
at all times acts to increase the fitness of a species to
live under the conditions that existed an instant earlier.
But since this standard of “fitness” changes from instant
to instant, this constant improving tendency of natural
selection does not necessarily get anywhere in terms of
increasing “fitness” as measured by any fixed standard,
and in fact M [mean fitness] is as likely to decrease under
natural selection as to increase.

G. Price, 1972
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Thank you!
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