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VIRUS ECOLOGY AND EVOLUTION:

PRINCIPLES & APPLICATIONS OF
VIRUS-MICROBE DYNAMICS

Joshua S. Weitz
School of Biological Sciences and School of Physics
Graduate Program in Quantitative Biosciences
Georgia Institute of Technology

N Joshua S. Weitz, Georgia Tech';'.‘SchooI of Biological Sciences & Physics s v :
% z@gatech.edu, Twitter: @joshuasweitz ““"""‘ - i Y
Cip ): http://ecotheory.biology.gatech.edu i ‘
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MUTATIONS OF BACTERIA FROM VIRUS SENSITIVITY
TO VIRUS RESISTANCE!?

S. E. LURIA® anp M. DELBRUCK

Indiana University, Bloominglon, Indiana, and
Vanderbilt University, Naskville, Tennessee

Received May 29, 19043

GENETICS 28: 401 November 1943
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(w/H. Chase)
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A1. Growth of a bacterial population B1. Growth of a bacterial population
from a single ancestor from a single ancestor

Ancestor Ancestor

A2. Exposure of population to viruses B2. Exposure of population to viruses
A3. Subpopulation of bacteria acquire resistance B3. Subset of resistant bacteria already present

and survive viral infection. and survive viral infection.
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Viruses impose a strong selection pressure.
Host mutations that confer resistance are beneficial.

Hence, viruses induce host evolution.

But, what about the viruses?



MUTATIONS OF BACTERIAL VIRUSES AFFECTING !
| THEIR HOST RANGE!

S. E. LURIA
Indiana University, Bloomington, Indiana

Received July 8, 1944
GENETICS 30: 84 Jan. 1945

2
“Host-range”

/wx S.E. Luria
of viruses expand///:\\ |
||/ =

s SEED AN
\
\. 7 Phage-resistant host
S&,// _ strain emerges
Phage —>  Infection

() Bacteria ---5 Evolution



For decades, this dogma persisted...

“the coevolutionary potential of virulent phage is less
than that of their bacterial hosts”

-Richard Lenski & Bruce Levin,Am. Nat. (1985)

until....



1989 - Numbers

Bergh et al., Nature 1989

“We have found up to 2.5 x 108 virus particles per ml in
natural waters... 103-107 times higher than previous reports.”



1999 - Functioning

Macrozooplankton ’/'"'lqed,
Viruses
Microzooplankton

f ™ hom

Heterotrophic /’:;‘:‘:;(

Bacteria

Phytoplankton yiruses

“Viruses divert the flow of carbon and nutrients... by
destroying host cells and releasing the contents of
these cells into the pool of DOM in the ocean.”

Wilhelm & Suttle, BioScience (1999)
also, see Fuhrman, Nature (1999)



2002 - Diversity

Scripps Pier Mission Bay
Hits to GenBank
Known
‘ (278) ‘

Unknown Unknown |

(783) (569)

Known
(304)

Breitbart et al. PNAS (2002)

“We report a genomic analysis of two uncultured

marine viral communities. Over 65% of the sequences were not
significantly similar to previously reported sequences, suggesting
that much of the diversity is previously uncharacterized.”



What We Talk About When We Talk
About Viruses

PRI, P02 PA
(ENA polymmecase)

= A (hemagghatini)

M1 lion hanel)

—— M| {rrasrix provsn)

NA (recraminidave)

Liphd béayer

Ebola Virus
Image source: CDC

P (ruiooceprhd proten)

Sogrmeatad (-] wrand RNA gene

Influenza virus
virology.ws

Zika virus core
Sirohi et al. Science, 2016

John Moore, Getty Images Source: CNN Source: CDC

(Nature, 2014)



And viruses infect organisms across the
diversity of life

Humans <« » HIV, Ebola, Common Cold...
Mammals <« » Lentivirus, ...
Birds <« » Avian influenza, ...
Insects <« » Baculovirus, ...
Plants <« » Tobacco mosaic virus, ...
Amoeba <« » Giant mimiviruses
Archaea <« » Sulfulobus spindle viruses
Bacteria <« » Bacteriophages (lambda, T4, ...)




And viruses infect organisms across the
diversity of life, sometimes strangely

Humans
Mammals
Birds
Insects
Plants
Amoeba
Archaea
Bacteria

» HIV, Ebola, Common Cold...

» Lentivirus, ...

» Avian influenza, ...

» Baculovirus, ...

» Tobacco mosaic virus, ...

» Giant mimiviruses

A A A A AAAA

» Sulfulobus spindle viruses

» Bacteriophages (lambda, T4, ...)

Michael Grove,
NPR, 201 |
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Viral Ecology and Evolution

Lectures at the Interface
—

From Ecology to Evolution (Lectures 1-2)

Quantitative
Vir:

Principles of eco-evolutionary dynamics: Monday Jan 20

Dynamics in complex communities: Wednesday Jan 22

From Lysis to Latency (Lecture 3)

Friday Jan 25

From Theory to Therapy (Lecture 4) A

Saturday Jan 26

Throughout: theory and modeling motivated

by fundamental eco-evolutionary challenges
& real world applications.

Hours post treatment



Problems in Quantitative Viral Ecology
From Structure to Dynamics

g

A

* How does viral infection change !

microbial population dynamics!?

Predator, ml—!
500

10 :
10° 10° 10"

Prey, ml™!



Problems in Quantitative Viral Ecology
From Structure to Dynamics

How does viral infection change
microbial population dynamics!?

Proportion

How does (co)evolutionary change
alter viral-host population dynamics!?

0 0.5 1
Rescaled Time



Problems in Quantitative Viral Ecology

From Structure to Dynamics
33

* How does viral infection change
microbial population dynamics!?

Bacteria Phages

* How does (co)evolutionary change
alter viral-host population dynamics!?

wld A- ..V, XLW

)

Lo

* What is the relationship between
infection networks and host-viral
dynamics in complex communities!?



Part 1:

How does viral infection change
microbial population dynamics?



Over 80 years ago, Volterra was convinced by his
son-in-law, Umberto d’Ancona, to examine the
fluctuations of the Adriatic fisheries

Vito Volterra
Alfred Lotka

Fluctuations in the Abundance of a Species considered Mathematically.?
By Prof. Vito VoLTERRA, For. Mem. R.S., President of the R. Accademia dei Lincei.

The first case 1 have considered is that of two
associated species, of which one, finding sufficient food
in its environment, would multiply indefinitely when
left to itself, while the other would perish for lack of
nourishment if left alone ; but the second feeds upon
the first, and so the two species can co-exist together,

NAFURE [OCTOBER 16, 1926



In turn, Volterra & Lotka proposed a coupled pair of ODEs
to describe predator-prey dynamics

Model

Prey

N =aN — bNP

P = CNP . dP Predator

N: prey abundance
P: predator abundance

Population

Interactions:
Prey birth/death
Predation 10 ' ' '

0 10 20 30 40
Predator death Time




In turn, Volterra & Lotka proposed a coupled pair of ODEs
to describe predator-prey dynamics

]

Model 10 :

. P=0
N =aN — bNP ol / :
P=cNP—dP ] —
N: prey abundance i (O X SEEEEEEEEEEEEEEEEEEEE ERREEE
P: predator abundance =

107}
Interactions: N\ . /
Prey birth/death
Predation 1075 - — . 2
10 10 10 10 10

Predator death Prey



In turn, Volterra & Lotka proposed a coupled pair of ODEs
to describe predator-prey dynamics

Model

N =aN — bNP

P=cNP —-dP

Predator

N: prey abundance
P: predator abundance

Interactions:

Prey birth/death :
Predation 10_2_2 = 5 N >
Pred death 10 10 10 10 10
redator deat Prey

Conservative system (nhot
true limit cycles)

alog P — bP + dlog N — ¢N = const



Later models included limit cycles, consistent

with long-term observations
]

Features of limit cycles in |
predator-prey models 100 | £ =

2
|.  Prey peaks before g |
predator peaks. @ S0[[d
2. Predator oscillations are |'CE) '
quarter-phase lagged ot |4 844
behind prey oscillations 0 ==
3.  Hence, oscillations appear 1890 1915

. Year
counter-clockwise in prey-

predator phase plane

[Models include “handling time” of prey by
predators and limited prey growth]



Levin et al, 1977

Val. L11, No. 477 Tha American Naturahist January-Febroary 1077

RESOURCE-LIMITED GROWTH, COMPETITION, AND PREDATION:
A MODEL AND EXPERIMENTAL STUDIES WITH
BACTERIA AND BACTERIOPHAGE

Bruce R. Lpviy, Faavkg M Srewanr, axn Lix Cnao

Zoology Department, University of Massachusetts, Amherst, Massachusatts 01004;
and Mathematies Dopactment, Brown University, Providence, Rhode Island 02912

“One Resource, One Prey, One Predator”

3. One Resource, One Prey, One Predator

With one population at each trophic level the equilibrium conditions are:
F 4 (1 + mGh)fp = C,
P(F)le — vp = »,
o= 9l — e i/,
(be™? — LA = p.

BRCTERIA & PHAGE CONCENTRATIGNS

(9)
(10)
(1)
(12)



Levin et al, 1977

Val. L11, No. 477 Tha American Naturalss January-Febroary 1077

RESOURCE-LIMITED GROWTH, COMPETITION, AND PREDATION:
A MODEL AND EXPERIMENTAL STUDIES WITH
BACTERIA AND BACTERIOPHAGE

Bruce R. Lpviy, Faavkg M Srewanr, axn Lix Cnao

Zoology Department, University of Massachuseits, Amherst, Massachusatts 01004 ;
and Mathematics Dopactment, Brown Univearsity, Providencs, Rhods Island 02912

“One Resource, One Prey, One Predator”

3. One Resource, One Prey, One Predaior

With one population at each trophic level the equilibrium conditions are:

f+ (it + Mm)gf)fp = C,
e — b = p,

Idea:
Phage = Predators, Bacteria = Prey

Attributed to:
Allan Campbell 1961 (Evolution):

“The simple predator. If a virulent
phage and a susceptible bacterium are
mixed in an open growth system, such
as a chemostat...”

CONDITIONS FOR THE EXISTENCE OF BACTERIOPHAGE!

Arrany CamPBELL
Department of Biology, University of Rochesier

Received June 21, 1960

ho= (1 — ¢ *Y)iplp,
(be™® — Lk = p.
2 gt
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Dynamic model

dR

— = —w(R — Ro) — ’VRN
dt

dN

pr eYRN — oNV —wN

dV

Interactions:

Resource inflow/outflow
Host growth and outflow
Viral lysis and outflow

(note: original model
included time delays)

Similar model proposed by Campbell (1961) Evolution 15: 153

Concentrations, ml~!

The Lotka-Volterra model is the basis for
models of viral-host population dynamics

0 100 200 300 400 500
Time, hrs

& adapted to phage-bacteria chemostats by Levin et al. (1977) Am. Nat. | | 1:3



Dynamic model

i—? = —w(R— Ry) —YyRN
Cii—jj = eyRN — NV —wN
Oii—‘t/ = BopNV — NV —wV
Interactions:

Resource inflow/outflow
Host growth and outflow
Viral lysis and outflow

(note: original model
included time delays)

Similar model proposed by Campbell (1961) Evolution 15: 153

Predator, ml~!

10

p—
)

10

The Lotka-Volterra model is the basis for
models of viral-host population dynamics

10

[ee]

10 10°
Prey, ml~!

Again, counter-clockwise cycles

& adapted to phage-bacteria chemostats by Levin et al. (1977) Am. Nat. | | 1:3

10

10



The life of a bacterial virus (phage)
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The life of a bacterial virus (phage)
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The life of a bacterial virus (phage)
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Media
Reservoir

dXQ

Sampling

port

Line to
vacuum

U U

Chemostat
vessels

Water bath

Voo
&

Waste



Counter-clockwise cycles have appeared

robust given alternative viral-host models
_

10°

I. Models with an infected class —
N v (1= ) vy —wn

dt K - )
%ngNV—nI—wI "o O\

d

d—‘t/ =\|6nl|— ¢NV —wV

10* 10° 10° 10’
Host, N +1



Counter-clockwise cycles have appeared
robust given alternative viral-host models

]
1. Models with an infected class ’
dN N + |
—— =IN|1——— ) —0¢0NV —uN 10'
dt ( K ) P -
dl £
— =NV —nl —wl "
gt ¢ N
V
d—=[3r1|—cpNV—ooV .
dt 10 10* 10° 10° 10’
. . o Host, N +1
2. Models with an explicit delay
between infection and lysis o’ —
dN N+1 .
dI H 7
== ONV N, Vo™ | wl “wl N
dV
= ﬁ¢NTVTe_wT — ¢NV —wV 10°
dt 10* 10° 10° 10’

Host, N + 1



Counter-clockwise cycles have appeared
robust given alternative viral-host models

10°

I. Models with an infected class

dN N + |

—=rN|(1—— ] —0ONV — N 10’
it " ( K ) ONV —o S
dl Z
— =NV —nl —wl >107

dv
E—Bnl—(pNV—wV o

10* 10° 10° 107
Host, N +1

Mathematical Check-Point:

What life history traits enable viral invasion
and
persistence with their microbial hosts?



The same types of cycles can be observed in
virus-host population dynamics

]
10° :
“Lotka-Volterra” like Virus
cycles between T4 and E.
coli B

Data: Bohannan & Lenski,
Ecology (1997)

Population density (ml™!)

0 50 100 150 200
Time (hours)



Summary of Part 1

Take-home message:

Original models of viral-host dynamics presuppose a
“simple” one virus, one host relationship.

In these models, viruses act like a predator, leading to
cyclical dynamics in which viral peaks follow host peaks

(leading to counter-clockwise cycles).

Invasion and persistence depends on both life history
traits and environmental conditions - it is not inevitable.

However...

Evolution can rapidly change the number/relative
abundance of viruses and hosts strains...

Predator, ml~!




